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Conserved quantities at spatial and null infinity: The Penrose potential
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We define a superpotential for energy-momentum and rotation momentum which is built out of
the conformal tensor and a bivector. This superpotential is identified with that used by Penrose in
his definition of quasilocal energy. It is applied to the definition of energy-momentum and rotation
momentum at spatial and at null infinities. At spatial infinity the results are in agreement with
those of Ashtekar and Hansen. At null infinity the results are unsatisfactory; they are tied to a
specific Bondi frame. Thus, they are not in agreement with the results of Tamburino and Winicour,
Geroch and Winicour, nor with those of Dray and Streubel. Some reasons for this failure are dis-
cussed.

I. INTRODUCTION

This work was begun with the object of understanding
the Penrose construction of integrals for a quasilocal
definition of energy-momentum and angular momentum. '

In the Penrose construction, one uses surface integrals
over the conformal tensor weighted with a bivector con-
structed from solutions of the twistor equation. The goal
is to find a two-surface integral which could be given an
interpretation in terms of the angular momentum twis-
tor. Tod has shown that the construction works in a
number of cases, where the two-surface can be embedded
in a conformally flat space-time. However, there are still
unresolved problems in the general case. Shaw ' has
studied the construction at spatial and null infinity. At
spatial infinity he finds both the twistorial construction
and agreement with the usual definitions. At null infinity
one can carry out the construction, but the result is unsa-
tisfactory.

I have used the word construction above because Pen-
rose takes over to curved space-time an expression he de-
rived using the linearized Einstein equations. There is no
attempt to find a similar relationship in the nonlinear
Einstein equations. However, we know that the general
covariance of the Einstein equations results in differential
conservation laws related to the field equations. ' From
Noether's theorem one shows that for an arbitrary
diffeomorphism defined by the vector field P the invari-
ance of the Lagrangian for the Einstein equations leads to
identities of the form

2+ gG' k'=—« gU"—),b
—+ g t' . — —

When this expression is derived from the first-order La-
grangian of general relativity, U' is the superpotential of
Freud and t' is essentially the Einstein pseudotensor,
both transvected with the vector field P. In asymptoti-
cally flat space-times, we may choose P to be an asymp-
totic Killing vector. Equation (1) then allows one to iden-
tify the surface integral over the superpotential with the
total energy and momentum of the system:

P[gS]:= fsU' dSb

f &—g (t'+16nttT'bP)dX, ,
1

16' z
(1.2)

where the field equations G'b =8mttT'b have been used.
X is a hypersurface which extends out to spacelike or null
infinity and S is its bounding two-surface which is taken
in the limit to infinity. However, neither the Freud su-
perpotential nor the Einstein pseudotensor are tensorial,
so this expression is coordinate dependent and great care
must be exercised in its use. In the following we shall be
concerned with finding a tensorial superpotential.

Note that if one considers a four-dimensional domain
which is bounded by two such surfaces and by a timelike
or null surface at infinity, then the change in the
"charges"

P [gS]= f s U'"dS, b (1.3)

will be given by a flux integral over the timelike or null

boundary at infinity. If we can assume that the matter
tensor vanishes on that boundary, the flux integral in-

volves only the gravitational stress-energy complex:

F[g,X]= f t'dX, . (1.4)

The first attempt to create a tensorial expression was
made by M&ller who limited his work to a spacelike sur-
face to overcome the problem of an infinite energy result-
ing from the use of spherical coordinates even in Min-
kowski space. This expression was generalized by Ko-
mar' to the superpotential

Uab Vagb V bg.a

This expression leads to a constant of the motion in a
vacuum space-time if P is a conformal Killing vector. In
asymptotically flat space-time one gets a satisfactory re-
sult at spatial infinity except that the normalization for
energy-momentum and for rotation momentum differ by
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a factor of 2. This problem persists at null infinity using
the modification of the Komar superpotential defined by
Tamburino and Winicour. "' A further difhculty at null
infinity is that gravitational radiation leads to super-
translation invariance which introduces terms in the ex-
pression for angular momentum which do not vanish in
Minkowski space. '

