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Derivative expansions for afBnely quantized field theories
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We examine the existence of an affinely {noncanonically) quantized free scalar theory via an ex-
pansion in powers of derivatives of the field. We show that with the simplest choice of measure
affine quantization does not provide a useful basis for a nontrivial, well-defined theory.

I. INTRODUCTION

It is now many years since Klauder' argued that gravi-
ty be quantized noncanonically so as to preserve the sig-
nature of the three-metric from quantum fluctuations.
The idea was to replace the canonical relations (on a
given three-surface)

ticular, he has observed that the noncanonical Euclidean
scalar field, in the presence of a source j(x), has a gen-
erating functional that can be written formally as

Z[j]=fDgexp —S[P]+fj P (1.4}

For simplicity, the Euclidean action S[P] in d dimensions
is taken to be

[g; (x), "'(y)]=—(5,"5'+5,'5")5(x y)—
that formally permit unitarily implementable translations
of the metric g 1(x) by the one relations

[g~j (x), hark (y) ]=—(5,'gik +5)'g k )5(x—y)

that permit unitary implementation of scaling of the
metric. [si't, = (g "sr,k+m „g ')/2 in terms of the inverse
metric g 't.]

Such an approach, with its avoidance of wormholes, is
conceptually much simpler than canonical quantization
(e.g. , the inverse metric g't is guaranteed to be defined)
but it remains equally insolvable. This is despite much
work from Isham and collaborators and, via strong grav-
ity, Pilati and co-authors (although see de Alfaro, Fu-
bini, and Furlan for a parallel approach). In fact, gravi-
ty is so complicated that the features of noncanonical be-
havior cannot be isolated easily. It is not surprising that,
despite the role of gravity in motivating a noncanonical
approach, such understanding as we have of noncanoni-
cal quantization comes from much simpler theories, and
it is to them that we shall turn.

The increased complexity of noncanonical quantization
can be seen most easily in the case of a single real scalar
field P(x ), for which the aSne relations that are the
counterpart of (1.2) take the form

[P(x, t ),K(y, t )]=ittt(x, t )5(x—y), (1.3)

where K =(Psr+m. P)/2 is the generator of scaling trans-
formations of P. The relations (1.3) are not necessarily
identical to the canonical relations because I(: involves an
operator product, and is defined through its renormaliza-
tion.

Klauder has done much work to develop a program for
the noncanonical quantization of a scalar field. In par-

ArQ

S[P]= f d "x ,'(VP)—+,'mof—+

The formal insertion of (1.3) in the analog of the Dyson-
Schwinger equations for Z[j] shows that the measure Dp
does not display the translation invariance D(P+ A) =DP
appropriate to a canonically quantized theory but, rather,
the scale covarianee

D(Attt)=F(A)Dttt, A(x) &0 V x (1.6)

relevant for the unitary implementation of scaling.
This permits a formal realization of DP in terms of the

canonical translation-invariant "measure" DP [D(ttp+A)
=Dttp] as

D ttp (1.7)

for some 8 1. Note that we have chosen units so that
%=1. Had we not, the effect of changing the "measure"
from Dttt to DP is, nominally, to introduce a term in the
action:

S[P]~S[P]+Bfi5(0)f Cx In~/(x )~ .

Classically (A~O} S is unchanged and B plays the role of
a "hidden" quantum degree of freedom.

In many-body theory we have learned to treat unrenor-
malized path integrals such as (1.4) with a certain amount
of scepticism. We know that, despite superficial dif-
ferences, many measures give rise to the same theory
after renormalization (universality). [Conversely, mea-
sures of the form (1.7) are not the only way to implement
the afiine relations. ] Thus, changing B will not necessari-
ly give rise to a different quantum theory. However, the
possibility exists that, if 8 is fined-tuned correctly, we
may find ourselves in a different universality class from
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the canonical theory (8=0). A concrete example was
given by one of us (R.R.) in an O(N) generalization of
(1.4) (Ref. 8). In the large-N limit it happens that, for
8 =

—,
' in d = 5 dimensions, the theory is diferent from the

canonical theory. [A more complicated choice of 8 gives
a noncanonical theory in d =4 dimensions also (Ref. 8).]

Apart from special cases such as this, noncanonical
theories do not permit an analytic solution. This is un-
fortunate, since we know so little about them that we
have a very poor understanding of their utility, or even
their existence. For this reason alone there is merit in al-
most any work that takes our knowledge further since, a
priori, noncanonical theories have much promise, gravita-
tion apart. In particular, noncanonical quantization has
been seen as an alternative that enables us to give sense to
theories that are perturbatively nonrenormalizable when
quantized canonically. For the A.P theory of (1.5) this
corresponds to taking the space-time dimension d)4
(and even d =4). As a result we might expect to evade
the triviality that such theories are known to possess.

