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If superspace time is taken to be Vdet(y), where yi; is the three-metric, then the cosmological
constant plays the role of a (mass)? term in the Wheeler-DeWitt equation. Second quantization al-
lows particles of different mass to decay into one another if they are interacting. Likewise, adding
interactions to the third-quantized Lagrangian allows universes with different cosmological con-
stants to decay into one another. We consider a simple model with two types of universes, one of
cosmological constant zero and the other nonzero. We compute the probability of decay and pro-

duction for each type of universe.

L. INTRODUCTION

Following the pioneering work of DeWitt, Misner,
Kuchar, Ryan, and others'™® third quantization was in-
troduced as a method for dealing with topology-changing
processes in quantum gravity. Recently there has been a
revival of interest in third quantization.'®'® This has
been motivated in part by the fact that third quantization
is deemed necessary in the two-dimensional gravity used
in string theory as well as giving a possible solution to
certain negative-probability problems which plagued the
“Schrodinger-Klein-Gordon” approach to quantum
cosmology. Also, universe creation can be shown to
occur in third quantization,'>!® a process analogous to
particle creation in second quantization. Here one is led
to introduce an object which cannot even be conceived of
using second quantization, that of a no-universe state or
third-quantized vacuum. In this paper we study a pro-
cess complementary to universe creation, that of universe
decay. A direct consequence of universe decay is that the
Universe propagating in an initial state need not be the
same type of universe that is propagating in the final-state
configuration. In particular, the cosmological constants
associated with the initial- and final-state universes need
not be the same. This provides us with a mechanism for
changing the value of the cosmological constant while
keeping its value fixed during any single universe propa-
gation (so that the cosmological constant really is a con-
stant). We will show that universe decay in third quanti-
zation is analogous to particle decay in second quantiza-
tion with the cosmological constant playing the same role
as the (mass)? of an elementary particle. The analogy
seems to suggest that if universe decay is possible then
universes with A0 will eventually decay into universes
with A=0. After all, massless particles eventually dom-
inate the final states of particle decay in second quantiza-
tion. We shall show, however, that one must also allow
for the inverse process in which a universe with A=0 de-
cays back into universes with A70. The background su-
perspace metric which drives universe creation also
makes it possible for universes with A=0 to decay (mass-
less particles do not decay in flat space). One should keep
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in mind that the proper inclusion of inhomogeneity could
substantially alter this result.

This paper is organized as follows. In Sec. II we dis-
cuss the role of the cosmological-constant term in the
world-volume action. It is shown to play the same role as
a (mass)? term in the world-line action of a relativistic
particle. Upon quantization the correspondence is main-
tained as the Wheeler-DeWitt equation becomes
identified with a Klein-Gordon equation in a background
field with (mass)? term A. In Sec. III we construct an
effective three-universe interaction by a second-quantized
path integral. This has the effect of adding an interaction
term to a third-quantized Lagrangian. The interacting
term gives rise to the phenomena of universe decay in
which one type of universe can decay into another. We
investigate universe decay for the simple case of two in-
teracting universes, one with A=0 and the other with
A#0. Because of the background superspace metric,
universe production is also possible. Owing to the asym-
metry of this superspace metric under inversion of con-
formal superspace time, the decay probabilities are
different for universe decay and production and we com-
pute the difference. The distinction between (in) and (out)
third-quantized vacuums complicates the computation of
the decay probability but can be handled if a suitable
cutoff in superspace volume is present. In Appendix A
we discuss the fact that for the special case when two of
the universes in a three-universe overlap are identical the
universal interaction can be implemented by the insertion
of a four-dimensional vertex operator on the world
volume. In Appendix B we derive the phase space avail-
able in universe decay. In Appendix C we consider a
model in which a single universe with A=0 decays into
two identical universes with A70.

II. THE COSMOLOGICAL CONSTANT
AS A (MASS)? TERM IN THE WHEELER-DEWITT
EQUATION

In Refs. 13 and 18 it was noted that if the Wheeler-
DeWitt equation is taken to be analogous to the Klein-
Gordon equation then the cosmological constant plays a
role identical to a (mass)? term for the Klein-Gordon
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wave function. In this section we wish to explore this
analogy a bit further. First, consider the Einstein-Hilbert
action with a particular ansatz for the metric correspond-
ing to the given cosmological problem. We shall take this
ansatz to be

ds?=—cX(t)dt?+aXt)[dx2(e P+ T )

—28, +28_
26, —4p_

+dx3(e )

+dx3(e ). @.1)

In the above, a(¢) denotes the volume of the universe at
time ¢, B, (t) and B_(t) are anisotropy parameters which
describe its shape. If, for example, we consider a toroidal
universe as described by a box with opposite sides
identified of length R,(z), Rz(t ),R;(t) then a3

