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A relativistic generalization of the Lee model is developed witkin the framework of light-front
dynamics. The model describes three particles V, N, and B interacting through the virtual process
VAN+0, with no antiparticles present. The model consists of ten generators which satisfy the
commutation relations of the Poincare group. The Lorentz invariance of the S-matrix elements that
arise is demonstrated. The dressed V-particle state is given, and the integral equations that arise in

the BV-BBN sector are derived. The interacting spin operator for the model is analyzed in some de-
tail. The integral equations for the BV-BBN sector are transformed to a new picture and a partial-
wave analysis of the transformed equations is carried out. It is shown that the BV elastic scattering
amplitudes can be obtained from the solution of uncoupled, one-dimensional integral equations.
The model has many of the features of few-particle systems involving pions and nucleons and more-
over provides insight into dealing with the interacting angular momentum operators of light-front
dynamics.

I. INTRODUCTION

In its original formulation, the Lee model consists of
two fermions V and N and a boson 0, interacting accord-
ing to the vertex V~AN+0. The 8 particle is treated re-
lativistically, while the V and N particles are assumed to
be static.

Since there are no antiparticles in the model, the Fock
space breaks up into a direct sum of invariant subspaces
which are spanned by restricted sets of basis vectors. For
example, one sector is spanned by bare V and ON states,
while another is spanned by bare OV and 08N states. The
physical V-particle state and the ON scattering amplitude
were obtained in Lee's original paper. ' The 8V elastic
scattering amplitude and the amplitude for the produc-
tion process V+O~N+28 were first derived by Ama-
do using the methods of dispersion theory.

Originally' the Lee model was used to illustrate mass
and coupling-constant renormalization in a quantum field
theory. Subsequently, it was used to study the problem
of ghost states and the accompanying indefinite metric.
The description of unstable particles has also been stud-
ied with the help of the Lee model.

One of the more interesting applications of the Lee
model and its variations is the construction of solvable
models for few-particle systems. This type of application
was first developed by Amado in the context of a simple
model for nucleon-deuteron scattering as well as a model
for deuteron stripping. The practicality of this approach
to few-particle systems was subsequently established by
Amado and his co-workers.

The V-ON and OV-OI9N sectors of the Lee model in-
corporate many of the features of the low- and
intermediate-energy pion-nucleon system. This fact was
exploited in a three-body calculation of pion-nucleon
scattering by Aaron. The relationship between various
versions of the Lee model and the ~N system has also

been studied by the author, ' and the insights gained
thereby have been used to develop a set of integral equa-
tions for the coupled Nm-N~~ system. ' It is interesting
to note that the cloudy bag model of baryon structure
leads rather naturally to a model" of N's and 6's in-
teracting with pions, which is a combination of the Lee
model and the Chew-Low model.

The VN 8NN and-VV-8NV-88NN sectors of the Lee
model have many of the features of the system consisting
of two nucleons coupled explicitly to pions. This aspect
of the Lee model has been studied by a number of work-
ers. '

One of the serious shortcomings of the original Lee
model' is that it does not take into account the require-
ments of special relativity. In particular it does not speci-
fy a complete set of ten generators for the Poincare
group, and moreover it does not lead to scattering ampli-
tudes that behave properly under Lorentz transforma-
tions.

One of the problems in constructing Poincare-invariant
theories is that in order to satisfy the commutation rela-
tions for the generators more than one generator must
contain interactions. As Dirac' pointed out some time
ago, there are various ways to separate the ten generators
into a subset which contains interactions, i.e., is dynami-
cal, and a subset which is kinematical. Since the commu-
tator of two kinematical generators is a linear combina-
tion of kinematical generators, this subset of generators
must be associated with some subgroup of the Poincare
group. Such subgroups are called stability groups' or ki-
nematic subgroups. ' Each such subgroup is associated
with a three-dimensional hypersurface which is invariant
under a subgroup of the Poincare transformations
x'=ax+b and intersects every world line once. The
choice of the invariant hypersurface determines the form
of the dynamics. Dirac' considered the instant, point,
and front forms for which the hypersurfaces can be taken
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to be t=0, t —x =a & 0 with t & 0, and t +z=0, respec-
tively. The instant and point forms have four dynamical
generators, while the front form has only three. It is
known' that there are two other possible hypersurfaces,
but these both require six dynamical generators, which
makes them rather unattractive.

An instant-form version of the V-ON sector of the Lee
model has been treated by de Dormale. ' As he points
out it does not appear to be straightforward to extend the
instant-form approach to the other sectors. There is a
brief discussion of the relativistic Lee model in Ref. 15;
however, no explicit model is given and no analysis is car-
ried out. Relativistic models, involving the N, the 6 iso-
bar, and the m, which ignore the NN interaction and only
consider the h~~m +N vertex are essentially relativistic
Lee models. '

Here we will construct and analyze a Poincare-
invariant Lee model within the framework of the front
form of relativistic dynamics. As in the original Lee
model' there are three particles V, N, and O interacting
through the vertex VAN+0, and no antiparticles. We
will take all three particles to be bosons. Of course, the
Fock space of this model also breaks up into a direct sum
of invariant subspaces.

The statement of the model involves the specification
of ten Poincare generators, three of which are dynamical.
The generator associated with translations in the light-
front variable x =(t+z)/~2 will be taken to have the
same structure as the Hamiltonian in the original Lee
model. We will see that it is not difficult to guess the oth-
er two dynamical generators and verify that all ten gen-
erators satisfy the necessary commutation relations.

One of the main concerns in relativistic theories is the
transformation properties of the various scattering ampli-
tudes. We will see that the model constructed here leads
to S-matrix elements that are Lorentz-invariant functions
of the initial and final four-momenta involved. This is a
very encouraging result since it shows that it is possible
to construct tractable models that change particle num-
bers and still lead to amplitudes that satisfy the require-
ments of special relativity.

The analysis of the V-ON sector of the Poincare-
invariant Lee model goes through very much as in the
treatment of the version of the Lee model analyzed by
Schweber, ' although the kinematics are diFerent. In
Schweber's version, the total three-momentum is con-
served at each vertex, whereas here it is three light-front

components of the four-momentum that are conserved.
Here we will analyze the OV-OON sector in some detail

since it has some of the features of the intermediate-
energy mN system, and moreover serves as a prototype
for a relativistic three-particle model. Fortunately the
techniques used to derive the integral equations for this
sector of the original Lee model work here as well. The
integral equation that has to be solved to obtain all of the
quantities of interest in this sector turns out to be three
dimensional.

In relativistics dynamics it is often convenient to focus
on the operators which describe the internal structure of
the system, i.e., the mass operator M and the internal an-
gular momentum or spin operator cP (Refs. 14 and 15). It

is possible to construct light-front models in which d'

does not contain interactions ' however, it turns out
that for the Poincare-invariant Lee model two com-
ponents of d' contain interactions. Part of the reason for
constructing this model was to gain insight into this
peculiar feature of light-front dynamics. The model does
not disappoint in this regard.

Here we will study in some detail the action of the spin
operator 8 in the HV HHN-sector. It turns out that this
study pretty much dictates a natural relative momentum
variable for this sector.