Because of the non-Gaussian starting point provided
by the free theory with measure (1.6) it has been neces-
sary to fall back upon numerical methods. Given the in-
terest in the triviality of A, (P )4 theory essentially all cal-
culations hitherto have been performed in d =4 dimen-
sions. At the most prosaic we can always attempt Monte
Carlo calculations for lattice versions of the theory, but
the inclusion of the additional parameter B makes this
very time consuming, ' given the difficulty of obtaining
reliable results for 8 =0 (Ref. 11). As an alternative to
pure Monte Carlo calculations it has been found helpful'
to combine them with high-temperature series for the
analogue continuous-spin ferromagnet (for which all dia-
grams have been calculated to eleventh order in d ~ 4 di-
mensions. '

) However, even then, large values of 8 are
poorly understood.

A case of particular interest is given by B~1 . Not
only does this make the (now scale inuariant) DP of (1.6)
maximally singular but it is the choice imposed by the
important independent-valued model ' (IVM), in which
all field derivatives are oinitted in S[P] in the first in-
stance. Normally such a starting point would be a free
theory (in the continuum limit) but, for 8~1, this is
not necessarily the case. The significance of B~1 is
that the IVM permits a description of the operator-
valued field P(x ) as a bilinear in a complex extended field
B(x,k, ) (real c number A), defined on a "translated"
pseudo-Fock space, as

or nonexistence. A failure to be able to use P of (1.9) as a
base for a full noncanonical theory reenforces our unease
for strong gravity, the most sophisticated ULM to date.

We shall return to case B~1 in a subsequent publi-
cation. In the meantime we shall use this most pathologi-
cal case to motivate our tactics. In particular, as B~1
the nontriviality of the IVM requires ' that, on a hyper-
cubic lattice of size a in d dimensions,

B=1—26admd (1.10)

II. THE PSEUDOFREE THEORY

The expansion of the noncanonical theory in powers of
field derivatives corresponds to rewriting Z[ j]of (1.4),

kpZ[j]=fDg exp —fd x —,'(VP)2+ —,'m02$~+

(2.1)

as a power series in c:

Z[j]=exp —f D '(x,y)
2 5j(x ' 5j y

(m, b arbitrary fixed parameters} as a ~0 in the continu-
um limit. Unfortunately, the high-temperature series is
of little use for such behavior. The resulting situation, in
which the single-site distribution depends explicitly on a
through (1.8) (and hence on the correlation length that it
defines) is far too complicated for conventional many-
body tactics to handle. It makes more sense to attempt
to evaluate the B~1 limit case by the expansion in
powers of derivatives (corresponding to a strong-coupling
expansion for a canonical theory) pioneered by one of us
(C.M.B.), in a series of papers some years back. ' ' Not
only does this enable us to take the a ~0 limit directly,
but it provides a natural way to incorporate the deriva-
tives omitted in the IVM.

Anticipating the usefulness of derivative expansions for
B~1, in this work we shall use the same tactics to look
at the more general question of the role of noncanonical
quantization. In particular, we are interested in (pertur-
batively nonrenormalizable) scalar field theories in large
space-time dimensions for which noncanonical quantiza-
tion is favored. For simplicity, we work at jixed 8%0,
and contrast our results with the canonical case (8 =0).
Our results, which are very dimension specific, comple-
ment the d =4 work of Refs. 10 and 12.

P(x)= fdAB(x, l)AB(x, , A). , , (1.9)

This is almost a prototype for a similar-seeming bilinear
construction for an ultralocal model' (ULM), in which
time derivatives are restored. Although there are funda-
mental di6'erences between the IVM and ULM they share
a common problem: namely, that the classical
derivative-deficient theory in which there is no variation
in the fields (spatially, at least) is replaced by a quantum
theory in which the fields at adjacent points are com-
pletely uncorrelated. It would not be surprising if this
antithetical picture forced the field theory into trivality

X D exp &mo + j
(2.2}

for c= 1. In (2.2) D '(x,y)=V 5(x —y) is the inuerse
scalar field propagator. The coefficient of c~ consists of
all p-line diagrams in this inverse propagator.

Because of the extremely singular nature of an inverse
propagator expansion attempts to impose analytic renor-
malization have not been successful. We find it con-
venient to evaluate Z on a (hypercubic) lattice in d di-
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mensions of size a and to recover the continuum limit by
taking a~0. The lattice inverse propagator terminates
at vertices given by the derivatives of ' '
F(y)= f exp[ —a "(mox /2+A, ox /4 —yx)], (2.3)

o x~

where we have used the form (1.6) for DP. If

Az„= f z(xa ) "exp[ a—(max /2+A. ox /4)] (2.4)

the 2n-leg vertices Vz„are given by

III. ALGEBRAIC RULES FOR CALCULATION
OF d-DIMENSIONAL DIAGRAMS

Although the computational rules for a "strong-
coupling*' lattice expansion have been given by one of us
(C.M.B.) elsewhere, ' ' it is useful to recapitulate the
basic elements of the constructional techniques.

On the lattice D '(x,y) can be represented as a gen-
eralized "matrix. " For example, on a one-dimensional
lattice with spacing a,

(3.1)

which may be represented as the row matrix

oo V oo

(2.5)
D '=0 (1 —2 1) .