—R,R,R3, ¢**=R,/R,, and e =R, /R;. Also c(t)
will be seen to be a Lagrange multiplier field (it has no
dynamics). Then the Einstein-Hilbert action
— 1 4 T (4p __ " v
§= - [d'xV =g (‘R—2A'~2g,, T*) 2.2)

reduces under the above ansatz to

2
; 1 . .
'—'%-%fdtca ~-Le +;:1;(/32++32_)
11 5.0 |1  I’M
+3:;(1¢,-)~l;{1+7+9/x
2.3)
where [1*=k/6, A=373A’, B,=3(iB+B_), and

B_=(3V'3/2)B',. We have included (n —3) scalar fields
¢; so that we have an n-dimensional minisuperspace. The
last three terms in S denote, respectively, the matter, ra-
diation, and vacuum contributions to the energy density.
In the following we shall keep only the vacuum contribu-
tion. We shall find it convenient to define x =a3/I? and
g =(cx)?. Then the action reduces to

S=1[diVg[—g "% 2+g X ABL B+ A] .
(2.9)

We define K. =(1/1)1/Vg)x*B;, K,=(1/Vg )x*,,
and K =(K ,,K_,K;). Solving the classical equation for
g we find the relation
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Thus this model has a limit for the velocity of the
Universe point through superspace. This is the analog of
the condition in particle theory:

dx i :p,' 1
dx® \/p 24 m?
From (2.4) we see that the action is equivalent to that of a

relativistic particle of (mass)>=A in a background with
metric G;; derived from the line element

8st=—dx2+xUdB* +dpr +1%dp,de;)

=1. (2.7)

(2.8)

This is actually the background superspace metric re-
stricted to minisuperspace. Solving (2.6) we find

(x)= K. In(x /x,)
Bi(x |K| n(x /xq
212 1L A2
Do | ECEAAHIKL )
VK +Ax} + (K|
For x << |K |l /V'A we have
=K e+ Ax (2.10)
Pl = g7 x0Tk gk ‘

and for small x the trajectory of the Universe point (53,¢)
through superspace is identical to that of a universe with
a zero cosmological constant.

The quantization of this model is implemented by re-
placing the classical constraint —p2?+K?%I2/x2+ A=0 by
the Wheeler-DeWitt (WDW) equation. If we define
K=(K,,K_,K,) where K+ and K ;; are eigenvalues of
—i(a/19B4) and —i(1/1*)(3/3¢;) the WDW equation
reduces to

1, 4

. d
- n—1
x/1" " Vax )

(x/1 E;‘(,b

A+ K2)+g ¥=0. (2.11)

—1)n—2)
x2

(x /1)2

A modification of the WDW equation by a term propor-
tional to the superspace curvature (n —1)(n —2)/x? has
been included in (2.11). We shall normalize the solutions
to (2.11) as in the “Schrodinger-Klein-Gordon” approach
to quantum cosmology with the inner product!?°

1 —x¥B*+1%?) x4 2 . R3S (e
g= /j\ ¢ = (2.5) ()= —i [dBd" 9V =G (y18.4) . @.12)
And using the definition of K we obtain The WKB solution to (2.11) is given by
1 K, ) 1 YREB=V""2expli(k By +k_B_+ky¢;)]
ﬁi(x)““ o " 72 5; . 2.6) (2—n)/2, WKB
K, X (x /1) KB @.13)
x? where V is a suitable superspace volume cutoff and
J
;2 (n—2y? 1/21-172
XY*B(x )= 2%(—2 K2*+172 |g(n—1D(n—2)—-2==2 | [ +A
x
sexp |—i [Fax' 1L | k24172 [etn— 1) —2)— B=22 | | 44 - (2.14)
exp zfxO x 72 &(n n 2 . .
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Defining the conformal superspace time 7 through x =x,e "’/ we have

(n—2)?

2472
K-+1 2

2 En—1)n—2)—

~if077dn'

XX <Bn)=

Xexp K*+172

The parameter £ arises from different choices of measure
in the definition of the path integral. The ambiguity is
the same as that present in the path integral of a particle
in a background field.?"*> The usual choice £=0 gives
rise to possible instabilities for small superspace momen-
tum K. For £70 there will be superspace curvature
terms present in the WDW equation. The choice
&=1(n—2)/(n—1) is the simplest and amounts to con-
formal coupling of the universal field to the superspace
curvature. In the following we shall choose conformal
coupling but other choices can be handled by replacing
IK| by

172

(n=2)

4

K2+172|&n—1)(n—2)—

in the definition of y(x). The choice of (out) wave func-
tions used is determined by requiring that they match the
WKB solution for x >>A~!/2, The choice of (in) wave
functions is determined by requiring that for x << A~!/2
they match the solution to (2.11) with A=0. This is in
accordance with our classical result (2.10). For confor-
mal coupling we obtain

Y=y =V " explitk By +k_B_+kyd,)]
X (x /D" 2xg (2.16)
Y=g =V explik . B, +k_B_+kyd)]
X(x /D" g,
where
XK:(77,/4)1/291r|1<I1/21L1:|2“(x\/7x)l1/2 ,

Xx =(m/2)"X(sinh|K [1) V2T g (x VA2,
—ilK|!
= e "ilKIn

V2IK

(2.17)

1
0 — | 2
Xx =30 |5,

K(x ’B+’B—7¢i;x”B’+,B'—,¢:‘ )
- (x(W)=x",BL(W)=B,6,(W)=0;}
- fo f{x(0)=x,ﬂi(0)=6j:,¢i(0)=¢,}

+Ax§1_2e2’7/1

En—1)n *2)‘“;“‘

172 ]—1/2

(n—2)?