On the other hand, using the symplectic structure of
general relativity, Ashtekar and Streubel' have con-
structed flux integrals at null infinity which are to define
the transport of energy-momentum and rotation momen-
tum. They were able to find surface integrals which
define energy-momentum consistent with their flux in-
tegrals. But, they were unable to do so for rotation
momentum. Dray and Streubel' modified the Penrose
construction at null infinity in a manner to be described
later and Shaw' was able to show that their modification
had the Ashtekar-Streubel flux. This result was indepen-
dently obtained by Dray' with a more elegant and in-
sightful calculation. Therefore, there now exist expres-
sions at spatial infinity and at null infinity for energy-
momentum and rotation momentum which transform ap-
propriately under the respective asymptotic symmetry
groups and whose flux vanish in Minkowski space.

However, there does not exist a superpotential, hence a
tensorial differential conservation law, which leads to the
Dray-Streubel expressions. In this paper we show that at
spatial infinity there exists such a tensorial expression in
terms of the Riemann tensor and a potential for the
asymptotic Killing vectors. This leads to the Penrose in-
tegrals for energy-momentum and rotation momentum.
At null infinity in the presence of gravitational radiation,
the same expression does not lead to energy-momentum
and rotation momentum definitions which transform ap-
propriately with respect to the Bondi-Metzner-Sachs
(BMS) group. Therefore, these do not agree with the
Dray-Streubel integrals.

Shortly after Penrose introduced his spinor formula-
tion of general relativity and the definition of energy-
momentum in terms of the spinor components of the
Weyl tensor, ' Komar attempted to connect this work
with the conformal tensor and the Bianchi identities at
null infinity. ' While Komar's use of the conformal ten-
sor is similar to what is done in this paper, he does not
construct a differential identity and the conditions he im-
poses on the tensors defining the asymptotic symmetry
are different. This will be discussed in more detail in Sec.
V.

In the following section we shall derive a superpoten-
tial using the uncontracted Bianchi identities and discuss
its relation to the work of Penrose. This superpotential
is similar to the one derived by Moreschi. ' Section III
discusses energy-momentum and rotation momentum at
spatial infinity while Sec. IV does so at null infinity. In
Sec. V we discuss the relation of this work to that of
Dray and Streubel and Moreschi.

II. THE SUPERPOTENTIAI.

To derive an expression such as (1.1) from the
Riemann tensor we must introduce an antisymmetric ten-

sor Q' to lower its rank. Write the Bianchi identities as
e " V„R,b —=0 (e " is the totally antisymmetric tensor)
and transvect with Q" to obtain

(«R mn g«ab) «R mn V g«ab p

The asterisk indicates a dual, for example,

g «ab (.&abcdm
Mcd .

(2.1)

2Gm V gbn p (2.2)

Note that in the term multiplying the second set of
parentheses, the totally antisymmetric part of V'Q'
drops out and traces give additional contributions of the
second term. Therefore, we define

pabc 2(V(a.gb) c V(agc)b+ga[bV gc]e) (2.3)

p(' ']=p, "=0. Using this in (2.2) we get our final re-
sult:

V («R «ma gbc) (( R m +pm R a $m R )pabc

26m gc (2 4)

where we have defined the vector P to be

a. (V Qa (2.5)

Comparing (2.4) with (1.1), we make the identification

hymn e ~ «mn ~ab
aha

im ((Cm fim R )pabc
abc b ac

(2.6)

Thus, using the Riemann tensor, we have obtained a ten-
sorial superpotential related to the field equations as in
(1.1). In the following, we shall refer to U "as the Pen-
rose potential.

The importance of this result is that when

pabc 0— (2.7)

then

Vagb+ Vbga 2R (a Qb)e (2.8)

so that, when R' =0, P is a Killing vector. Moreschi'
obtains a similar result. However, he does not identify
p' nor does he emphasize the relation to the general
form of conservation laws in general relativity.