In general, carrying out a partial-wave analysis when
an interacting spin operator 8 is in eff'ect is nontrivial. In
order to deal with this, the author has developed a uni-
tary transformation which when applied to the state vec-
tors and operators of a light-front model leads to a "new
picture" in which the construction of angular momentum
eigenstates appears to be kinematical. This unitary trans-
formation depends on two parameters of a lightlike vec-
tor g, and has accordingly been referred to as the "g pic-
ture. " If in a rest frame we write the conventional com-
ponents of g in the form (P)=g (1,—n) where n is a
unit vector, the two parameters in the unitary transfor-
mation can be identified with the two parameters needed
to specify the direction of n. We will see that in the g
picture it is fairly straightforward to carry out a partial-
wave analysis of the integral equations that arise in the
HV HHN sec-tor of the Poincare-invariant Lee model. In
particular we will find that it is only necessary to solve
one-dimensional integral equations in order to determine
all of the quantities of interest in this sector.

It is important to note that these integral equations do
not su8'er from the spurious singularities that occur in
earlier integral equations developed for relativistic three-
particle systems. It has been shown that such singulari-
ties can lead to spurious bound-state solutions.

The outline of the paper is as follows. In Sec. II the
ten generators of the Poincare-invariant Lee model are
given and it is verified that they satisfy the commutation
relations of the Poincare algebra. The Lorentz invariance
of the S-matrix elements is established in Sec. III. An
analysis of some of the states and amplitudes of the mod-
el is presented in Sec. IV. In particular, the dressed V-

particle state is given, and the integral equations that
arise in the HV HHN sector -are derived. The interacting
spin operator for the model is treated in Sec. V, and it is
shown that its structure in the OV-OON sector suggests a
natural relative momentum variable for this sector. The
integral equations for the OV-OON sector are transformed
to the new picture in Sec. VI, and a partial-wave analysis
of the transformed equations is carried out. In this sec-
tion it is shown that the OV elastic scattering amplitudes
can be obtained from the solution of uncoupled, one-
dimensional integral equations. The Appendix surnma-
rizes some useful, general relations for the light-front
description of a system of particles.

II. POINCARE INVARIANCE

The generators of the Poincare group satisfy the well-
known commutation relations
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[P„,P ]=0,
[J„„,P ]=i (g„P„g—„P„),
[J„.Jp~l= (g„~J.p +g.p „g

—g„pJ.~ —g.~J„p) .

(2.1)

(2.2)

(2.3)

0 0 0 1

The P„generate spacetime translations, while the J„
generate spacetime rotations. Since our model will be
constructed within the framework of light-front dynam-
ics, we will use the metric

L„(p)=B„(p)= i—p
p

Bp

pLo3(p}=&3(p)= ip
happ

'

a 2 a
L12(p}=J3(p)=i, p' —,p

Bp Bp

(2.14a)

(2.14b)

(2.14c)

We will use the notation L„„(p) for the single-particle
generators of spacetime rotations, which are given by

0 —1 0 0
(g„„)—(g" ) — 0 0 (2.4)

L,o(p) =S„(p)= i —p"
o +p

~p dp
(2.14d)

1 0 0 0

Dot products and the raising and lowering of indices are
carried out in the usual way, e.g.,

x y =x"g„„y'=x"y„. (2.5)

P"=(P,Pj,H)=(P, H), (2.6a)

0 —S —S E1 2 3

It is convenient to distinguish the components of the
generators by introducing the notation

In order to construct the Lee model, we introduce
operators a (p ) and a (p ), which annihilate and
create particles of momentum p . We assume the com-
mutation relations

[a (p ),a&(k&)]=5 &(2m)'2po5'(p —k ), (2.15)

with all other commutators zero.
We will denote noninteracting operators by a subscript

or superscript 0. For a noninteracting second-quantized
theory, we can take, for the generators,

Po= g f dp, a, (p, )p"u (p, ),
(J„„)=

S2 —J3 20 8
—K —8 —8 03 1 2

(2.6b)
Jo"= g f dp a (p )L""(p )a (p ), (2.17)

We will also let

B=(Bi,B2), S=(Si,S2) . (2.7)

where

dp8(p )
dp =

(2m} 2p
(2.18)

P =(P +P )l&2, (2.8a)

Here H is the light-front Hamiltonian and generates
translations in x, which plays the role of time in light-
front dynamics. We will refer to P as the "trimomen-
tum. " If we distinguish the conventional components of
the four-momentum by a caret, then the light-front com-
ponents are related to them by

It is straightforward to verify that since the single-
particle generators satisfy (2.1)-(2.3}, so do the genera-
tors given by (2.16) and (2.17).

In light-front dynamics the seven generators P, 8, E3,
and J3 are taken to be noninteracting or kinematical, and
the interactions are put into the remaining three; i.e., we
assume

P'=P", r =1,2,
P =H=(P P)l&2—

(2.8b)

(2.8c)

P =Pp B=Bp E3 =K3 J3 =J3

H =Ho+H, , S=So+S; .

(2.19)

(2.20)

J=(J|,J2,J3 ),
K=(Ki,K2, K3 ),
J„=e„(S, B, )l&2, —

K„=(S„+B„)/&2 (r, s =1,2),

(2.9)

(2.10)

(2.11)

(2.12)

where e„ is the two-dimensional Levi-Civita symbol.
Throughout we will work with only on-mass-shell par-

ticles. Accordingly (2.4) and (2.5) imply that for a parti-
cle of Inass m, we have

pj+m
(p")= p,

2p
(2.13)

The components of J„„are related to the components of
the angular momentum J and boost operator K by

x =0 (null plane) (2.21)

into itself. The commutator of any two members of the
set (2.19) is a linear combination of members of the set, so
it is consistent to take them all to be noninteracting. Ac-
cording to (2.2) and (2.6),

[S„,P'] = i 5„H, — (2.22)

so if H contains an interaction so must S.
In the Lee model' it is assumed that there are three

particles V, X, and 8 and no antiparticles. These parti-
cles interact according to the vertex

The generators given by (2.19}generate a subgroup of the
Poincare group called the stability group of the null plane
or the kinematic subgroup. This subgroup is the set of
transformations which maps the null-plane hypersurface



41 POINCARE-INVARIANT LEE MODEL 537

V~AN+0 . (2.23) tions that involve H and S are satisfied. With the help of
the relations

Accordingly we take, for the interaction in H,

H =(2&) go f dpedpNdpv& (pv pN pe)

[ v(pv)aN(PN)ae(pe)

+a e(Pe )aN(PN }av(Pv }]
2 2mv mvo

dpvav(pv } 0 av(pv }
2pv

(2.24}

X [av(Pv }aN(PN }ae(Pe)

where we have included a mass counterterm for the V
particle. It turns out that the masses of the 8 and N par-
ticles, me and mz, are not renormalized. It is straight-
forward to verify that a choice for S,. that agrees with
(2.22) is given by

. d&'(P v PN P—e)—
St = (21T) gp dpedpNdpvl

~pv

[P'„a.(p. })= P—„.a.(p.»
[J„„,a (p )]= L—„(p )a (p ),

(2.26)

(2.27)

and the fact that the single-particle generators L„(p) are
Hermitian with respect to the metric dp, it is straightfor-
ward to verify that the commutators of H and S with the
kinematic generators (2.19) come out correctly.

The only commutation relations that remain to be
checked are

[H,S„]=[S),S2]=0 .