172
+Ax31—2e2"'/’] y . (2.15)

f

Here H'?(z) and J,(z) are Hankel and Bessel functions.
The wave function ¢% is used if the cosmological-
constant term is zero. When A0 the (in) and (out)
third-quantized vacuums |°0) and |30) are not equivalent
and we define ag =(¢g,¥x) and By =— (U, ¥%) (Ref.
23). For our model we have

172
= e‘n’\Kll
kK1 2sinh|K |l
and (2.18)
5 = e ~TKI 172
K 2sinh|K |7l

III. UNIVERSE DECAY IN THIRD QUANTIZATION

In this section we extend the discussion of Refs. 10 and
13 on universe decay by using the Hankel-function repre-
sentation of the one-universe wave functions as opposed
to the more general WKB wave function. We shall also
see that the distinction between (in) and (out) third-
quantized vacua introduces new terms in the decay prob-
ability which must be included. A disturbance in super-
space is in general due to a combination of the back-
ground superspace metric and an explicit third-quantized
interaction. It is these disturbances which change the
universe number in third quantization. The usual gravi-
tational path integral leads upon second quantization to
the WDW equation. Forming a universal Lagrangian
which reproduces this equation upon variation and per-
forming a quantization using this Lagrangian one
achieves a third-quantized theory of noninteracting
universes. We shall consider the possibility of achieving
a third-quantized theory of interacting universes by con-
sidering the second-quantized path integral. In this
language the general expression for the universal propa-
gator may be written

Dg Dx DB DB_D¢;

X I 8(g()—1)
t

X exp —;.—fowdt\/g{g"l[—fc2+x2(3'3_+32_+12q§,2)]—A} .

We shall find it convenient to define

(3.1)
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(x(7)=x"By(*)=B,8,(")=¢]}
[X(T)=X,ﬁi(7’)=Bi)¢i("')=¢, ]

<x’,B’i,¢2,T’!x,Bi,¢,-,T>A=f

Dg [Dx [ DB.DB_D¢, I 8(g(1)—1)

X exp é'f*dn/ggg*l[—x2+x2(3'2++3'2_+12¢,?)]—A} .

(3.2)

Then we can obtain an effective overlap integral between three universes by forming the following expression:

[(x3,B3,¢3;,%5,82,02%1,81, 1)

=A[ “dr,[° dr,[° dr [dxdp.dp_d"

X (X3,B3,¢3,T3|X,ﬁ,¢,o>A3(X,B,¢,O|XI,BI,¢1,T1>A1<x,ﬁ,¢,OIX2,B2,¢2,TZ)A2 .

(3.3)

The novel feature of the above formula is that it involves three separate gravitational path integrals each with a
different value of the cosmological constant obtained presumably from different particle spectra in each universe. The
effective universal interaction can be constructed by composing I with three inverse propagators and we obtain the fa-

miliar result

V(x3,83 03X 1,81,015%2,Ba, $2) =A8(x3—x,)8%(B;— 8,)8" ~3(d3—$,)8(x, —x)8%B,—B,)8" "3, — ) .

Notice that this type of universe overlap yields an in-
teraction local in superspace. We believe this is simply
an artifact of restricting ourselves to the reduced minisu-
perspace and do not expect this feature to continue when
inhomogeneities are taken into account. This seems to
also be the case for an interacting theory of two-
dimensional universes used in string theory.?* The field-
theory limit of a string theory, which amounts to neglect-
ing inhomogeneities in the two-dimensional gravity,
defines a perfectly local theory in the minisuperspace per-
ceived as space-time. However, in our case there is some-
thing artificial about local interactions in superspace be-
cause it tells us that only universes of the same size and
shape interact (there is a generation gap here as baby
universes could not interact with their parents). Other
forms of interactions can be formed by propagating the
three universes not from the same point in superspace.
Say universe 1 forward to (x +¢,8+¢€,6+€), universe 2

|

(3.4)

[

forward to (x,[,¢) and universe 3 back to (x —¢,8—¢€,¢
—e€). This would have the effect of making the interac-
tions in superspace nonlocal. Also the effect of integrat-
ing out a universe say with very large A could have the
effect of making the universal field theory nonlocal in su-
perspace. In this case reinstating this universe would
make the interaction local again. In any event universal
interactions will still be determined by the overall in-
tegral of three solutions to the WDW equation except in
the nonlocal case they will not be evaluated at the same
point in superspace. Finally if the simplest form of inho-
mogeneity is introduced: namely, the introduction of
universes which contain particles there is some indication
that universe decay is frustrated by an accompanying
infinite particle production.”®

We shall consider the third-quantized interactions gen-
erated by the path integral (3.3) and summarized in the
Lagrangian

fdx dB+dB_dn_3¢‘/"G [%(Gl"al‘blaj(bl—§R¢1¢1—A1®1(b1)+%(G”31®281(D2—§R (DZ(DZ—AZq)Zq)Z)

+1(G73,03,03; P —ER PP — ADPD) +AD (x,B,4)P,(x,8,6)P(x,5,4)] .