Equations (2.4) and (2.7) are the basis of the Penrose
derivation in linearized general relativity. His result
omits t' because he uses explicitly the Killing vectors of
Minkowski space. In spinor language, the equation
p' '=0 goes over to V„'"co '=0, which is the twistor
equation. To connect with the angular momentum twis-
tor, Penrose suggests looking for solutions which are con-
structed from symmetric products of solutions of the

In the case of the Riemann tensor, the asterisk to the left
(right) indicates that the dual is taken with respect to the
first (last) two indices. If we shift the dual from Q" to
the Riemann tensor and expand the double dual on the
right-hand side, we get

V («R «ma gbc) ( R ma +pm Ra 5m Ra )V Qbc
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rank-1 twistor equation, V~.'"co '=0. In curved space-
time, solutions of these equation do not exist because in
general Killing vectors do not exist. Penrose then sug-
gests that one take solutions on a closed two-surface and
use these to construct the integrals of interest. This point
of view derives from the desire to define the energy-
momenturn and rotation momentum in terms of the an-
gular momentum twistor' as Z Z~A

& where Z is
defined by the pair (co",—iV„„.~"). Tod uses this con-
struction in his examples as does Shaw ' in his investiga-
tions.

Here we are not interested in the twistor construction,
but rather in obtaining the total energy-rnornentum and
rotation momentum by means of surface integrals at
infinity and the fiux by means of a tensorial stress tensor.
Therefore, we shall make use of the relationship between
those Q' which are solutions of P'"'=0 and Killing vec-
tors, Eq. (2.5). At spatial infinity we shall look for
asymptotic solutions of Eq. (2.7) and at null infinity for
approximately asymptotic solutions. These bivectors will
then be used in Eq. (2.10) to construct the corresponding
charges. The calculations are done in the conformally re-
lated space-time introduced by Penrose to describe null
infinity and adapted by Ashtekar and Hansen ' in their
discussion of spatial infinity. One can show that under
the conformal transformation g,b

=Q g,b,

pobc II3pabc Qab fIQab (2.9)

Combining these relations with the conformal invariance
of the Weyl tensor, C'b,d=C'b, z, we find, in a region
where the vacuum Einstein equations are satisfied,

P[Q,S]= fsQ ' ",bQ'dS „,
(2.10)

F[Q,X]=— f 0 'C™„,P"' dX

We shall make use of these integrals in examining the be-
havior at infinity.

III. SPACELIKE INFINITY

To examine the solutions of P' '=0 at spatial infinity
we shall use the structure of i described by Ashtekar and
Hansen. ' Therefore, we assume that there exists a
space-time (l&,g,b) which is conformally related to the
physical space-time (M,g,b), g,b=Q g,b. The manifold
4, the metric g,b, and the conformal factor 0 are smooth
everywhere except at the point of infinity, i . At i, the
manifold is C ', the metric C, and the function Q is
C . [That a function C " at a point p means that it is C"
at p and its (n +1)st derivative has a direction-dependent
limit at the point. ] At i we have Q=O, V, Q=O, and
V VbQ=2g b-

To establish the correct fall-off behavior for physical
fields, we can either introduce an orthonormal tetrad and
examine the limiting values of the scalar components or
we may make use of the existence of the metric at i, the
Minkowski metric, the natural basis of which is an ortho-
normal tetrad. Although it will not be necessary to do so
explicitly, we shall think in terms of the latter option.

We shall proceed by pro~ecting all quantities and rela-
tions of interest onto the surface %, Q =00, and rescaling
the quantities so that they have direction-dependent lim-
its at i; that is, for the limit QO~O. Introduce the unit
vector g, :=aV,Q, a =VbQV Q. We assume that the
magnetic part of the conformal tensor falls off faster than
does the electric part. Thus we have that

Q Cambn 9 9 —Eab, C ambn 9 9 —Ba (3.1)

have direction-dependent limits E,& and B,&, respective-
ly. Comparison with the results in Minkowski space indi-
cate that 0 '~ Q' for translations and Q'" for rotations
have direction-dependent limits. Furthermore, we find
that for any quantity 4 which has a direction-dependent
limit, O' V,4 also has such a limit. In particular this
means that

limQ' vPV 4=0
Q~O

(3.2)

Thus, we have, for the connection induced on
(gbV =0),

D V =h'h" O' V V (3.3)

D,L"+2L'=0 (ii), D'L =Lba(iii} .
(3.7)

which has a limit at i whenever V has a limit. Here we
have used h', =5;+g'g, . All the equations we write
will have direction-dependent limits for Q~O. When the
limit has been taken, the relevant quantities will be writ-
ten in boldface.