From (2.22) it follows that

[H,S„]=i
I [S„S„]P' P'[S„—S„)j

(2.28)

(res; r and s =1,2), (2.29)

so if Si and S2 commute so do H and S. Using (2.27), it
is straightforward to verify that

ae(pe }a—N(pN }av(pv }) [S ', ,S ]+[S„S']=0 . (2.30)

2 2mv mvo .+ pv~v pv o ~ „av pv
2Pv dpv

(2.25)

We must now check that all of the commutation rela-

Here S „ is given by (2.17) and (2.14d) with bare masses,
and S„' is given by (2.25) without the mass counterterm.
With a little bit of manipulation it is possible to show
that

[S I S 2]= ( 271) go f dPedP„dPvdP 'edPNdPv5 (Pv PN Pe @—(P v
——P N

—P e)

2 2

X g —,', , +, , (2~)'2P'. &'(p. P.')[0.(pii
—p, p»p,') o.(p& p', p—

& p, )]
ap.'ap'. ap.'ap.'

(aAP, y; )33/y), (2.31)

[S'„S~]=0 . (2.32)

This completes the proof that the Lee-model genera-
tors given by (2.16), (2.17},(2.19), (2.20), (2.24), and (2.25)
satisfy the commutation relations (2.1)—(2.3).

III. INVARIANCE OF THE SMATRIX

In this section we will demonstrate that the S-matrix
elements for the various processes that the Lee model
gives rise to are Lorentz-invariant functions of the initial
and final four-momenta. The technique we will
use is based on the well-known Lehmann-Symanzik-
Zimmermann (LSZ} formalism, which has been used
to ' investigate the original Lee model. Justification for
the use of this approach can be found in Ref. 27.

We begin by defining in (+) and out ( —) operators by

where the 0,'s are products of creation and annihilation
operators. Since the integrand is antisymmetric in p's
and p "s, the integral vanishes and

where Z is a wave-function renormalization constant
and

A (~,p )=e e' 'a~(p )e
—iH 7. iH ~eiH~e a (p )e o e

—iH (3.2)

i A (r,p )=[A (w, p ),H] p3A (r,p ) . —. a
a7.

(3.3)

Since (3.1) implies that A (r,p }becomes independent of
r for large ~, we see that (3.3) implies that

[Ha()(p)]p3a()(p) (3.4)

According to (2.1) and (2.19) P commutes with H and Ho,
so (3.2) and (2.26) lead to

[P, A (i,p )]=—p A (r,p (3.5)

The equivalence of the two expressions for A can be
demonstrated by using (2.26). Froin (3.2) we find the
equation

Z'~ a' —'(p )= lim A (r,p ),7~+ aO

(3.1)
Combining this with (3.1) and (3.4), we obtain
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(3.6) Using this, (3.12), and (3.13), we find that

The in and out operators can be used to create the in
and out states for the interacting theory. For example,
the in and out OV scattering states are given by

)(+)—a(+)t(p )a(+)t(p )~0)

[J„'„,a' —'(p )]=—&„(p )a'+—'(p ) . (3.20)

By letting A, in (3.18) be an infinitesimal transforma-
tion and then letting ~~+ ~, we find that in order to
have consistency with (3.20), we must have

—a(+)t(p ) ~p
)(+) (3.7)

lim =0. (3.21)
where ~0) is the vacuum state. It follows from (3.6) that

P"~Pepv )'+'=(P e+P v) ~Pepv )' (3.8)

The S-matrix elements for 6 V elastic scattering are given
by

S(p,p;k, k„)=' '(p p ~k k )'+' . (3.9)

We wish to prove the Lorentz invariance of matrix ele-
ments such as (3.9). For the Lorentz transformation of
the spacetime points x and the state vectors ~(I(), we use
the notation

We will soon make use of this identity.
We now consider Lorentz transformations generated

by S. From (2.26), (2.27), (2.24), and (2.25) it follows that

[S„,a (p )]=—S„(p )a (p )

i — [[H,a (p )]+p a (p )] . (3.22)
Bp

Using this in conjunction with (2.28), (2.14d), and (3.2),
we find

(3.10) [S„,A (r,p )]=—S„(p ) Q (r,p )

(3.11)

where A is the underlying Lorentz transformation and
U(A) is a unitary operator that corresponds to it. For an
infinitesimal transformation we have

3

e i — e '[[HE (rp )]
Bp~

+p A (r,p )],
(3.23)

and

A„,=g„„+e„, (e„„=—e,„), (3.12)
which in turn when combined with (3.1), (3.4), (3.3), and
(3.21) leads to

U(A) =1——e P"" .
1

2
(3.13) [S„,a' +—'(p )]=—S„(p )a' —'(p ) . (3.24)

For the noninteracting theory, (3.13) and (2.27) imply

Uo(A)a (p )Uo(A) '=a (p' ), (3.14)

Putting together (3.19) and (3.24), we conclude that

U(A)a' —'(p, )U(A) '=a' —'(p' )=a' +—'(Ap ), (3.25)

with
which when applied, for example, to (3.7) and (3.9) leads
to

5'a =Apa (3.15)
U(A)~pepv)'-'= ~pspv)' (3.26)

We will now show that (3.14) holds with Uo and a re-
placed by U and a' ', respectively.

We first consider the Lorentz transformations generat-
ed by 8, E3, and J3. These transformations belong to the
stability group of the null plane, and we will denote them
by A, . In general, for a Poincare-invariant theory the
components of the four-momentum operator transform
according to

and

S(Pe Pv'ke kv)=S(Pe Pv'ke kv) . (3.27)

IV. ANALYSIS OF STATES AND AMPLITUDES

This completes the proof of the invariance of the S-
matrix elements.

U(A)P" U(A) '=P'A, " . (3.16) In analyzing the states of the Lee model it is con-
venient to introduce operators J (p ) defined by

As a result of (2.19), we have

U(A, )= U()(A, ) . (3.17)
[H, a (p )]=p'a (p )+J (p ) . (4.1)

Using these relations, the fact that P =Pa, and (3.14), it is
straightforward to show that

U(A, )A (r,p )U(A, ) '= A (A, ()r, A,p ) . (3.18)
a (p )=Z' a' —'(p ) i f dr J—(r,p )e (4.2)

Using this definition, as well as (3.1)—(3.3), it is trivial to
show that

U(A, )a' —'(p )U(A, ) '=a' —'(A,p ) . (3.19)

For a proper Lorentz transformation A,o is positive, so
we find from (3.1) that

where

J (r,p )=e' 'J (p )e

We let ~k q ) be an eigenstate of 8, i.e.,

(4.3)
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Hlk'q & =k'lk'q &, (4.4) (4.16)

and

+, , J'.(p. ) lk'q &,
@~+LE' H

(4.5)

zl/2a(+)'t( )lk

1
a (p )+, , J (p ) lk'q& . (4.6)

k +PAL+LE
—H

Putting (4.1) in these relations we find

Z'~ a +—'(p )lk q &
=+ a (p )lk q &,

k p~+LE H

(4.7)

where q stands for any additional quantum numbers that
are needed to specify the state. If we let (4.2) or its ad-
joint act on such a state, and put a convergence factor
e +—' in the integral, we obtain

a.(p. )lk'q &=Z.'"a~-+~(p. }lk3q &

'+-'(p. lk. &'-"=(2 )'2k'. 5'(p. —k. ) . (4.17)

If' in (4.7} we choose Ik'q &= lk &' —' and contract with
(ol, we find

(p. Ik. &'-"=z'"(2.}'2k'.5'(p. —k. } . (4.18)

We will assume the Z 's are real.
If we choose k q &

= IO& in (4.8), and use (4.13), (4.15),
and (4.14), we obtain

Zg =ZN —1

Ip. &'-'=Ip. &, ~=&,N .