In the above &, , P, are third-quantized fields used to
describe three different universes with different cosmolog-
ical constants. The different values of the cosmological
constant A could be due to different values of the particle
spectra in each universe. For example, in a linearized
theory the cosmological constant is determined to be

. d3k
Azlzl __\Fi e R
22( ) f(zfrﬂ

The parameters of the third-quantized Lagrangian are

(k24+m2)1/? . (3.6)

(3.5)

[

determined via (3.6) from the second-quantized theory.
It is also true that parameters of the second-quantized
theory such as mass spectrum m; are determined by a
first-quantized theory say by looking at the eigenvalues of
N+N—2 in first-quantized string theory. Such an ap-
proach suggests a statistical bootstrap formulation of the
theory.!’

The presence of an interaction term in the above La-
grangian gives rise to the phenomena of universe decay
with the probability amplitude
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A@—0,0,)=1"1"
—i [dxdB,dB_d" ¢V =G A
X®,(x,B,4)P,(x,B,¢)

The following formulas indicate the modification of the
presence of the background superspace metric to the de-
cay process:

(%0|®(x,8,4)4 }1°0) =[ —Brag'¥* x(x,B,¢)

+ ¥ (x,B,4)]¢%/%0) ,
(0l 4 ®,(x,8,4)1°0) =[Bg ax 'Yk (x,B,4)
+yk (x,8,)1C°010) , (3.9)
(0l A, ®y(x,8,6)10) =[Bx ax ¥* &, (x.B,4)
+9%,(x,B8,4)1¢°0/%0) .

X®(x,8,¢)'T®) . 3.7

The above amplitude can be worked out using the opera-
tor expansions

O(x,8,6)= 3 [¥x(x,B,0) Ax + 1} (x,B,6) A} ]
K

=3 [¥x(x,8,0)Ax +P5(x,8,)A k] (3.9
K

with similar expansions for ®,(x,8,¢) and ®,(x,5,¢).
J

A(@—® @) =ik [dx dB,dB_d" ¢V =G [By ag't_x,(x,B,6)+ ¥k (x,8,)]
X[BKZaEZIIp—KZ(x’B’¢)+'p;(2(x’B’¢)][ _BKa;(-KJJ.‘—K(x)B!¢)+'ZK(xyﬁ)¢)]<30l36> .

Putting together (3.7) and (3.9) we have the expression

(3.10)

The inverse process where two universes ®; and ¥, merge into a single universe ® is also possible owing to the back-
ground superspace metric. The amplitude for this process is given by

A(®®,—>®)=—iA [dx dB,dB_d" ¢V =G [Bxag '¥_x(x,B,)+ Vi(x,5,4)]

X[—Bk,ax 0k (x,8,8)+ b (x,B8,) — By ax ¥ x,(x,B,6)+ ¥k, (x,8,)1°0°0) .
(3.11)
In the following we shall consider in detail the special case where the universes described by ®, and ®, are identical.

Interactions can be generated for this model by either a three-universe overlap or the insertion of a four-dimensional
vertex operator on the world volume (see Appendix A). This gives us an effective third-quantized action given by

[dxdp.dp_d"*¢v—G

X

LG, ¥3,¥—¢ER \II‘P)+%(G”B,¢6,¢—§R<D¢—A<I>¢)+%‘l’(x,B,¢)W(X,B,¢)¢(x,ﬂ,¢) ] . (3.12)

In the above ¥ denotes a third-quantized field describing a universe with zero cosmological constant and ® denotes a
third-quantized field for a universe with cosmological constant A. There are modifications to (3.10) when ®, and ®, are
identical but these are absent when at least one of the three universes has A=0. So aside from an overall factor of 2
which is compensated by the A /2 in (3.12) the amplitude for universe decay [Fig. 1(a)] is given by

3

T¢>

A(¢—>¢°¢°)=<3z¢°

—i [dx dB+dB_d"“3¢\/——G%\P(X,ﬁ,¢)‘l’(x,B,¢)¢’(x,B,¢)

=—ik [dx dB,dB_d" ¢V =G [¢} (x,B,4)¥%,(x,B,4)]

X[ —Bgag'§* k(x,B,¢)+Px(x,B8,4)1(°0/°0) . (3.13)
The inverse process is also possible [Fig. 1(b)] with the amplitude
AW —®)=—iA [dx dB.dB_d" 3¢V =G [Brag 'V_k(x,B,8)+¥k(x,B,$)]
X[ ¢, (x,8,8)¥%,(x,B,6)1(*0[%0) . (3.14)
Using our expressions for the one-universe wave functions (2.16) we have
AP y%%)=(2m)" 18" "NK —K,—K,)V 4 (—ir)(?0°0)
xfoodx x (4—n)/2 1 x ,~|K1|1 1 x ilell
o |1 V2IK,] | %o V2IK,] | %o
172
X112 [% l (sinhar|K|1) V[T g (V' Ax ) —Bgag g (VAx)] . (3.15)