On a two-dimensional lattice D ' takes the form

(3.2)

Observe that V2„depends on the three parameters
mp Ao 8 in addition to a. It is only practical to calculate
diagrams with p 6 interval lines, and such short series
make it very difficult to extract useful information for
general values of the parameters. To simplify the situa-
tion we restrict ourselves to the case XO~O. That is,
form (2.1) we are quantizing a free field in a noncanonical
way. The resulting pseudofree theory is not free, formal-
ly, although we have our usual caveats concerning
universality.

The role of pseudofree theories has been discussed in
great detail by Klauder. In particular, the pseudofree
scalar theory can be interpreted as the correct starting
point for a perturbation expansion in A, for a perturba-
tively nonrenormalizable theory (i.e., d )4 and even d =4
dimensions). Using singular potentials as a simile for
nonrenormalizability, ' it is arguable that canonical non-
renormalizability is a signal that the incorrect X~O
theory is being used.

With ho=0 the A z„'s of (2.4) become 1 functions, and
the V2„s finite series in powers of 8. With the definition
(1.8) in mind we replace 8 by f, where

8=1 2f, 0&f ~0—0 . (2.6)

The first several V2„are then compared to be

V2=2fmo

V4=4f(I 2f )admo 4, —

V6=16f(1—2f )(1 4f )a mo— (2.7)

Vs=32f(1 —2f)(3 —34f+68f )a mo

V,O=256f (1—2f )(1 4f )(124f —62f +—3)a m o
'

We observe that Vz„(n ) 1) is necessarily zero for the
canonical choice f= ,', but it is otherwise non—zero, in

general. That is, prior to renormalization, the change in
measure generates self-interactions, as we anticipated.
To determine whether these persist in the renormalized
continuum limit we need to construct the diagram of the
c expansion (2.2), and extract their continuum limit.

D '=a 1 —4 1 (3.3)

For d & 2 dimensions we need a more general notation
since such arrays are difficult to visualize. We adopt the
following vector notation: (0) represents the position at
the center of the d-dimensional matrix; (1) represents the
positions one unit away from the center of the matrix in
all directions (there are 2d such positions); (n) represents
the 2d positions n units away from the matrix center
along the major axes; (11) represents the 2d(d —1) posi-
tions, one unit from each of any two different axes; (12)
represents the 4d(d —1) positions, the unit from any one
axis and two units from a different axis; (111) represents
the 4d (d —1)(d —2) /3 positions one unit away from each
of any three distinct axes. Further extensions of the nota-
tion are transparent.

As an example, in two dimensions the "matrix"

3

5 2 5

5 4 1 4 5

3 2 1 9 1 2 3

5 4 1 4 5

5 2 5

3

(3.4)

is represented by 9(0)+1(1)+2(2)+3(3)+4(11)+5(12).
In d dimensions, the vector representation of D ' is

D '=
d [(1)—2d(0)] . (3.5)

The vectors (0),(1),. . . satisfy the simple projective dot
product relations

The graphs that comprise the c expansion of (2.2) con-
tain combinations of inverse propagators in two different
ways that we term "series" or "parallel. " The simplest
parallel diagram is the loop of Fig. 1(a), represented by

D '.D ' =a [(1)—2d(0)].a d [(1)—2d(0)] .

(3.6)
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and so on, where pE is the Euclidean momentum squared.
The Fourier transform of D ' =V 5(x —y ) is simply

PE.

IV. THE EFFECTIVE POTENTIAL

(b)

FIG. 1. (a) Propagator graphs with repeated connections be-
tween two points. (b) Propagator graphs with series structures.

(4.1)

In turn, the effective potential V(P) (the energy density
of the vacuum when ( P ) is held to the value P) is defined
from r[P] for constant P by

The e8'ective potential is constructed in the usual way.
The generating functional for the connected Green's
functions W2„ is W[j]=—lnZ[j]. The effective action
I [P] that generates the one-particle-irreducible (1PI)
Green's functions I z„ is the Laplace transform of 8'with
respect to the semiclassical field p = —5 W'/5j:

r[yj=w[&j —fy(»)&I»g'» .

I [$]=(2n) 5(0)V($) . (4.2)

(0) (0)=(0)

(1) (1)=(1)
(2) (2)=(2),
(11) (11)=(11)

(0) (1)=(1)(11)=(2) (12)=0,
and so on, to give

' D '=a [(1)+41 (0}].

(3.7)

(3.8}

(1)X (2) = a "[(1)+(3)+(12)],
(2) X(2)=a "[2d(0)+2(22}+(4)],

(1)X(11)=a [2(d —1)(1)+(12)+3(111)],

(3.10)

and so on. The multiplication symbol implies that an in-

tegration is being performed, so it is associated with a
factor of a . Using (3.10) gives

D 'XD '=a [(2d+4d )(0)—41(1)+(2)

+2(11)] . (3.1 1)

In practice we need the momentum-space Fourier
transform of the lattice diagrams, just as in continuum
theory. The Fourier transforms of (0),(1),. . . are

F(0)=a",
F(1)=21a —p a~+

F(2)=2da 4pFa + +pFa-
F(11)=(2d —2d)a —pz(21 —2)a +d,

(3.12)

The simplest series diagram, given by Fig. 1(b), represents
the convolution

D 'XD '=a [(1)—2d(0)]X[(1)—2d(0)] . (3.9)

The rules for evaluating "convolutions" are

(0)X(any)=a (any),

(1)X (1)=a d[2d(0)+ (2)+2(11)],

r4 ———r4(A )',
r, = —r, (A )'+ lo(A )'A, A A„,
I 8= —I s(A ') +56(A ') A A 'A

—280(A ') A A 'A A 'A

(4.3)

and so on, where integration of the (implicit) repeated ar-
gument has been performed. Details are given in Ref. 18.