(4.19)

(4.20)

The dressed V-particle state can be found in precisely
the same way as in Schweber's version of the Lee mod-
el. ' The result is

We choose the Z in (3.1) so that the dressed single-
particle states have the same normalization as the bare
ones, i.e.,

and

Z' a' —' (p, )lk q&=+ a, (p, )lk q& .
k +Pal+Le —K

(4.8}

We now consider various states. The bare vacuum
state lo & is defined by

a (p )Io&=0, a=8, N, V. (4.9)

Since the interaction terms in H and S give 0 when acting
on lo&, we have

=Zv lkv &+ f Ipsp~ &dpsdpz

(2m. ) 2k v5 (ps +p~
—k v )

X
2 go

mv —(ps+p~)

(4.21)

mv mvo=X(mv)2 2 = 2 (4.22)

where the states on the right are bare states. The eigen-
value equation for the physical mass is

p„lo& =o,
J„„lo&=o;

(4.10) while the renormalization constant is given by

(4.23)Zv 1 —X'(mv) .

The function X is defined by

(4.1 1)

i.e., the bare vacuum is the physical vacuum and more-
over is invariant under spacetime translations and rota-
tions. By choosing lk q&=lo& in (4.7), it is easy to
check that the in and out annihilation operators annihi-
late the vacuum, i.e.,

X(s)=go dpi, P, , (4.24)
dp 1

2m. 2g 1 —g s —8' q, p
where the variables g and p are described in the Appen-
dix and IV =(ps+pv) is given by (AS). We will assume
thata."-'(p. )IO&=O, a=e, N, V.

The bare single-particle states are defined by

lp„&=a (p )lo&, a=8, N, V.

(4.12)

(4.25)mv (me+mN,
(4.13)

According to (2.16), (2.19), (2.20), and (2.24), we have

»lp. &=p".Ip. &, ~=~,N; (4.14)

as a result of which there is no singularity arising from
the denominator in (4.21) and the in and out V-particle
states are the same.

It is straightforward to verify that

lp. &'*'=a'-"(p. )lo&

and according to (3.6) and (4.10) satisfy

(4.15)

so we see that the 0 particle and N particle are not
dressed by the interaction. There is however a distinction
between the bare and dressed V particle. The dressed
single-particle states are defined by

' —'(p lkp&' —'=5 p(2m. ) 2ks5 (pp —kp), (4.26}

which according to (4.12) and (4.15) is consistent with

[a' —'(p ),a&+' (k&)]=5 &(2') 2k&5 (pp k~) . —(4.27)

Using the techniques of Ref. 8 it is not difficult to con-
vince oneself that this relation is valid in general.
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We now consider the OV scattering states and S-matrix
elements defined by (3.7) and (3.9), respectively. We
designate the initial and final four-momenta by (ke, kv)
and (pe,pv), respectively, and the corresponding total
four-momenta by =(2ir) 2k 5 (p k—)g' +—'(ri, p;g, pf)Zv~ (4.40)

(pepvlkekv)' . According to (A14) these can be fac-
tored in the form

(pepv l kekv ) '+-

k =ke+kv ~

P Pg+Pv .

From (4.6) and (4.19) it follows that

(4.28}

(4.29)

so our goal is to find an equation for the internal wave
function g' —'. In (4.5) we let lk q)=lkekv) —' and
a (p )=ae(pe), and then use (4.19) and (4.27). After
contracting with (pvl, we use (4.18) to obtain

lkekv) = ae(ke)+ ) Je(ke) lkv)
1

k +is —H

(4.30)
Using this, as well as (4.4}, it is straightforward to show
that

(p,p, lk, k, )'-"

=Zv (pepvlk kv)

1
(+)

+ pv 3 3 Jgpe kekv
k +E6 pg H

(4.41)

S (pe, pv;ke, kv) = (pep vl kekv )

2mi—5 (p k)—
X'+ (pvlJe(pe)lkekv)'+', (4.31)

where (pepvlkekv) is given by (A9). From (4.1) and
(4.4),

"'(p,
l
J', (p, ) lk, k, )'"

=(k —
p ) +'(pvlae(pe)lkekv)'+' .

Using the results outlined in the Appendix, as well as
(2.27), (3.20), and (4.11), it can be shown that
'+ (pvlae(pe) and l kekv

)'+ ' satisfy (A12) and (A13) and
therefore the matrix element on the right-hand side of
(4.32) can be expressed in the form (A14). From (A15)
and (A8), we find that we can write

We will now insert a complete set of states to the left of
Je. As a result of the nature of the interaction (2.23),
only

l
V) and lON ) states will contribute. According to

(4.1) and (2.24), Je involves the products a&a v; therefore,
if bare states are used only HN ) states survive. Thus we
have

Pv 3 . 3 g Pg g vJ( )kk
k +E6' pg H

k ~~
I ~

e
~H

I d I1

3 . 3 P gPN P PN
k +Ee—Pe —H

(442}

From (4.1) and (4.40) it follows that
I

(pep~i Je(pe)lkekv )' +—'=(2ir) 5 (p' —k )g

'+'(pvl Je(pe)lkekv)'+'=(2n)5 (p k)T. (ri p;g—,P),
X g' '(rl', p';$—,gf), (4.43)

with

(4.33)
where g is the renormalized coupling constant defined by

'9 Pe~p ~ P Pei '9Pi ~

g=ke/k, iil=kei —/k' .

(4.34)

(4.35)

g Z 1 /2g (4.44)

It is important to note that because of the 5 function in
(4.33), we can set

(4.36)

P =Pg+Pe+PN .

As a result of the 5 functions in (4.43) and (4.40),

p=p'=k .

(4.45)

(4.46)

p2 —I 2 (4.37)

in (4.34) and (4.35). It should also be noted that as a re-
sult of the 5 functions in (4.31) and (4.33), the only T
matrix elements that occur in the S matrix are those for
which

By using the identity

a(p)= a(p)+ J(p) 1

(4.47)
as well as (4.14), we can show that

with

P +~e P +~v
p =W =W(ri, p)= +

k =Wk=W(g, p) .

(4.38)

(4.39)

(
1

Pv 3 . 3 PePN
k +Et—Pe —H

go~}(pv')
~ ~k +i e pe 0—2p v ( k +i e—p' )—

In order to derive an equation for the T matrix, we will
first derive an equation for the Pock-space components (P 'v=P 'e+P~) . (448)
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The matrix element on the right-hand side of (4.48) is
proportional to the V-particle propagator which in turn
is proportional to the 8N scattering amplitude. Follow-
ing Schweber, ' it can be shown that

pv 3 . 3 pgpN p
k +Em —

p&
—H

with

D (s) =Zv[s —m vo
—X(s)] .