41 UNIVERSE DECAY AND CHANGING THE COSMOLOGICAL CONSTANT 423

g
~

—

~,
g
[ @ T -

~

(a) (b) (b)

FIG. 1 (a) A universe with nonzero cosmological constant
decays into two universes with zero cosmological constant. The
solid line denotes the path through superspace of a universe
with nonzero cosmological constant. The dashed line denotes
the path through superspace of a universe with zero cosmologi-
cal constant. The shaded circle indicates a disturbance in super-

space due to a combination of the background superspace FIG. 2 (a) A universe with zero cosmological constant decays
metric and explicit third-quantized interactions. (b) Two into two universes with nonzero cosmological constant. (b) Two
universes with zero cosmological constant annihilate and pro- universes with nonzero cosmological constant annihilate and
duce a universe with nonzero cosmological constant. produce a universe with zero cosmological constant.

The integrals can be evaluated by using?

fowdxJv(x)x“_l=2“—IF[%(;L+v)]F[%(y—v)]%sin%(u—V) (3.16)
and we find
A(D—>y%%°)=I(K,K,K,) |sinT %il(]K1!+lK2|+|k|)+ 6—n
-1 ]. . 6_n
—Byag 'sinm Ezl(lK1|+lK2|—|K|)+ 2 , (3.17)
where we have defined
1 1 iK1 1 1 1K, |1
I(K,K,Ky)=2m)" 18" " NK —K,—K,)V 32 —iA)1)" 92— | — R
b2 e V2K, | %o V2IK,] | %o
172 [(6—n)/2+ilK |1 +ilK,l1]—1
301357172 | . —12] 2
X{%0[°0)1'"2 | = | (sinhw|K|I) -
1. 6—n 1. 6—n |1
XT Etl(iK1|+|K2|+|K|)+—4— r ?l(K11+|K2|—|K|)+—4— —- (3.18)

The inverse decay can similarly be evaluated and shown to yield

A*(YYP°—>®)=I(K,K,K,)ag 'sinm (3.19)

%il(]K1|+|K2|+|K|)+ 6:”

The asymmetry a =| 4(®—y%°)|2—| 4 (y°4°— ®)|? tells us whether it is more probable for a universe with A=0 to
be created from or absorbed into the third-quantized vacuum. This is the analog of asymmetries between particle decay
and inverse particle decay in a background gravitational field.?® After some algebra we obtain

a= l A(q)__)¢0¢0)|2_ l A(lﬁ°¢°—+¢)lz

1—exp(—27I|K|) 2 4 sin?[m(6—n) /4]
1—exp[ —7l(|K,|+|K,|+|K])] sinh’[7(|K,|+|K,|+|K|)/2]

—1
=|A(¢°¢°-*<I>)|2l —1] . (3.20)
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In this form it is clear that @ <0 and it is more probable to absorb a universe with A=0 than it is to create one. This
does not mean that the probability of creation is negligible. Indeed for large |K,|, |K,|, and |K| production and decay
are comparable processes.

In general the asymmetry need not be negative. For example, in Appendix C we discuss a model for which a universe
with A=0 can decay into two universes with A70 [Fig. 2(a)]. Conversely two universes with A0 can annihilate and
create a universe with A=0 [Fig. 2(b)]. The asymmetry in this case is obtained from

a'=|A(PD>—y°)>—| 4 (°—>DD)|? . 3.21)
For n =4k + 6, where k a non-negative integer we find
sinh[7I(|K,|+|K,|+|K])/2]
vsinh[7l(|K,|—|K,|+|K|)/2]

sinh[#I(|K,|+|K,|+K][)/2] N sinh[7l(|K,|+|K,|+[K])/2]
KK sinh[wl(|K, | — K, |+ 1K/2] KK sinh[#l(K|— K, |—|K,])/2]

a'=|A(°—>d)|?

aKlaKz _BKZ(ZK

=

(3.22)
For |K| <<l and |K,|=|K,| this reduces to
@'~ |18 |A(Y°—>DD)|2 . (3.23)
‘IT212|K’2

So that for some models and in some regions of phase-space emission into universes with A=0 is a dominant process,
which is one way of addressing the cosmological-constant problem.
We shall now discuss the integrated probability. Defining M (®— y°y°) by

APy =02m)" 718" UK —K,— K,V 3 M(D>—9°Y°)
we find the total decay probability by integrating

dn—lK dn—lK
Prob (®—yy”)=V [ ——=V [ —— @ yr

dn~11<1 dn—l

=V 14 Vm)" 8" UK — K —K,)V 3 M(@—y%0)|? . (3.24)
f(zﬂ,)n—l f(zﬂ,)n——l 1 2 I '—"(/’1/} l
The phase-space integrals are derived in Appendix B and we have ﬁna]ly
27in =272 " K[+
S 0.0y — 1—n K K
Prob (®— YY) =2 1o (2m) f K, |dl If'm i ldlK2!2|K|
21n—4/2
X |K2— w [M|2 (3.25)
1 2K . .