The final step is to observe that V(P) has the Taylor
expansion

v(y)= y ', r,„(0,0,0, . . . ,0)y'",
2n ! (4.4)

where I 2„(0,0, . . . ,0} is the 2n-leg 1PI Green's function
for zero external momenta. The relationship of the
I z„(0,0, . . .,0) to the Fourier transforms A2„ follows
directly from (4.3). To evaluate a graph having 2n legs at
zero momentum corresponds to treating the graph as a
vacuum graph, with no external legs.

As an example, we consider the reduction of propaga-
tor graphs to vacuum graphs. for each translation-
invariant propagator graph p(x, y) in coordinate space,
the corresponding legless vacuum graph gives a contribu-
tion fdx p(x, y ). The equivalent operation on the lattice
is obtained by summing over all the lattice points using
the formulas

a"g (0)=a",
a g (n) =2da (n ~ 1),
a g (11)=21(d—l)ad,

(4.5)

and so on. For example, the vacuum graph correspond-
ing to Fig. 1(a) is

If Az„ is the sum of all 1PI diagrams with 2n external

legs, the relationship of A2„ to I 2„ is obtained in a
straightforward but tedious way as

I = —D '+A
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I, q) l(C)

FIG. 2. A one-particle-irreducible diagram: (a) with no internal lines, contributing to Az(0, 0); (b) with one internal line, contribut-

ing to A2(0, 0); (c) with two internal lines, contributing to A2{0,0); (d) with two internal lines, contributing to Az(0, 0); {e) with three

internal lines, contributing to A2(0, 0); (f) with three internal lines, contributing to A2(0, 0); (g) with three internal lines, contributing

to A2(0, 0); (h) with three internal lines, contributing to A2(0, 0); (i) with three internal lines, contributing to A2(0, 0).
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a "g (D ' D ')=a g [(1)+4d (0)]

=a (4d +2d) . (4.6)

Finally, we observe that the vacuum graphs which are 1-

vertex reducible can be written as the product of 1-

vertex-irreducible subgraphs (OVIS's). All vacuum
OVIS's having from one to six lines are shown in Fig. 7 of
Ref. 18.

As an example of this procedure we list all the 1PI
graphs contributing to A2 up to three internal lines in

Figs. 2(a) —2(i}. We see from (4.3} that A2 is an essential
ingredient in the construction of I 2„. Consider the par-
ticular graph in Fig. 2(g). The graph decomposes into its
OVIS components

evaluated as (2d+4d )a " and —2da, respec-
tively. The vertices involved are V6 V2. The contribution
of this graph to A2 is then

2X ' V6V'2(21+41 )a (
—21a "

) (4 7)

where 2 and —,
' are the external symmetry number (permu-

tation of external lines) and the internal symmetry num-
ber (permutation of internal lines), respectively.

Similarly, for the graph in Fig. 2(i) the inverse propaga-
tors give the factor

As it stands, the effective potential (4.4) needs field re-
normalization, which we implement at @=0. The field
renormalization constant Z is defined by

~(pM } p

(4. 1 1)

Z
—

& —1+ ( V2 2 —2& —4/6)
A2'(p' } &(p' )

V2 —2d —4

=1+
6A

(4.12)

The renormalized 1PI Green's functions are, as a
consequence,

r,"„(o,o, . . .,o) =z"r,„(o,o, . . . , o) . (4.13)

In this intermediate renormalization scheme, the renor-
malized mass M and the renormalized coupling G are
given in terms of the coefficients of V:

where pl is the square of the Minkowski momentum,

p~ = —p&. Thus, for example, the contribution to Z
obtained from the graphs with up to three lines discussed
above is

(D '.D ' D ')=a [(1)—(21 )(0)],
whose Fourier transform

F(D I D I D1)a3d6(21adp2a2+d813d)

(4.8)

and

M =I 2(0,0)

G =24I 4(0,0, 0,0) .

(4.14)

(4. 15)

V (2d —8d )a /6 . (4.10)

(4.9)

With vertices V4 and overall symmetry number I/3!=
—,',

the graph's contribution to A2 (pz =0) is

If we now use the techniques that we have sketched
earlier we find that M, G, I 6 all permit power-series
expansions in ( A m o ) ', with coefficients that are poly-
nomials in F=—,'(1 8). For exa—mple, at the level of the
first three terms we have

2f + (8df 4df ) +—[(96d —48d+ 16)fa m0 0

+( 96d +24d —16)f'+—(24d +4)f ] +
(am )

G=24M a +
2 2 2 (8f 4f)+(128df 96—df +16df)—1 1

(a m, ) a m

—[(3840d —1344d+128)f +( —4224d +11521—192)f

+(14401 240d+96}f +(——144d —16)f] + '