As a result of (4.22) —(4.24),

D(s) — s —m V
s~m&

(4.50)

(4.51)

=Z~~ (2n. ) 2k 5 (p —k)

(1—g)8(1—g) g5 (p' —k ) (4 49}
D[(k p—e) hie] k hie p'—

If we use the 5 function in (4.43) to eliminate the integral
over pN in (4.42), replace dp e with d q'dp', and use (A8),
(A9), and (A15), we find

=(2n') 2ri5(ri —yf)5 (p —pf}
1 —g

with

D[(k —pe) hie] (2n. ) 2g'
(4.52)

and

8(1—g —g')g'
8(g,p;g', p', k hie)=

(1 ri —g')(—k hie p' )—
(4.53)

(4.54)
p +ms (p+p') +m~ p' +msp' =W (q, p;g', p')= +, +

1 —g —g'

If in (4.41) we insert a complete set of physical states to the left of Je, and use (4.16), (4.18), (4.33), and (A15), we find

(+)
lim (k p) p„— Je(pe) ksk„=Z~~z(2m)32k05 (p —k)T(g, p;g, pf),
2 k2 k +re —

p&
—H

(4.55)

(4.56)

so we obtain

T(q,p;g, lf)=X(ri, p;yf, pf;k +is) (p =k }, (4.57}

where we are introducing a half-off-shell amplitude by

X(ri,p;yf, lf;k hie)= Iz . d ri'd p'8( ri' )

(2n) 2''

where the arguments of T are constrained by
(4.37)—(4.39). According to (4.51), this pole is carried by
the D in (4.52). Using (4.29), (4.36), and (4.34), we have

(k —pe) —m~
k2 p2—

1 —g

I

The on-shell matrix elements [W (ri, p)= W (q', p')=k ]
of X coincide with the on-shell elements of T, which in
turn are Lorentz-invariant functions of the initial and
final four-momenta of the 8V scattering process.

Comparing (4.58) and (4.52), we see that the internal
wave function lf' +—' can be expressed in terms of the half-
off-shell X. If in (4.4) we choose ~k q }=

~kskz )' +—', con-
tract with (pspap~~, and use (2.24), (4.40), (4.44), and
(A15), we find

I

(pepepN~kekv)
* =(2n') 2k 5 (p k)

k +Ie p

(4.58)

Combining this with (4.52), we see that a fully off-shell
amplitude can be defined as the solution of

X(g,p;g', p', k hie)

=8(g,p;q', p', k +i@)

(4.60)

We see that all of the Fock-space components of
~kek~ )'*' can be expressed in terms of the half-off-shell
X.

lid II8( It/
)+ 8 'g, p, 'g, p;k kl E

(2m } 2g"

X(q",p";g', p';k hie)
D[(k —ps') hie]

(4.59)

V. SPIN OPERATORS AND NE%' VARIABLES

Leutwyler and Stern' have shown that the internal an-
gular momentum or spin operator d' for a system is given
by
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Md„= e„(S,P K—3P' B—,H) 9—3P"

=Mod „+c„,(S,'P B,—H; ),

8 =J + P —P'=dB) B2
3 3 PP PP

(S.la)

(5.1b)

(5.2)

[J„„,a'-'t(p, )]= L,„„(p,—)a', ' (p ), (5.3)

where the l.„„'sare given by (2.14). Using this relation,
as well as (4.15), (4.11),and (4.16), it can be shown that

d ~p. &"'=0, a=e, X, V, (5 4)

which simply states that the particles in our model are
spinless. Similarly it can be shown that

where M and Mp are the mass operators for the interact-
ing and noninteracting systems, respectively; and do is
the noninteracting spin operator. The equivalence of
(5.1a) and (5.1b) follows from (2.19) and (2.20). The com-
ponents of 8 are Hermitian operators which satisfy angu-
lar momentum commutation relations. Moreover each
component of d' commutes with M as well as P, B, and
E3, while 8 is a Casimir operator; i.e., it commutes with
all of the generators of the Poincare group.

It is not difficult to determine the action of 8 on the
eigenvectors of the Lee model. According to (3.20) and
(3.24),

with p given by (4.29), then we find from (5.5), (5.8), and
(3.8) that

d"~W~& "=j(j+ I)lpj~&'+-'

8,~pj's, &'+'=A, ~pjl, &'-",

P"
Ipj~ &' =-p" jpi »'

(5.10a)

(5.10b)

(5.10c)

In order to carry out partial-wave analyses of (4.52)
and (4.59), we need to know the Fock-space representa-
tives of d'. It follows from (5.2}, (A12), (2.27), (2.14),
(4.29), and (4.34) that

&pgpvld3 3(g,p)&pgpvl . (5.11)

Using (5.1b), the fact that B commutes with H„(A12),
(4.10), and (4.11), we can show that

pepv~Md', = W(g, p)&(q p)&pepv~

+e:&0lIp [~e(pe)~v(pv) S j

B (P)[&e(pe)av(pv) H'Il

(5.12)

with p given by (4.29) and Wd'„by (5.6a). With the help
of (3.22), (2.14), (4.10), (4.14), (4.29), and (4.34), this can
be rewritten in the form

+~pepv &'*'= &0(8 P)~pepv &'

where

W(ri, p)d'„(g, p) =e„p'i-
ll

(5.5)

+&rs'"' 2

with

&pepv~M+, = W(n p)+', (ri p)&pepv~

& pgpv~(M' —p') (5.13a)
P

+ W(ri, p) W(ri, p)
2g —1

p'= W (ri,p)= W

The mass operator M is defined by

M =2P P —P =M +2P H. .p

(5.13b)

(5.14)

d3('9 p) 83(ri p)=i
&
p i 2p3 0 3

If we define

q=(p, q, ),
where

2 W(ri, p) gp'

(S.6a)

(5.6b)

(5.7a)

If we contract (5.11) and (5.13a) with the 8V scattering
state ~kekv

&'+—', which is an eigenstate of P" with eigen-
value k"=k~e+kI'. , we find with the help of (4.40), (5.6),
and (4.38) that

&pgpvldlkgk

=d(q, p; W„)&p,p, ~k,k„&'+-'

=(2m. ) 2k 8 (p —k)d'(g, p; Wk)g' +(g,p;g, pf)Zv—

2 2
2g —l me —mv

qz ('9~p } 5.7b
where

(5.15)

then do can be rewritten in the more familiar form

d'0(g, p)=d'0(q}=iV Xq . (5.8)
4„(rf,p; 8 I, ) =(1—Xf)e„, — i +Q,ip . 8 . 8 1

8' Br]
' gp' 1 —g

It can be shown that q =p in a frame in which

pg+ p v
—0.

Eigenstates of angular momentum can be constructed
from the states given by (3.7). If we define

~pjz&' +—'= f ~pepv&I*'dn, Y,'(q), (5.9)

83(g,p; Wk )=cf3(g,p)

k = W (yf P) = W

Here

(5.16a)

(5.16b)

(5.16c)
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p +me
u, — q8'k

k
(5.17)

0
+Ok

7l
Pk

6)„+Q

Wk
(5.28)

which can be combined with p to define the three-
momentum

u=(p, u, } .

Reexpressing d' in terms of u, we find

d'(g, p; Wk ) =(1—g)L(u)
1

1 —g
with

(5.18)

(5.19)

L(u)=iV„Xu . (5.20)

In order to determine the meaning of u, we consider a
Lorentz transformation from the x frame to a rest feame
of k, which we call the xk frame. We have

N =(u +m )'
Q (5.29)

So we see that u is the three-momentum that arises from
transforming the four-momentum of the 0 particle associ-
ated with the Fock-space basis state (pepv~ to the rest
frame associated with the system eigenstate ~kekv&' —',

which has total four-momentuin k. Moreover (5.18) and
(5.28) show that it is a siinple matter to replace the vari-
ables ( ri, p ) with u.