The quantity |M(®—y°y°)|? takes on a rather simple form for certain values of the minisuperspace dimension n.
For n =444k where k is a non-negative integer we find

a1 1 _ _
M(D > yPY°)2=A2" 4 — T (sinhwr|K|1) "1 An —6/204=n
_ (n—4)/4 1 1
x| 1> |1

go1 (=124 1P(K |+ K+ KD (s =02+ LXK [ +IK, | = K]

2

coshmlI(|K,|+|K,|+|K|)
coshm (K |+ |K,|—IK])

X

coshm1I(|K |+ |K,|—|K])

+e —27lKll
coshmLI(|K,|+|K,|+IK])

—2e KLY (3.26)

While for n =6+4k where k is a non-negative integer we find
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0,,0y(2—127n—4__ L 1 =
IM(®—y°¢%)|2=2% TARTAR

—6)/4 1

(sinhm|K |I) " U AR —6)/294—n

2171 217!
IK, |+ K, |+ K| K| +|K,|—|K]

1

|00y T

a1 S2HIPK | +HIK, | +HIKD? s+ LXK [+ K, =K ]D?
sinhmLI(|K,|+|K,|+|K])

sinhmLI(|K,|+|K,|—|K])

sinhmLI(|K,|+|K,|—|K])

—m| K|l

+e—21T|K|1

sinhmll(1K |+ K| +IK])

2e (3.27)

These matrix elements do not fall off fast enough in order to define a total decay probability from (3.25). The best we
can do is to integrate over |K,| and obtain a probability distribution for one of the final-state universes with A=0 to
have superspace momentum |K 1 |. For the simple case of n =4, i.e., one scalar field, we find

d Prob (& —¢%°)
dlK,]|

X

——2-sinh1r|K|I
Im

_ —222T —1a—11
(2m) 2\ 2(s1nh‘rr|K|l) IA 2 7IK]

1

o( IKll_ |K| ) [(e1r|KU+e—31r|K|I__2e—17|KII)2|KI

1+exp[ —m2I(|K,|—|K])] ]
In

1+exp(—m2I|K,|)
1+exp[ —m2I(|K,|+|K])]
14+exp(—72!|K,|)

+e 27Kl

+o(K =K, [(e”“(“+e_3”'K“—2e"”‘K“)ZIKII

— 2 sinhalK|I
Il

2
1+exp(—72I|K,|)

In

+e —217‘K|lln

1+exp[ —m2I(|K,|+|K])]
1+exp(—m2I|K])

|

(3.28)

Although it appears that the superspace volume cutoffs have disappeared from the above expression for the integrat-
ed probability this is actually not the case. Decay probabilities as well as the probabilities for universe creation depend
sensitively on the superspace volume cutoff V. For example the probability that no universes are created out of the

third-quantized vacuum [%0) is given by'®

P((0})=1C0ID) = TT % =TI

K Ok K

2sinhm|K|I
exprm|K|!

= H(l_e~21r1K|l) .
K

(3.29)

If K is quantized say like K =27m /L so that the superspace volume is ¥ =L" ~! then we can make sense of the above

product and

P(O)]=1(%]*0)|?= ] (1—e ~2"ImII/L)=exp

Clearly as L — o then |{30/0)|>*—0. Particle decay in
curved space is afflicted with the same problem.?’ It may
happen, however, that k really is quantized and that the
superspace volume is physically cut off. This is the case
in the mixmaster universe considered by Misner.? In that
case

1 1

K=K, K )~T1G7/D

(ny,mn_). (3.31)

The superspace volume cutoff is then the area of the equi-

zln(l—e_z”l’"“/l‘)

(3.30)

|

lateral triangle to which the universes are confined
V=v"331*[In(x /1)]? so that {30/30) together with other
unli;'erse creation amplitudes can be defined in this mod-
el.

Another way to avoid the superspace cutoff problems
in universe decay is to work with what are called added-
up probabilities.’®? This method consists of identifying
the (in) and (out) states for universes with A=0 (possible
if they are conformally coupled) and summing over arbi-
trary numbers of universes with A0 in the final state.
The method makes use of the identity
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S [(N®2¥] —ixfdx dB.dB_d" 3¢V =G W¥|T®)[*= 3 [(N *2*'| —ikfdx dB.dB_d" 3¢V —G v |T®)|? .

(N)

Although the added-up probability method is of some use
in universe decay as it allows one to use an (in-in) or
(out-out) prescription in its computation it is not expect-
ed to help in discussions of universe creation. This is be-
cause the corresponding equality

S KN®PO) = 3 (N *[0)[*=1

(N) (N)

amounts to a trivial identity.