(a'm )'

(4.16)

(4.17)

I 6
=M' a + (192f 244f +64f )+(4608df ——6528df +2880df —384df )

1

(a mo2) a m0

+ [(64 512d 2 —9216d + 1536}f '+ ( —112 128d + 16 896d —3328 )f
+ ( 69 1201 —9600d +2688 )f + (

—17 664d + 1728d —960)f2

+ (15361 —128)f ] +2 1

(am )
(4.18)
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V. REARRANGING THE SERIES

Given the expansions (4.16)—(4.18) for M, G, I 6, go-
ing to the continuum limit requires the ability to choose
m 0(a ) as a function of a so that M (a, m o,f ) remains
fixed as a ~0. The behavior of G, I 6, etc. , then deter-
mine the continuum theory.

Before tackling the full problem, it is worthwhile ex-
amining truncated versions of the model. The simplest is
just to consider the theory having no inverse propagators,
in which we set c=0 (or, equivalently, D ' to zero) in
(2.2), rather than c = 1. This gives

this. If x,y are defined as

1y=, x=
2M 2 a m 0

(5.9)

then Eq. (5.5) becomes

y=2xf(1 —2dx+4d x —8d x + ) (5.10)

=x g a, (f,d)x',
i=0

(5.11)

where the a, can be read directly from (5.10). Similarly,
(5.6}takes the form

1 2

aM am 0
(5.1) M

G = —96 f(1 2f )x—(1—4dx + 12d x

aG= 24M —4f(1—2f )
mp4

'

1-(2() 16M i2 f(1—2f )(1 4f )—
6 6

PPl p

(5.2)

10M f (1 2f)—
8

a
Pl p

(5.3)

and so on. Using (5.1} to solve for m 0
= 2fM, it follows

that G =0(a ), I 6
'= O(a ") vanish as a ~0, as do all

higher Green's functions. [It can be proved' that this
"triviality" is inevitable for all fixed f. Only for the
choice (1.8) do we get nontrivial G, I s.]

Second, consider the case in which we neglect all cross
terms (nondiagonal terms) in D ' of (3.5). That is, we
take

—32dx +''')
M p" px g c;(f,d)x'.

(5.12)

(5.13)

x —— 1+—y+ y2+d
2f f f'

=y g A; (f,d)y'.
i=0

Let x' ' be the partial series

(5.14)

We note that the Eqs. (4.16) and (4.17) for the full theory
have the same generic form as (5.11) and (5.13).

To recover the result that the theory is trivial we can
invert (5.10), writing x in therms of y on an order-by-
order basis

D '~ —2d(0)/a (5.4) IN) y A (0)(f d } (5.15)

1—
a2M2 a2~2

p

4d' Sd'
a m (a m } (a m )

This is the starting point for the high-temperature expan-
sion of the analogue continuous-spin ferromagnet realiza-
tion of the theory. ' The series expansions for M, G
now become

Now let

—M4 —d x(N) 2
G(N) M ( } ~ co(f d }x(N)

d/2
y

M4 —d N

g hk"'(d f)y"
I =p

N

(5.16)

(5.17)

+ ~ ~ ~

24M() (4f )(1—2f ) d+4 4d 12d

(am ) am (am )

32d

(a m )'

(5.5)

G'N'=
—24M "

1 2f 0 N=1 2 3. .
—
. .

y fEj/2 7 ' (5.18)

where the subscript X in (5.16) means that we only retain
terms up to y in the expansion of powers of x' ' in
terms of y.

For the case in point hk '=0, k )0, to give the correct
answer asy~ ao,

(5.6)
We know that, since the sum can be performed to give

1 2
a2M2 a2~2+2d (5.7)

G=
—24M (4f }(1 2f}a-(a2m�2�+2)2

(5.8)

we can again substitute mo for M in G to give a trivial
theory as a ~0. However, suppose we had not observed

We note that the fact that the theory has a continuum
limit has nothing to do with the existence or nonexistence
of a phase transition (in the language of high-temperature
series). For this example, with no linkage from one cell
to the next, there can be no long-distance correlations of
"continuous" spin.

More generally, the series are not so simple, but the
iterative method outlined above is equally applicable.
Write (4.16)—(4. 18) in terms of dimensionless Green's
functions as
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y =x I2f+(Sdf 4—df )x+[(961 —48d+16)f +( 9—6d~+241 —16)f~+(2412+4)f ]x2+O(x') j,
2

6=24y4=M 6=24
d I(Sf 4f—)+(128df 93—df +16df )x

—[(3840d —1344d+128)f +( —4224d +1152d —192)f

+(1440d —240d+96)f +( —144d —16)f]x +O(x )j,
X

y = I "(0,0, . . .,0)M =
d I (192f —224f +64f )+(4608df —6528df +2880df —384df )x

y

+[(645121 —9612d+1536)f +( —112128d +16896d —3328)f

+ (69 120d —9600d +2688 )f
+( —17664d +1728d 960)f—+(1536d —128)f]x +O(x )j .