Ashtekar and Hansen ' have given the equations
satisfied by Eaz. However, to complete the calculation as
presented here, we shall also require Ea&, the 0' part of
E,b. To avoid cluttering the main argument with details,
the relevant equations and the identity to be used will be
derived in the Appendix. Here we shall obtain the equa-
tions for Q', P"' =0, and the equations relating the
asymptotic Killing vectors, P to Q'b. We begin by
decomposing Q' relative to %:
0 ' Q' =T' + T'rl Trf for tra—nslations, (3.4a)

Q'b=L'b+L'rib Lb' for rotat—ions . (3.4b}

T', T', L', and L' are each orthogonal to g, ; for exam-
ple, rl, T'=0. In the Appendix this decomposition of Q'
is substituted into P"' =0 which is similarly decomposed
with respect to g, . At i, the resulting equations are
given below.

Translations:

(i) T 0 (;;;) DaTb DbTa
(3.5)

(ii) D,T' =0, (iv} 3D'Th —h' D,T'=() .
T' ' is just P' ' with T' substituted for Q'b and project-
ed onto &. From (iv) above, we have

T'=h 'D T and 3D D T—h' D D'T=O (3.6)

Thus T' is a hypersurface orthogonal conformal Killing
vector on JV.

Rotations:
L' +2h' L' =0 (i),
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D,L'=0 and D,D'L'= —2L' . (3.8)

L' ' has the same meaning as T' ' above. From (ii) and
(iii) we note that L' is a Killing vector on ff and further-
more that

P[L,S]= fsK " (L +L "ri' L—'ri')ri A, dS
1

1
S(cab(c 8 c}D'L"—'E,bL }A'dS.

Then we find that (i) becomes

DnD L =Jq~ Ld

A~= —(h~h~ —h~h~) .
(3.9) 1P[L,S]= s(p'bf, B'c)a) )A,dS,=:Mabco'

4m@
(3.15)

e,b, =e„,b, ri" Using the identity given in Eq. (A7) of the
Appendix, we find, for L = ,'D, (—co'~h,.h '

)= —'co—Jg. ,

Finally we get the following for the asymptotic Killing
vectors.

II—lh a gc g~a Ta

0 '2), P=:g~= —D,T' .
(3.10)

D'D T+h' T=O . (3.11)

The supertranslations mix the electric and magnetic parts
of the conformal tensor. After a supertranslation, the
magnetic part would no longer satisfy the fall-off condi-
tion assumed in Eq. (3.1). Therefore, preserving this con-
dition, essentially no magnetic mass monopole, allows us
to restr'ict the translation subgroup to the rigid transla-
tions. One can show, further, that T is of the form
T=a'g, and therefore depends on the four parameters I'.

Rotations:

In the first line we have used D,T =0 from (3.5}. There-
fore, T' plays no role in defining the translational Killing
vector and may be taken to be zero. Thus, in agreement
with previously known results, the translational sym-
metries depends on an arbitrary smooth function T on %.
This gives rise to the supertranslations of which the rigid
translations form a normal subgroup. One can show that
for the translation subgroup, T satisfies

If we introduce co"'=e"'g„ this expression turns into that
given by Ashtekar and Hansen. '

Since we have solved p '=0, the flux term vanishes
and these charges are independent of the two-surface on
% and hence are constants of the motion. Furthermore,
P, and M,b transform appropriately under the asymptot-
ic Poincare group.