IV. CONCLUSIONS

We have shown that if universes with zero cosmologi-
cal constant are not created directly out of the third-
quantized vacuum they can still emerge from the decay of
a universe with nonzero cosmological constant. Owing to
the background superspace metric we also find that it is
possible for universes with A=0 to decay again into
universes with nonzero cosmological constant but the in-
clusion of inhomogeneities could substantially alter this
result. Also because the background superspace metric is
not invariant with respect to inversion in conformal su-
perspace time the probability of creation of universes
with A=0 is not necessarily equal to their probability of
absorption. We studied this effect in detail for a simple
J

(N)

(3.32)

model of two universes one with zero cosmological con-
stant and the other nonzero. We found that the decay
and absorption probabilities do indeed differ and give an
explicit expression for the decay and absorption ampli-
tudes. We discussed the general expression for the in-
tegrated decay probabilities and derived the form of the
phase space governing universe decay. Finally we dis-
cussed the dependence of the decay probabilities on an
arbitrary cutoff in the volume of superspace. We argued
that the presence of a physical cutoff in superspace as in
the mixmaster universe could possibly remove this ambi-

guity.
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APPENDIX A: INSERTION OF FOUR-DIMENSION
VERTEX OPERATORS

For the case when two of the three universes in the
overlap integral of (3.3) are identical we can write

. . © {x(r3)=x3,B4(13)=B4 3,¢,(13)= i
Fx2:By 0322 B 5% 1By 1) = fo drs [° an,[° dr [ o eh ¢3IDngDB+DB_D¢.-

X TT 8(g(t)—1)exp
t

xkf

XTI 6(g(¢)—1)exp
t

= J Ve (g7 -2 2+ xHBL+BL+1 D]~ A)
1

L[ (s e B B P DI
2

[x(rp=xp.B1(r)=B1 .8 (r)=¢,]

[x"(0)=x(0),B..(0)=B1.(0),8,(0)=1,,)}

Dg Dx' DB, DB_Dé!

(%'(19) =%, (1)) =B 1 5. 8;(1) =9 ]

(A1)

Using our expression for the universal propagator (3.2) we have

C(x3,B3,3x2,8,¢2;x1,B1,61)

‘X(T3)=x3’ﬂi(73)=ﬁi‘3’¢i(73)=¢13‘

© 0 0
- fo dT3f_wd72f_wdTl (x(r))=x B4 (r)=B 1.8;(r) =6, } Dg Dx DB+DB-D¢;

X [1 8(g(t)—1)exp —;—fﬁdn/ag—l[_x 24+ x2AB%L+BEL+1%6H]1— A} |{x(0),8(0),4(0);0]x,,B,,¢2 72 5 -
t i

(A2)
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The insertion of the propagator inside the path integral acts like a potential term* so that
[(x3,B3¢3x2,B8,, 2% 1,81, 61)
=["an[° dn,[° dri(xs,B65751(2(0),B(0),8(0501x,,857:) wlx 1, Br T
(A3)

Here 2(0),3(0),$(0) are taken to be operators and this turns the intermediate propagator into an operator. Now
defining the states |K,E ) by (x,B,¢;7|K,E ) =1 p(x,B,4;7) where

1 (n—1)(n—2)
(KH)+&E—FF—= |y=0. (A4)
(x /1) § x? 4

D yr—1 4 1 dy

2 ¥t T dx ax? |t

We can reexpress (A3) as
- , d""'K, .d"7'K
© 0 0 i(—1A+71,A'+7,A)/2 2 1
[an " anf® ane' e p &K (8K (8K g [ a7,
X (x3,B3,63 73| K3E3 ) (K3 E5|
X (%(0),8(0),$(0);01K,E; Y K,E;|x5,B5,8572) A | K \E, YK ,E,|x,,B1, 61,7,

w 0 0 irA—ratra2 4" 'Ky nd"T'K, L d"TK,
= d d d 2 3 ! dE dE dE
fO T3f_w Tzf_w 718 f (2,".)11—1 (217')"-1 21’.)11—1 f 3f Zf 1

Xk, g, (X3,83 35730k, £,(X2,B, 5 T2k £, (1,81, 61,71)

X (K1E;|(2(0),8(0),$(0);0|K,E,)|K E,) . (AS)
The final factor can be written as
(K3E3|V™"%expli(k By +k 2Btk 28))x /1) "2 ¢ (R)K\E,) , (A6)
where the operator yxz(X ) is given by
X5, (%)= (m/a)1 2™ 2D e BV ZEDI (A7)

In this form we see that the modification of the path integral to include universal interactions can be implemented by
the insertion of a four-dimensional vertex operator.

APPENDIX B: PHASE SPACE FOR UNIVERSE DECAY

In this appendix we derive the phase space available in universe decay. Inserting 1= f dp38(p?—K?) and
1= [dp}8(p3—K3) into (3.24) we have
d"7'K, .d"7'K
Prob (®—y™y)= [ —— f o )"_21(27)""‘8"“'(K—K1~K2)|M(d>—>tp°¢°)[2
n—1 n-ig
—fdp%fdp%f(z )fi 72 ot~k D8 —KD)
X(2m)" 718" UK — K — K )| M(D—y%y°)|* . (B1)

We choose K to be of the form (K, ,0). The O(r —1) invariance of the above expression means that we will be able to
obtain the general form by the replacement of K , by |K|. Integration over K, using the delta function yields

dn—l
Prob (&—y*y")= [dpt [ dp} [ (2—":5<K’—p1>8<1< +p}—2K Ky, —p})IM(®—y*y0)?