Inverting x iteratively to order y (3 terms) as x' '(y ) gives y~ ', y~
' to the same order as

(5.19)

(5.20)

—d/2
r(3)= y
V4 I(2f —1)+4(2df 1)fy+[(—8d —20d )f +(16d 4d )f —31]y j,— (5.21)

—dy"'=, [(24f' —28f~+Sf )+(144df' 1681f2—+481f )y

+ [(288d —144d )f + (288d —336d )f + (96d +68d )f+301]y (5.22)

—I R (0 0 0)Mnd —2n —d (5.23)

but we shall have little need of them.

We note that, although factors of (1—2f ) have not been
displayed explicitly, y4 and y6 vanish when 2f =1, as
they must for a truly free theory. This is equally true for
the higher-leg dimensionless Green's functions

the approximants just discussed. (Here we ignore the
possibility of conAuent singularity' and logarithmic be-
havior ' for simplicity. ) If v2„)0 (n =2, 3, . . . ) the
theory is trivial whereas if v2„(0 the theory does not ex-
ist

Since the lattice series for y2„ in (5.23) can be seen to
have a factor y ",it is suf6cient to consider the
large-y behavior of the remaining power series, which we
denote by Az„(y): i.e.,

VI. PRELIMINARY SPECULATIONS

From the earlier high-temperature series analysis' we
would expect the continuum limit either triviality or
divergence. With a short series in hand, we feel that it is
more reliable to extract some properties of the r2„which
are likely to be finite. One way is to fit the lattice series
to

V
2lf

d/2 —nd l2 gr2n 25

We assume that

whence

v2„=nd /2 —d /2 —p2„~

The index p2„ is calculated from the series 32„as

(6.2)

(6.3)

(6.4)

r2n =y '" as y~~ (6.1) dp2„= limy In A 2„(y ) .
y~ oo dy

(6.5)

and then to calculate the critical exponents v2„order by
order in powers of c (the number of internal lines) using

The first few terms in the series for p4, p6, and p8, defined
from (5.21), (5.22) (and the equivalent series for ys) are

p4(d)= lim (yI4d —y[(8d +20d)f 6d]/f+y [(16d +120—d +48d)f +( —361 —32d)f+41]/f + . j),y~ oo

(6.6)

p6(d )= lim (yI6d —y[(361 +31)f +( 24d 54d)f+15d—]1'(3f——2f )
y —+ oo

+y [(144d +432d —3601)f +( —96d' —648d +156d)f'

+(188d +38d)f —13d]l(6f 4f )+ j), — (6.7)
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ps(d ) = lim (y I 8d —
y [(2880d +2880d )f —(4128dz+ 6144d )f2

y~ oo

+(1392d2+4024d)f —812d]/(180f —258f +87f )

+y [(5760d +17280d )f +( —8256d —36864d +3456d)f

+ (2784d +24 144d —544d )f + ( —4872d —1184d )f
+296d]/(180f —258f +87f ) ' '

j ) . (6.8)

Taking higher-order terms into account (that we have
not included here for lack of space} we observe that, if in
the limit of large d we keep the highest power of d multi-
plying each power of y, the series can be summed to ob-
tain (for fixed fW 1/2)

p4- lim
y~ oo

p6 lim
y~ oo

p —lim
y~ oo

4yd
1+2dy

6yd
1+2dy

8yd
1+2dy

=2

=3 (6.9)

Apparently, in large dimension pz„-n Thus. , from (6.4),
we have, for large d,

v2„=-nd /2 d /2 —n. — (6.10)

This is exactly the result that we would expect for a
canonically quantized (f=

—,') interacting AP theory. '

From this viewpoint, replacing the translationally invari-
ant measure DP for a free field by the scale-covariant
measure DP is akin to adding a quartic self-interaction
[despite the superficial logarithmic addition (1.7)]. This
effect of renormalization was observed in a different con-
text (the large-N limit) in Ref. 8, and is an example of
how misleading the unrenormalized path integral can be
when trying to determine universality classes.

If van & 0, the dimensionless scattering amplitude y2n
vanishes in the continuum limit a ~0. As in the case of
the canonical theory, ' at large dimension the pseudofree
theory is trivial and there is nothing to be gained by non-

I

' 1/n

I

canonical quantization of the type considered here. For
small d some caution is required, although if we assume
that the result (6.14) is approximately valid in this case
(as happens in the canonical theory' ), then y4 vanishes
for d ~ 4, y6 vanishes for d & 3, and ys for d & 3.

VII. EXTRAPOLATION TO THE CONTINUUM

For small d, the series (6.6)—(6.8} are not geometric,
and do not permit direct summation. Nominally, they
show the seemingly unusual property that as a ~0, with
the renormalized mass M kept fixed, each term becomes
infinite. However, this is a situation common to all
derivative expansions and has been discussed at great
length elsewhere' ' ' in the context of canonical
theories.

The series which we need to evaluate as yahoo have
the generic form [see (5.21) onwards]

N

f (iv)( )
— y k ~0

k=0
(7.1)

N

P(y)= f(y)' =y g a„y" (7.2)
n=0 g Is.y"

n=0

Define

for which we can only evaluate the first k & 5 terms con-
veniently. One method which, despite caveats, has been
successful is to convert lim „f' '(y ) into a sequence of
extrapolants fz( oo ) as follows.