IV. NULL INFINITY

The situation is both simpler and more complicated at
null infinity. In the presence of gravitational radiation,
energy-momentum and rotation momentum cannot be
constants of the motion. Therefore, the Aux term cannot
vanish. This means that Eq. (2.7), p' '=0, cannot be
satisfied. Nonetheless, one knows that the asymptotic
symmetry group is the BMS group, the semidirect prod-
uct of the Lorentz group and the supertranslations at 2+.
Therefore, one might hope that enough of p' '=0 could
be satisfied to yield the BMS generators and that the solu-
tions for Q' would give the correct nonconserved
energy-momentum and rotation momentum. Let me say
at the outset that the former is true and the latter is not.

In considering the limit to null infinity, one takes the
metric in the form

0 ' gila =:(a=—D L'=0,
II—1 /2gbh a .g a — 2La

(3.12)
d$2 e 2bg du 2+ 2e 2bdu dp,

—h „ii(dx "—U "du )(dx —U du ) . (4.1)

P [T,S]= f~E "
( T'ri' T'ri'}ri A,„dS—1

tt)s E'bT A,,dS . (3.13)

With T = —D (a'g, )= —h, a', we have

P[T,S]= fs E a A,ndS=:Pba
1

(3.14)

where a is a constant vector in the physical space-time.
For the rotation momentum we get

The solutions of (3.7) which have finite direction-
dependent limits at i have the form L'=co' g&, with
co' = —co . Hence, the rotational Killing vectors depend
on an antisymmetric tensor corresponding to the rota-
tions in Minkowski space.

The integrals for energy-momentum and rotation
momentum charges can now be written (A,

' is the normal
to S in % and E „:=0'~C „„). For energy-
momentum we get

It is convenient to work with (anti)-self-dual components
of the conformal tensor and the Killing potential. One
can show that the equation for the Killing potential be-
comes simply

2p+abc pabc i .Ebc pamn
mn (4.2}

when we introduce 2Q+':=Q' —iQ" into p' '. Then
2 Uab U+ab+ U

—ab where

U
—ab U +ab -C +ah ~ + mn

mn~ (4.3)

U+ ah II3+ b~a+ m. n
mn~ (4.3'}

W'e introduce the conformal completion as in the pre-
vious section, but here the asymptotic conditions on 0
and the differentiability conditions are different from
those at i At null infinit. y, S+, Q=O is a null surface,
V, Q= n, becomes a null vector tangent to the generators
of J+ the metric becomes singular, but all quantities of
physical interest are differentiable there. 0 'C' is
finite on S+ as is Q' . Therefore, we have
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P[g S]= f fl 'C+' Q™dS+c.c.1
(4.4)

so that at 2+ the integrals for energy-momentum and ro-
tation momentum have finite limits:

With %3=Go this becomes

P[Q,S]= ps[ —2Q', (o a +0,)+g,q, ]dS+c.c.
8m+

(4.9)
In the Appendix we define the physical components of

g+.b as This integral gives the correct expression for energy-
momentum, but it is missing a term in B a for the super-
momenta. Terms in 0. are also missing in the expressions
for rotation momenta.

To understand at least in part what is wrong, assume
that we are using a Bondi frame —the surfaces u =const
on l+ are connected by a rigid time translation. Consid-
er two-surfaces S apd S, separated by a supertranslation,
that is they are defined by u =uo and u =uo+a(x "), re-

spectively. Equation (4.9) gives the expression on S. The
tetrad is adapted to the surface in the sense that the vec-
tors k A' are tangent to S. This tetrad is not adapted to S
and so there are correction terms which involve Ba.
However, if one carries out a null rotation to a tetrad
adapted to S, we find

g+ab g Uab+g ~ab+g Vab (Al 1)

The equations for these components on S+ are given in
the Appendix:

Q 2=0 (i), 8Q 2+2Q, =0 (iii),

8Q 2=0 (ii), cog 0+2o Q &=0 (iv),
(4.5a)

and

(4.5b)Q 0+28Q &+2o Q 2
=0 ( v ) .