1
2m)" !
X8(K}—p18(K% +p}—2K K| —p})IM(®—y%0)2, (B2)

= [dp} [dp} [aK, L [d(KDIK,|"*0,_,

where we have split K, =(K,_,K) and
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217.("—2)/2
&= T n=2)/2)

is the volume of an (n —3) dimensional sphere. Integration over K 1, yields

Prob((b—»z,bodzo):fdp%fdp%%fd(l?f)fl?ll”_4ﬂd_3(—27——;n—_-l—
_, . [KA+p1-p3 | 1
X8 |Ki+ |——7—— | —pi |M(D— ¢y .
! 2K, 2k,
And finally integration over K ? yields
2 2 2121472
000 = [dp? [ dp2 |, |Kitrime:
Prob(®—¢y )“fdp‘fdpﬁﬂd”(zfr)"“‘ P 2K, 2K,

Replacing K , by |K| and renaming p,,p, by K,K, we obtain (3.25).

APPENDIX C: UNIVERSE DECAY FROM A ®®¥° INTERACTION

|IM(®—y%%°)|? .

(B3)

(B4)

In this appendix we work out the amplitudes for universe decay in which a universe with A=0 is allowed to decay
into two identical universes with A0 [Fig. 2(a)]. Owing to the superspace time dependence of the background super-
space metric the inverse process can also occur [Fig. 2(b)]. The third-quantized Lagrangian we use is identical to (3.12)

with the interaction term replaced by
[dxdp.dp_d" ¢V —G 5 Px,B,6)0(x,8,6)¥(x,B,4) .

The amplitude for the decay of universes with A=0 is then 3

w") .

A(1/;°—><I>¢)=<32"’

—i [dx dB+dB_d"—3¢1/'——6~2—¢(x,B,¢)¢(x,B,¢)\P(x,B,¢>

Inserting the operator expansions (3.8) for ® and ¢ we obtain
AW —®P)=—i)' [dx dB.dB_d" ¢V =G [Bx ax'v_g (x,B,4)+ V% (x,8,4)]
X[By i\ V-, (x,B,6)+ Uk (x.6,8) [0k (x,5,6)1(°01%D) .

Similarly the inverse decay can be computed 3

5¢> .

A@0—y)=("1"|~i [dx dp.dp-d" 4V =G 5 Blx.,6)0(x B8V (x,6.0)

Again using their operator expansions we obtain

A(@D—y°)=—i)' [dx dB,dB_d" ¢V =G [¢(x,8,8) 1 —Bx,ax ¥ Lk (x,8,8)+ ¥k (x,8,6)]

x[_BKzaE;J:Kz(xaB,¢)+JK2(x7By¢)]<30|36) .
The overlap integral
J(K,K,Ky)=—i) [dx dB.dB_d" ¢V =G ¥ (x,B,6)¥x (x.B,6)¥x (x,B8,6)(°0/0)

ilK|l
=(27)" 16" UK — Ky~ K, )V TA(—id) [ “dx(x /1 )‘4-"”2‘/—51—]_1?]-

Xo |

Xllzr—(sinhlel |1)~V2(sinhar|K,|1) 172

XJ ik, 11(VAXN 1,11V Ax)

can be evaluated using?

(cy

(C2)

(C3)

(C4)

(CS)

(C6)
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fowdx Jylax ) (ax)x P
(a2 'T(p)mr

sin%(v+y,+1—p)

and we obtain the following expression for J(K,K,K,):

J(K,K,K,)=Q2m)" 18" UK —K,— KV ¥ —ik )" =472

xlg(sinhfrml|1)—“2(sinh1r|1<2|1)—1/2 l

4

XT |—il|[K|+ 2=
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cn

1 iK1

V2K

i|K|l+(6—n)/2

1

X0

VA

™

4

sin—
2

X |2

XT %iz(lKll—IKzl—lKIH

—il(|Kll+|K2|+|Kl)+6%

1. n—2

n—2
4

n

%il(—|K1|+|Kz|_|K|)+n—_2

i

r

eee—

r n—2

%il(|K1|+|K2|—IK|)+ (C8)

Using this integral the amplitudes for decay and inverse decay are determined to be

A*(YP—>dQ)=J(K,K |, K;)agag] ,

A(PP>yY°)=J(K,K,,K,) I_BKZC‘E

1

1 s(|K1l,|K2|) —.3 o
ZS(KII,_IKZI) K] K] s(_lKllytKZ')

_, sUKL LKD)

+Bx,ax 'Bk,ak
where we have defined

s

s(IK,1,|K,])=sin 5

—il(|K|+|K,|+ K+

6—n
2

2 s(— K|, — 1K,

NE——

(C9)

|
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