First, raising f ' '(y) to the power I/a gives
' 1/a

f„(oo ) = lim
y~ oo

y (7.3)

truncated after nth term

Knowing f' '(y) in (7.1) up to N terms gives a series of approximants f, (oo),f2(oo), . . . , f.N(oo) which, in many
cases' ' converge to, or come very close to f( oo ) when it exists. Variants of this scheme can be constructed which
improve the series convergence.

We now give some examples of this method for p4 when f= oo, f=1, f= '„and f= ,' (B=——oo, —1, —,',——,').
f= oo: The extrapolants for N= 3,4, 5 lines are (all coefficients to nearest integer)

(p4)3( ~ ) = 16d

(64d +4d+826) ~

(p4)4(~ )= 81d
(66430d —49 815d+3 653 675)'

(p4)g( ~ ) = 256d
(268435456d +2097 152d3+5249024d +4717039624d+55022766610)'

(7.4)

(7.5)

(7.6}
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We plot these estimates for pz as a function of d in Fig. 3(a).
f= 1: The extrapolants for N =3,4, 5 lines are

(p~)3( ~ ) = 16d

(64d +4d+435)'

(pg), ( ~ ) = 81d
(66430d —1230d +213 906d —1 145 702)'

(pg)g( ~ ) = 256d
(268 435 456d —2097 152d +3 676 160d +11001542 660d+4 827 593 699)'

We plot these estimates for p~ as a function of d in Fig. 3(b).
f= ,': Th—e extrapolations for p~ at y = ao for N = 3,4, 5 lines are

(pg)3( ~ ) = 16d

(64d +4d+ 1091)'

(7.7)

(7.8)

(7.9)

(7.10)

(p~)&( ~ ) = 81

(66430d —1230d —182060d+417 105)'i

(pg)5( ~ ) = 256d
(268435456d +2097152d +1054720d —2758624587d+4198806278)'

We plot these approximants as a function of d in Fig. 3(c).f= ,': The ap—proximants are

(p&)3( ~ ) = 16d

(64d +4d + 174)

(pg)g( ~ ) = 81d
(66430d +1230d —1246172d+799003)'

(pg)g( ~ ) = 256d
(268 435 456d +2 097 152d —1 042 432 d + 8 714 186 760d —2 761 330 863 )

'

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

These are plotted as a function of d in Fig. 3(d).
We conclude our numerical analysis by performing the complementary calculation of holding d fixed and letting f (or

B) vary. We span the critical dimension d=4 by considering d =5,4, 3 (all coefficients given to nearest integer).
d=5:

(p~)3( ~ ) = 16

(98f —19f+3 )
' (7.16)

(p4)4( ~ ) =

(p4)g( ~ )=

81

(94 130f —11 384f +2732f 1079)'i—
256F

(394 837 591f +4 473 198f —38 246 487f +2 121 112f+ 1 553 011)'i

(7.17)

(7.18)

These are plotted as a function of f in Fig. 4(a). Note that, whereas the denominators of (7.16) and (7.18) are always
real, the denominator of (7.17) vanishes for some positive f, and the convergent behavior (as the number of lines in-
creases) that is seen for smaller f (e.g., f= ,') breaks down. This m—ight have been anticipated from the mean-field calcu-
lation, ' usually valid in d )4 dimensions, that the theory does not exist for fixed f & —,

' [away from the large-N limit of
the O(N) generalization of the scalar theory] (note that, for f= —,', the mean-field calculation shows that the field theory
"approximately" exists):

d=4:

(pg)3( ~ ) = 16
(117f 29f+5)'—

81

(121088f —29227f +8256f —2108)'

(p&)~( ~ ) = 256.t
( 557 924 232f —63 708 203f —32 426 221f —5 634 944f+3 791 531 )

' i

(7.19)

(7.20)

(7.21)

These approximants are plotted as a function of f in Fig. 4(b). As in the case d =4, the approximants begin to go
wild for f & —,'(B & —,

' ), confirming the suggestion from Pade calculations and Monte Carlo simulations, ' as well as the
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FIG. 3. Plot of (p4)„( Do ) as a function of d values at (a) B= —ao where + denotes {p4)4( ~ ) and X denotes (p4)&( tx) ). This is
overlaid by a continuous line plot of {p4)„(00 ) as a function of d for the A.=+ ao of the canonical AP theory results obtained from
Ref. 18, where the line ended with a square denotes (p4)4{ ao ) and the line ended with a circle denotes (p4)&( 00 ). Here the solid line
denotes p4=d/2; (b) B=—1, where 5 denotes (p~)3(00},+ denotes (p4)4(~), and X denotes (p4)&(ao), the solid line denotes
p4= d /2; {c)B= 4, where 5 denotes (p&)3( 00 ), + denotes (p4)4( ~ ) and X denotes (p4) &( 00 ), the solid line denotes p4=d /2 as before;

(d) B= 2, where b denotes (p4)3( ao ), + denotes (p4)4( ~ ) and X denotes {p4)5( ao ), the solid line denotes p4= d /2 as before.
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mean-field result previously mentioned, that in d =4 dimensions there is a value of f,f '= —,', above which the continu-

um theory does not exist. (Note that the mean-field result, although it seems qualitatively correct, does not predict the
boundary between trivial and nonexistent theories wholly accurately. ' }

(p4)3( ~ ) = 16

(157f —52f +9)'

(pg)4( ~ ) = 81

(197401f —85 851f +26489f —4998)'i

(p4)s(~ )= 256„f'

( 1 123 716 318f4 437 25—3 017f +90 146 040f —51 985 016f+ 11 983 109 )
'

(7.22)

(7.23)

(7.24}

(a) Yet again the approximants break down when f 5 —', ,

more violently than for the case of d =4 dimensions.