[c3 is the angular differential operator edth (Ref. 25) and
the overdot represents a u derivative. ] As noted in the
Appendix, when the magnetic part of 0 is zero and
when 0 =0, these equations have a ten-parameter solu-
tion which is isomorphic to the Poincare group. If (v}
above is omitted, the remaining four equations define the
Killing vectors of the BMS group and allow us to obtain
the correct energy-momentum expression —that is, the
Bondi-Sachs expression. The general solution of these
four equations is

[Q!S] fs(g 0% 3 2Q iq q+Q ~%, )dS+c.c.

(4.10)

At first this looks like (4.8). However, the 0's are solu-
tions of (4.5a) in the frame adapted to S and not to S.
They are not solutions of (4.5a) in the frame adapted to S
unless they are also solutions of (4.5b), which is possible
only if 0 =0. It is not only supertranslations which
cause trouble, but also the rigid spatial translations. The
energy-momentum and rotation momentum are defined
only with respect to a given Bondi frame. That certainly
is not satisfactory.

The flux term

Q02=2L t Yl~, L =0 '

Qo, = —
—,'uBQ 2+ T(8,$), T =T;

ag', = —2n'Q', .

(4.6)

T(x ") could have an imaginary part, but that does not
contribute to the Killing vector. Furthermore, its contri-
bution to the charge integrals would be a two-surface
divergence, and would vanish. On the other hand, L is
complex and defines the Lorentz transformations.

In terms of the potentials, the asymptotic Killing vec-
tors have the simple expressions

p[Q, X]=— f x(g 0
—28Q 1+2a' Q 2) I13du dS,

8m'

(4.11}

where X is the region on 2+ bounded by S and S, does
not give a hint about how the situation is to be corrected.

Let me emphasize that this result at null infinity does
not depend on the choice of a particular Bondi frame.
The point is that our goal was to express the asymptotic
symmetries in terms of Killing vector potentials Q'
which are defined as asymptotic solutions of P' '=0. Al-
though such solutions do not exist in the presence of
gravitational radiation, the hope was that one could solve
enough of these equations to recover the BMS group and
to obtain correct expressions for energy-momentum and
rotation momentum. We have seen that by selecting an
appropriate subset of the asymptotic equations P' '=0
the BMS generators can be recovered. However, the po-
tentials so obtained have two disabilities: (1) If they satis-
fy the "appropriate subset" in one Bondi frame, they do
not satisfy the same subset in another Bondi frame; (2)
even in a specific Bondi frame, the charge integrals (4.8)
do not give the accepted results. These two problems are
related. Formally the Q'" are tensors of rank 2. Howev-
er, the solutions of the "selected subset" do not transform

0=go, +go|,
II(2—g0

ng'=g', .

(4.7)

We see that when Q 2=0, we have the supertranslations

g =2T(x "). In the solution for the stationary case, the
supertranslations are missing because the solution de-
pends explicitly on the form of 0 and in general 0. is
changed by a supertranslation. The rotations are given
by Q 2%0, Q, +Q, =0 and the boosts by Q, —Q, =0.

Thus, we see that although we have not satisfied all the
equations (4.5) we do obtain the Killing vectors for the
full BMS group. The charge integrals are then

(4.8)

P[Q,S]= f~[g 0%3 2Q ]%2+Q 2%—,]1$+cc.
8m'
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tensorially. Another algorithm for obtaining bivectors
Q'b which in some way are associated with the BMS
group together with the Penrose superpotential may yet
give us the correct expressions.

V. DISCUSSION

The main point of this work has been to emphasize the
need for a global tensorial differential conservation law
which connects to the Einstein equations by Eq. (1.1). At
this time there is no completely satisfactory expression.
Ashtekar and Winicour have given a list of properties
which conserved quantities defined at i or 2+ should
have:

(1) P should be linear in the BMS vector field P—and
by extension in this discussion, in the potential Q' .

(2) The expression for P[Q,S] should involve only
those fields which can be constructed from the knowledge
of p(Q' ), 0, and g,b in an arbitrarily small neighbor-
hood of S.

(3) When P(Q' ) is a BMS translation, P should be the
corresponding component of the Bondi four-momentum
evaluated at S.