Using the techniques that led to (5.19)—(5.20), it is also
possible to show that

«pep'~~&~kekv &"

=+(ri p;ri, p'; Wk)(peptp+lkekv &'+-',

where
xl, =A(k)x,

where the elements of A are given by

8'k
xk — —

0 x

k~
xjk —xj x

k

2 W„
xk = k'x — x

2k'

(5.21)

(5.22a)

(5.22b)

(5.22c)
(k —pe) =(Wl, —co„) —u (5.32)

cP(g, p;ri', p', W„)=(1 ri g—')[L—( u) +L(u')] 1

1 —g —g'

(5.31)

Thus the Fock-space representatives of di for the 8V
sector come out rather simple when expressed in terms of
the variable u. This suggests that we use u's rather than
g's and p's in (4.52}. If we evaluate the argument of D in
the xl, frame, and use (5.23) and (5.27), we find

This transformation is an element of the stability group
of the null plane, since it maps x =0 to xk =0. Obvious-
ly

With the help of (4.45}, (4.46), (A15), and (4.34), the
denominator of B in (4.53) can be reexpressed as

(kg)=
W~ Wk—,0,0,

2 2
(5.23)

(1—ri —ri')(k —p' ) =(k —
pg

—pe) mN—
=( Wk

—co„—co„) —(u+u') —mz .

According to (4.40) we have p=k, and so from (5.22)

pk =kk, and therefore Using (5.28) we find

(5.33)

Wk W
(pL'}=,0,0,

&2 v'2 Wk
(5.24)

Using (5.22}—(5.24) in conjunction with (4.34},we find

dr) dplri=du/co„. (5.34)

We have to be a little careful about the range of the
variable u, . From the inverse of (5.26} it is clear that

p e) 0 and pv )0; therefore, (4.29) and (4.34) imply

( " )= p +me
P ek +2 &P&

0&g&1,
(5.25)

so from (5.17) we find

(5.35)

The relation between conventional components x" and
light-front components x" is

—00&g (
2Wk 2Wk

(5.36)

x =(x +x )/&2,
x'=x', r =1,2,
x =(x —x )/t/2,

so (5.17), (5.18), and (5.25) imply

Pek

From (5.24), (5.25), and (5.26), we find

(5.26a)

(5.26b)

(5.26c)

(5.27}

The lower and upper limits correspond to g~0 and
g~ 1, respectively. In (4.52) the fdg'= fOdg', but
because of 8(1—

r)
—g') in (4.53), we can let f '

drl'= f 0"dg', which allows us to formally integrate over
all values of the components of u'.

The 5 function in (4.52) can be transformed by using
(5.18} and (5.28). Putting everything together, we arrive
at
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where

3
8 ' —' u, u' y' —' u', , 5.37

(2n. )'2'„

and

(+)( g) —0 'i Pi 1 g
(+)( .

)

1 —g

B' +—'(u, u')=8(ri, p;ri', p', k +iE)

(5.38)

6)( 1 ri —ri' )g—

( 8'k —(e„e/„—) (u—+u') +i e m/—)/

X' +—'(u, g)=(2m) 2'„5 (u —)(I)+
D [(k p—e } +i e]

where U and U~ are the unitary operators corresponding
to R for the interacting and noninteracting theories, re-
spectively. These operators can be expressed in terms of
the angular momentum operators J and Jo, and since in
light-front dynamics JWJo, we have U(R)WUO(R) and
therefore (pekpvk lkekkvk &' —' is not a rotationally in-

variant function of the three-vectors that appear.
In order to Put the basis vectors lPekPvk &

= lPe„Pvk &

and the state vectors lkekkvk &' '=lkekkvk &'*' on an
equal footing with regard to three rotations we will intro-
duce a unitary transformation C(n) which depends on
the two parameters of a unit vector n. In this connection
we also introduce a special three-rotation R (n) which
has the property

(5.39)
R (n)n=e3=(0, 0, 1) . (6.2)

The argument of the D is given by (5.32), and the ri and
ri' in (5.39) can be expressed in terms of u and u' by using
(5.28). The three-vector Q is given by (5.17) and (5.18}
with (g,p) replaced by (g, i(l), or more simply by

(5.40)

Since kek can be chosen arbitrarily 4, does not have its
range restricted as does u, in (5.36). More formally this
follows from the observation that Wk in (5.17) is given by
(4.38) and (4.39) so that 0 & g & 1 is mapped onto
—oo (g ( oo.

From (4.58), (5.38), and (5.39), we see that we can write
the half-off-shell amplitude for 8V-scattering in the form

n'=R n, (6.3)

and

e3=R (n')n' .

From (6.2)—(6.4), it seems reasonable that

(6 4)

In an active interpretation R (n) rotates the unit vector n
into a vector e3 in the positive z direction. This rotation
is not unique since any such rotation can always be fol-
lowed by a rotation about e3. In order to make it unique
we specify R (n) to be a right-handed rotation of n into e3
about n X e3.

If R is an arbitrary rotation, we can write

A ' '(u, )/I—) =X(ri,p; g, pf; k +is)
R (n')R =R3R (n), (6.5)

g (+) u u y(+)du
(2n. ) 2(o„

(5.41)
where R3 is a rotation about e3. It is not difficult to
prove this conjecture.

We now define the unitary operator C(n) by

Even though (5.37) is rather simple in appearance, a
partial-wave analysis of it is nontrivial. Recalling the 0
function in (5.39) and the expression for g in terms of u,
i.e., (5.28), it is straightforward to verify that X'-'(u, d)
must vanish for g) 1. Since g~l gives the upper limit
in (5.36), we see that X( +—'(u, )(I) must vanish for

u, ) 28'p
(5.42)

Clearly this does not define a spherically symmetric re-
gion in u space. The next section shows how to deal with
this.

VI. THE NEW PICTURE

U(R)l~ek~vk & lR~ekR~vk &

Uo(R)lpek pvk &
= IRpekRpvk &

(6.1a)

(6.1b)

In this section we will see how to adapt the general for-
malism of Ref. 22 to the problem of carrying out partial-
wave analyses of the integral equations that arise in the
OV sector of the Poincare-invariant Lee model. We begin
by considering three-rotations R in the rest frame defined
by (5.21) and (5.22).

We have

C(n)= U()[R (n)] 'U[R (n)] .

By using (6.5) as well as the identities

U(R)U(R') = U(RR'),

U(R ')= U(R)

U()(R3)= U(R3),

it is straightforward to show that

Uo(R)C(n)=C(Rn)U(R) .

(6.6)

(6.7a)

(6.7b}

(6.7c)

(6.8)

lpekpvkn&=C(n) 'Ipekpvk & (6.9)

and observe that (6.8) and (6.1b) imply that

U(R}lpek PVkn &
=

I p'ek pVkn

x'=R x .

(6.10a)

(6.10b)

As a consequence of (6.10) and (6.1a},
(pekpvknlkekkvk &' '-' is a rotationally invariant function
of the three-vectors that appear. We see that by intro-
ducing the unit vector n it is possible to obtain a descrip-

We now subject our Fock-space basis vectors to the un-
itary transformation C '(n). We define
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tion of rotations in light-front dynamics in terms of the
rotation of three-vectors.

From (6.9), (6.6), and (6.1) it follows that

which is a consequence of (6.10), (6.16), and (6.20). By
taking the arbitrary rotation R to be an infinitesimal rota-
tion, we find

& pek pvknlkekkvk &'*'=
& pek pv. Ikekkv. &'*'

=
& p "8kpvk Ikekkvk &'+-',

with

xk =R (n)xk .