VIII. CONCLUSIONS

(b)

Although the series approximants have been based on
few terms, we can already draw some conclusions. First,
we see from (6.6)—(6.8) that the d~ao and f~ oo limits
commute, term by term. Thus the values for p2„ in (6.9)
are also the values that we would obtain for the pseudo-
free theory at large f in large dimension.

From (1.7) the f~ ~ (8~ —~ ) limit, with its
suppression of small fields, is equivalent to the spin- —,

' Is-

ing limit, which is also the A, ~ ~ strong-coupling litnit
of the canonical A,P theory. The agreement with the
strong-coupling results of Ref. 18 are total, as can be seen
in Fig. 3(a). For d &4 we seem to have a trivial theory.
For d & 4 we anticipate a nontrivial theory, with v4 tend-

ing to zero uniformly in d as the number of internal lines
is increased.

At the other extreme, for smallgxed f=0,

p4=O(f ), (8.1)

if we ignore problems of definition [see (7.16) onwards] in
all dimensions d. In turn, from (6.4),

(c) v ——+O(f ) &0 .d
4 (8.2)

-3
-2

FIG. 4. Plot of B=2B /(1+ )B
~ ) as a function of (p4)„(~ ) at

(a) d =5, where 6 denotes {p4) 3( ~ ), + denotes {p4)4( 00 ) and X
denotes (p4)&(00); (b) d=4, where 5 denotes (p4)3{00), +
denotes (p4)4( ~ ) and X denotes {p4) 5( 00 ); (c) d =3, where 6
denotes (p4)3( 00), + denotes (p4)4( ~ ) and X denotes (p4)5( ~ ).

This corresponds to the four-point function vanishing in
the limit a-+0. That is, for stnall f, the noncanonical
theory looks trivial. This is superficially at variance with
the d =4 results based on the high-temperature series, '2

although the Fade approximants break down for small f.
However, we cannot infer that we would obtain the same
result if f were driven to zero as f=O(a ) in the contin-
uum limit, since semianalytic calculations suggest other-
wise. ' This will be the study of a further paper.

In between these two extremes, Figs. 3 show that the
theory is inevitably trivia/ for large dimension, in accord
with (6.9}. This is interesting because noncanonical
quantization had the potential for enabling theories that
would be perturbatively nonrenortnalizable (if canonical)
to be defined and nontrivial when expressed as an expan-
sion about a nontrivial pseudo-free theory. The IVM
provided an extreme example of this idea, being maximal-
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ly nonrenormalizable in one sense [with propagators
0(k ) for large moments k]. However, in the more usual
sense of nonrenormalizability due to large dimension we
see that noncanonical quantization of the form con-
sidered here does not help, away from f=0 at least.

However, the approximant scheme begins to break
down visibly by the time that f= —,

' for 1 (4 dimensions.

As we have noted, the d )4 dimension mean-field calcu-
lations indicated that the pseudofree theory is nonex-
istent for all f (—,'. The results of Figs. 3 show this to be
even more likely in d (4 dimensions (although we al-

ready had a partial case for the nonexistence of the d =2
pseudo-free theory for such f).' This reinforces the orig-
inal argument for noncanonical quantization based on
perturbative nonrenormalizability. Only for d & 4 dimen-
sions is the introduction of a nontrivial (fW —, ) measure

justified (even if, ultimately, it does not help).
Finally, for f= 1 (B= —1) the results of Fig. 3(b) are

sufficiently different from those of Fig. 3(a) to make it un-

clear as to whether the theory can exist in small dirnen-
sions in this case, although this looks unlikely. This is
compatible with the d=2 result of Ref. 12. [The case

f= 1 is interesting in its own right because it corresponds
to a conformally invariant measure which, in the context
of gravity, gives rise to a natural mechanism whereby
(g„„)%0(Ref. 4). This choice will also be considered
separately elsewhere. ] The work of Ref. 12 indicates
that, in d =4 dimensions at least, the noncanonical
theory for f )—, is trivial (in the same equivalence class as

the canonical theory). This series is too short here to do
more than make this plausible. In summary, the non-
canonical quantization of a free theory that we have con-
sidered here has been of no help in obtaining nontrivial
scalar theories when the canonical theory is trivial and is
a positive hindrance when the canonical theory already
exists. If noncanonical quantization is to be successful, a
different approach is needed, except perhaps for B~1
which will be considered elsewhere.
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