(4) If P(Q' ) is the restriction to 2+(&) of a physical
space Killing vector (potential}, P should be proportional
to the corresponding Komar integral.

(5) In Minkowski space, P should vanish for all BMS
vector fields (potentials) and cross sections S.

(6) There should exist a local fiux integral [P~g(Q), X],
which is linear in P(Q' ) and which gives the difference

P[f(Q),S']—P[g(Q},S], for S and S' closed two-
surfaces on 2+(gf ).

(7) P should vanish in the absence of gravitational radi-
ation.

As already noted, the Komar tensor as applied by Win-
icour with Tamburino" and with Geroch' fails on con-
ditions (5) and (7) with respect to rotations. In addition,
there are problems with the relative normalization of the
energy-momentum and the rotation momentum. The
Penrose potential, which we have been discussing here,
fails only the very important condition (2) at null infinity.
The quantities can be defined by integration over an arbi-
trary surface, but they belong to a particular Bondi
frame. Therefore, corresponding quantities defined on
different surfaces, in general, are not related to one
another by a BMS transformation. Some correction
terms are needed which take into account the shear of the
null rays incident on two-surface cross sections of 2+.

As noted previously, Komar' used the conformal ten-
sor in vacuum space-time to understand the spinor form
of the Penrose energy-momentum at null infinity. He
also transvects a bivector with the conformal tensor to
define the superpotential O'. However, his bivector
has a totally antisymmetric covariant derivative,
V, rb, =V~, rb, ~. One might think that rb, is the dual of
Q' defined here. But Q" satisfies the same equation as
Q'" and therefore does not have a totally antisymmetric
covariant derivative. The author also used similar con-
structions in an attempt to describe multipoles and
energy-momentum at 2+. How these different uses of
the conformal tensor and a bivector are related is yet to

be understood.
However, work by Streubel, Dray and Streubel, '

Shaw, ' and Dray' has resulted in expressions construct-
ed on 2+ which do satisfy all seven of the Ashtekar-
Winicour criteria. But, they are not derived from a (ten-
sorial) differential conservation law. The construction is
based on work by Streubel similar to the discussion at the
end of Sec. IV. Instead of taking the asymptotic solu-
tions of P' ', Streubel takes the Minkowski space solu-
tions. He then applies a supertranslation to the frame
and identifies terms which could be added to the Penrose
tensor which would yield supertranslation invariance.
Then, he and Dray were able to show that the expressions
derived from the Penrose tensor are related to the
modified form by a complex supertranslation. Then
Shaw and Dray independently showed that the flux of
energy-momentum and rotation momentum so defined is
given by the flux integrals, previously defined by Ashte-
kar and Streubel, ' which have the properties (6) and (7)
above. Moreschi is able to carry out a similar construc-
tion. '

Therefore, it appears that satisfactory expressions for
energy-momentum and rotation momentum exist at both
io and J+. However, the problem remains to complete
our understanding at null infinity. This requires the con-
struction of a new rule for obtaining the bivectors Q'
and possibly also determining additional terms for a ten-
sorial differential conservation law leading to the expres-
sions of Dray and Streubel. Then we would understand
the origin of the shear terms in the supermomenta and
the rotation momentum. Work on this is proceeding.
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APPENDIX

1. Spatial infinity

In this section we shall first derive the equations
satisfied by the conformal tensor in the form needed in
Sec. III. Then we shall indicate how the equations
P'~=0 are decomposed. This will be done in the vicinity
of spatial infinity when R,b =0.

From the Bianchi identities we have

3~[a bc]r 3 [a bc]r ( k [a bc]r r[a bc]k

=0

~[a bc]r + + (gr[a bc] k 5 [a bc]rk ) ]

=0;
C'k, =2fI ' (25'(kga) gk, VI'), —
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(A2)

Transvect with g, g' to obtain

Q (V Eb„VbE—„)+Q rl'V K b„'rl,

—0' g'V gK '=0,
(A3}

Eb„Kb „~q g

To the order required, we can neglect the third term in
the above equation and treat the second term as follows.
Write

where we have used g, =
—,
' 0 ' V, O. Introduce

Eb,„'.=Q'~ 0b,„' which has a direction-dependent limit
at i . Multiplying by Q' we have