(6.11)

&pekpvknlJlkekkvk &'*'

=(2~)'2 Wk 5'[Pk+(P k
—

Wk )nl

X(1—31)S(u,n)p'*'(u, n, sl)ZV', (6.22)

where

(P gkPvk Ik gkkvk &
+ = (P /vlkgv &

+ (6.13)

The right-hand side of (6.11) is a light-front wave func-
tion of the type treated in Secs. IV and V.

The rest-frame transformation (5.21} and (5.22} is gen-
erated by B and K3, so as a result of (2.19)
Uo[A( k) ]= U [A( k) ]. Accordingly, we have

S(u, n)=L(u)+L(n) . (6.23)

The L's are defined as in (5.20). It should be noted that
rj, as given by (6.20},and S commute.

We now proceed to derive another expression for the
same matrix element. From (6.9), (6.6), (6.1), (6.12) plus
the relation

with U(R)J;U(R) '=J Rj;, (6.24)

x"=A(k")x"

k"=k"+k"8 v

(6.14a) we find

& Pekpvknl~; lkekkvk &'

(pekPvk I&) lkgkkvk & Rji(n) ~

(6.14b)

We can identify the right-hand side of (6.13) with (4.40),
and simply add the label n to the momentum variables.

It follows from (5.22), (5.23), (5.26), (6.2), and (6.12)
that

(6.25)

By using (5.1), (5.2), (2.11), (6.14), and the fact that di

commutes with Uo[A(k)] = U[A(k)], we obtain

k0n53(p n k N) koll 53(p II k N
) & pgk pvk I Jlkgkkvk &™)= &pepvl&lkekv &'*' . (6.26)

= Wk5'[Pk+(P k
—Wk»] . (6.15)

Using this, (6.11), (6.13), (4.40), (5.38), (5.27), (5.40),
(5.28), (6.12), and (6.2), we find

& pgkpvknlkgkkvk &"'

=(2n. )32Wk5'[pk+(P „—Wk )n]

Finally from (5.15) with the n's added, (6.15), (5.19),
(5.38), (6.18), (6.17), and (6.25) we arrive at

&pgkpvknlJlkgkkvk &' '

=(2~)'2Wk5'[Pk+(P k Wk»]

X(1—ri)L(u)it}'*'(u, n, li)ZV . (6.27)

where

X (1—ri}P'*'(u, n, d)ZV, (6.16) By comparing this with (6.22} we conclude that

S(u, n)iI}'*'(u, n, l) =L(u)$'*'(u, n, l), (6.28a)

y'*'(u, n, l) =y'~'(u", If"),
with

(6.17) when

0&g&1. (6.28b)

and

u"=R (n}u, 31"=R(n)sl,

u=Pek sl=kek

u+n U

(6.18}

(6.19)

(6.20)

We recall that (5.36) is a consequence of (5.35), so (6.28b)
implies that n u obeys a restriction similar to (5.36).

In order to obtain an integral equation for P'*' we re-
place the u's in (5.37) with u" 's and then use (6.17) and
(6.18). With the help of (5.39) we obtain

'(u, n, g)=(2m) 2'„5 (u —g)+ 1

D[(k Pe) hie]—
Thus we see that the representatives of the state vector
Ikekkv„&'*' in the basis defined by (6.9}can be obtained
by simply making the substitutions (6.18) in y'*'.

In order to determine the representative of the angular
momentum operator J in the new basis we can use the re-
lation where

X
3 91—g —g'

(2~) 2'„
X Vk*'(u, u')i}}'+—'(u', n, l), (6.29)

(P8k P vk n
I «R }I k8k k vk &

= ( 2n. ) 2 Wk 5 [pk + (P k
—Wk )n]

Vk*'(u, u') =g [( W„—co„—co„.) —(u+u')

ki 8 m~]— (6.30)

X (1—g )i)) '*'(R 'u, R 'n, sl)Zvi, (6.21) In (6.29), rj is given by (6.20), as is rj' with u replaced by
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u'; and (k —pe) is given by (5.32).
The key to making a partial-wave analysis of (6.29) is

the observation that (6.28) and (6.23) imply that

1.(n)P' —'(u, n, g) =0, (6.31)

when the restriction (6.28b) is satisfied. As a result of this
and the presence of 8(1—

ri
—g') in the integral term of

(6.29), P' —'(u', n, II) is independent of n and can be re-
placed by g' —'(u', 8) where

dQ„Z' —'(u, d)= W' —'(u, n, g)
4~

=f, X„(u,u') Vk
—(u, u')

(2m. )'2'„
X g' —+'(u', ll),

which when combined with (6.34) leads to

Z' —'(u, sI) =X„(u,)f) V„'+-'(u, l)

(6.37)

dQ„
g' +—'(u, l)= f p' +—'(u, n, g); (6.32)

Xk(u, u ) Vi, (u, u )

(2n. ) 2 ce„D[(k—pe) hie]

xz'-'(u', g) . (6.38)
i.e., we have

P'+—'(u, n, l) =(2~)'2ei„5'( u —g) +
D[(k pe)—+ie]

dxf, 8(1—ri
—g') Vi, *'(u, u')

(2~) 2'„

Combining (6.36), (6.34), and (6.37), we obtain

W' —'(u, n, g) =8(1—
ri

—g) V„'+—'(u, 8)

8(1—
ri

—ii') V„'
—+'(u, u')

(2n) 2ei„, D[(k —pe) +is]

Xg' +—'(u', g} .

We now integrate this equation over d 0„ to obtain

(6.33) XZ' —"'(u', g), (6.39)

so the complete amplitude 8" ' can be obtained from the
simpler quantity Z'+—'.

If we substitute
g' —'(u, g) =(2m)'2'„5'(u —g)+

D [(k pe)'—+i e] 21+1Z'+-'(u, d)= g Z,' —'(u, ii) P, (u iI) (6.40)

X
3 Xk QQ Vk QU

(2ir) 2'„
Xg' +—'(u', g), (6.34)

in (6.38), we find

Z,' +—'(u, g ) = V',—'(u, g)
where

(6.35a)

dQ„
X„(u,u')= f 8(1 —g —g')

4m.

1

dx 8( Wi,
—co„—co„—lu+u'lx)

}'+8(}'+) r 8(—r )--
2

1
u+ u'

I

where

V,' (u, u )
(+)

2K 2cou' D k p 0 kl 6'

xz,' —'(u', s(), (6.41)

(&,u') =2'f dx Pi(x)X„(u,u') V„' '(u, u'),—1

with

7'+ = Wk Co„—co„+l u+ u (6.35b) X =O'Q

(6.42a)

(6.42b)

The last form of Xk can be derived by using the argument
of L9, rather than x, as the integration variable. Since D,
X&, and Vk

—+' are all rotationally invariant functions of Q

and u', a partial-wave analysis of (6.34) can be carried out
in the usual way.

In order to derive an equation for the scattering ampli-
tudes, we replace the u's in (5.41}with u„'s and then use
(6.17), (6.18), and (6.20) to obtain

W' —'(u, n, II)= A' —'(u", 8")

We will now show that the partial-wave amplitudes
ZI+' determine the partial-eave S-matrix elements. Ac-
cording to (3.27) and (3.9)

S(pe pv'ke, kv)=' '&peipvklke„kvk )'+', (6.43)

where p &I„ for example, can be obtained by transforming

p& to the rest frame of k =k&+kv, and then rotating as
in (6.12). If we use (4.31) with superscripts n and sub-
scripts k added, as well as (4.33), (4.57), and (5.41), we
find

S (p e&p v, k e, k v ) = & p ei p vi l
k e& k vk ~

(2~)'i6'(p—k kk) A' '(u—",8") .

We now define

xg' —'(u', l) . (6.36) (6.44)

Using the Lorentz invariance of the inner product of the
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free particle states and the four-dimensional 5 function,
as well as (6.36), we obtain

Ipgk I

= lul = I&I = li gk I . (6.46b)

Thus we see that the partial-wave amplitudes ZI+'(k, d )

determine the partial-wave amplitudes of S.

VII. DISCUSSION

In our analysis of the Poincare-invariant Lee model we
have focused on the OV-00N sector. As pointed out in
Sec. I, this sector has some of the features of the pion-
nucleon system. The VV-8NV-08NN sector should be an-
alyzed as well, since it has some of the features of the sys-
tern consisting of two nucleons coupled explicitly to
pions. Such an analysis should give insight into con-
structing Poincare-invariant models for pion-deuteron re-
actions, as well as pion production in nucleon-nucleon
collisions. The analysis of this sector may also suggest a
way of carrying out an angular momentum or partial-
wave analysis of the steinberg equation. This would be
of some importance as this is the basic two-particle equa-
tion that is obtained when the ladder diagrams of light-
front perturbation theory are summed.

An important feature of the intermediate-energy pion-
nucleon system has no analog in the 8V sector of the Lee
model; i.e., there are no absorption channels analogous to
++NLRB ~~+N where B is an N or 6 resonance. It is
not diScult to remedy this shortcoming. Some years ago
Bronzan introduced an extension of the Lee model
which describes the interaction of four particles V, N, 8',
and 8 through the virtual processes V~~N +8 and
8'~~V+0. In this model OV scattering contains the ab-
sorption channel V+0~ 8'~ V+8. The analysis of
this extended Lee model is not much more diScult than
that of the original Lee model. '

In constructing a relativistic Poincare-invariant model
of the pion-nucleon system along the lines of the Lee
model it is, of course, necessary to take the spin of the
nucleons into account. Since there exists a version of the
Lee model in which the V and N particles are spin- —,

'

particles, this should be possible. It should be noted that
the coupling of intrinsic spin and orbital angular momen-
tum in light-front models entails the use of Melosh trans-
formations ' ' '

Of course with any of the above possible extensions, it

S(pg, py,'kg, ky)=&pgpylk k }
(—2m) i5 (p —k)8"+'(u, n, )f),

(6.45)

where u and Q are given by (6.19). Since the left-hand
side of (6.45) does not depend on n, we can average over
the direction of n and use (6.37) to write

S(pg~py~kg~ky)= &pgpylkgky }
—(2n. ) i5 (p —k)Z'+'(u, A, (6.46a)

with

will be necessary to verify that they are Poincare invari-
ant and that the S-matrix elements have the correct be-
havior under Lorentz transformations. It should be pos-
sible to develop such proofs along the lines of those given
in Secs. II and III.

The fact that the S-matrix elements of the model
presented here have the correct Lorentz transformation
properties is of significance for the general program of
obtaining few particle equations by summing subsets of
light-front perturbation theory diagrams. An example
of this is given in Ref. 35 where a set of three-particle
equations was obtained by summing diagrams of an in-
variant version of light-front perturbation theory for a
model field theory. This local field theory describes the
interaction of a charged scalar particle g with a neutral
scalar particle P according to the virtual process
~~/+/. The three-particle equations were obtained by
summing all diagrams with

~ g },~Pf}, and PPf } inter-
mediate states. It turns out that the integral equation
that sums the one-g irreducible diagrams is identical to
(4.59), i.e., the equation for the HV scattering amplitude.
This suggests that it is possible to truncate light-front
perturbation theory in such a way as to obtain S-matrix
elements which behave properly under Lorentz transfor-
mations. It would be highly desirable to develop general
procedures or guidelines for obtaining such truncations.
It is quite possible that projection operator techniques
will be of some use in this connection.

As pointed out in Sec. I, and illustrated here in Secs. V
and VI, angular momentum and spin operators in light-
front models are somewhat peculiar in that they can be
interacting. Fortunately, as we have seen in Sec. VI, the
author's new picture for light-front dynamics makes it
possible to cope with this situation. This is very en-
couraging as this feature of light-front dynamics has been
a stumbling block in many applications of light-front dy-
namics. It is also encouraging that the new picture made
it possible to reduce the problem of finding the OV
scattering amplitudes to solving one-variable integral
equations.

All of the results obtained here indicate that light-front
dynamics, in conjunction with the new picture, provides
a practical framework for developing few-particle models
that are consistent with the requirements of special rela-
tivity, and moreover allow for changes in particle num-
bers.
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APPENDIX: LIGHT-FRONT KINEMATICS
AND %'AVE FUNCTIONS

Here we summarize some basic general features of the
light-front description of a system of particles. We as-
sume that p;, the four-momentum of the ith particle, is on
the mass shell; i.e.,

p
2 m 2
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where m, is the mass of the particle. The light-front
components of p, are given by (2.13) with p~p; and
m ~m, . The total momentum of the set of particles is
given by

(A2)

dp 8(p ) drldp8(ri)8(1 —ri)
(2m) 2p (2tr) 2'(1 —tl)

(A10)

We let ~pq ) be an eigenstate of the trimomentum P,
i.e.,

Plpq &=p~pq & (Al 1)

while the generalized Weinberg variables are defined by

(A3)

where q stands for the "internal" quantum numbers of
the state. Leutwyler and Stern' have shown that it is al-
ways possible to construct such a state so that

PJ =Pox 'QJPx y

and satisfy the constraints

(A4)

(A5)

&pql~, =JJ,(p)&pql

&pqiK, =K, (p ) &pqi,

(A12)

(A13)

gp, =0. (A6)

where 8„(p) and K, (p ) are given by (2.14a) and (2.14b).
It is straightforward to show that the inner product of
any two states that satisfy (Al 1)—(A13) is given by

As a result of (2.4), (2.5), (A3), and (A4), we have &pq~kr ) =(2tr) 2k 5 (p —k)F(q, r); (A14)

(A7)

which when combined with (A 1), (A2), and (A5) leads to

(A8)

We assume that the inner products of our two-particle
states are given by

i.e., the inner product can be factored into an external
part and an internal part.

We frequently encounter in light-front dynamics a
propagator or denominator (k +iE p3) ' —where p =k.
Here (k")=(k,k ) and (p")=(p,p ) are the four-
moments of the system and some intermediate state, re-
spectively. It is worth noting that such denominators can
be rewritten by using the identity

&ptp2lk&k2)=(2n) 2p&5 (p&
—k&)(2n) 2p2

X5 (p2 —k2)

2k (k' —p )=k —p (A15)

=(2n )32po5 (p —k )(2tr) 2ri(1 —ri)

X5(ri —jj)5 (p —pf), (A9)

The k and p can be expressed in terms of the general-
ized Weinberg variables by using (A8). It is also worth
noting that

where g and it( are defined as in (A3) and (A4) with p's re-
placed by k's. Using the definition (2.18), it follows that

pg+p
0

2p
(A16)
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