[a+bc]r ][a+bc]r + (gr [a+bc] k

fi [a+bc]rk } ]

P' '=0 then gives Eq. (3.5). A similar calculation for the
rotations gives

Q i r2 p aQbc DaLh'+ 2ha[cL

+2&[c(D I alL&] Lb]a )

and

Q' P' '= L' +2L[ h']' —i}'(D L' —D'L +2L )

+2'['(D'IL ]—D L' —L l' —h ]'D,L')

+2rla~[~(D Lclc+2Lc])

where L' ' is defined by substituting L' for T' in the
above equation for T' '. Setting the above equation to
zero gives Eqs. (3.7).

2. Null in6nity

and

'='sc.,„'+n'"'z '+o(n) Introduce a null tetrad k' and the conformally relat-
ed tetrad k' (a=O, . . . , 3; A=2, 3)

Eb OE +n n Eb +O(n) (A4)

2D[,'Eb], + 'Kab, 'g, =O .

In addition we need the following identity:

(A6)

[2E[a lie] ~bj] D Ea bc D Ec ~ba
c b j = [c b] c b~

—E' (A7)

which holds for both Eb, and Eb,. This identity togeth-
er with (A5) and (A6) is needed to show that the rotation
momentum integrals are finite and depend only on the
magnetic part of the conformal tensor.

The equations P' '=0 also must be decomposed rela-
tive to rl' and projected onto %. From Eqs. (3.4) we have
that

Project (A3) onto the hyperboloid & and pass to the limit
Q~O to obtain

2D[, Eb]r (A5)

Subtract (A5} from (A3), divide by Q', and pass to the
limit Q~O to obtain

k =du =k
k'= —'e (/du +2dr) =Q k'

(dx "—U "dg)=n

Introduce a self-dual bivector basis as

U"=2k, [ k b]=QO b

~' =2k, ['ksb] —2k ['k

Then

Q
—lpab @ Qabg +@ ( QabQ +Qabft

q,(M"9„—0"O'„P"—U,„)—
+q, ( v"4„+4"v„)—q, P"0„

and

Q+ab Q ftab+Q Qab+Q f)ab

(A8)

(A9}

(A10)

(Al 1)

Q ' Q'"= T' + T'rl" Tr]' for tran—slations, (3.4a)

Q' =L' +L'r] Lr]' for rota—tions . (3.4b)

T'b, T', L', and L' are tangent to &. For example,
g, T' =0. Also, each term has a direction-dependent
limit ati .

For the translations we find

As defined, the ql's and Q's have finite limits on S+ and
give the leading behavior of the conformal tensor and
Killing potential.

There are eight complex equations P' '=0, three of
which tell us that the Q's have finite limits on 2+. The
remaining five equations become, on 2+ (the overdot
represents a time derivative),

V'Q '= D'T +2T h' '+2(D'T +T' )i]'

+i]'(T +27][ T'l}

From this we have, for P'"',

QO~=O (i), 3Q z+2Q, =O (iii),

c]Q ~=0 (ii), BQ 0+2o Q, =O (iv),

Q o+2cfQ, +2o Q 2=0 (v) .

(A12)

p c= Tah +pa(DsT —DaT )+2g[a(2Dla!Tb)

—D ]T'—h ]'D,T')+2v}'g D,T'l',
/abc. —2D(ayb)c+ 2D(ayc)b 2ha[bD yc]e

In stationary space-times, 6 =0, these equations have
solutions ' which, in general, depend explicitly on the
form of a =8 a. These solutions do not contain the su-
pertranslations which generate a change in the shear cr .
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shear rr .When a WO, in the presence of gravitational
radiation, the integrability conditions for these equations
cannot be satisfied.

The generality of the tetrad in Eq. (A8) is limited by

the omission of a lapse function in k and the choice of
the dual vector k~ as a tangent vector to the generators of
the null surface u =const. However, the calculation of
the equations in (A12) was carried out in a Bondi frame.
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