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From a study of the shape of a spacelike, three-cylindrical transition layer separating a de Sitter
future region from a Schwarzschild past region, we show that the uniform configuration (in the
sense that the layer's radius is not a function of the layer s proper distance along its axis) considered

by Frolov, Markov, and Mukhanov [Phys. Lett. 8 216, 272 (1989)] is a stable configuration (in the

sense that, when perturbed, the three-cylinder does not tend to shrink down to a point as a cone).
We also show that this model does not require fine-tuning since a variation of the layer's internal pa-
rameters from the uniform configuration does not destroy the three-cylinder but induces spatial os-

cillations in its radius.

I. INTRODUCTION

It is a general belief that singularities arising in general
relativity signal the breakdown of the classical Einstein
equations and that they should not appear once a quan-
tum theory of gravitation becomes available. We still do
not know what this quantum theory is, but this has not
refrained various authors from wondering about the true
nature of the classical singularities. At the time being,
one of the possible approaches to the problem is to inves-
tigate the quantum effects due to all kinds of fields (in-
cluding the graviton} by constructing a renormalized ex-
pectation value of the stress-energy tensor (a quantum
operator) ( T„„)which is used as the right-hand side of
the Einstein field equations. The geometry (i.e., the
gravitational field) is then treated classically but small
fluctuations around the background metric can still be
quantized. This is the semiclassical approach. It is not
yet clear what range of validity the semiclassical theory
exactly possesses, but we can hope that it may provide
valuable insights towards the predictions of a fully quan-
tized theory of gravitation.

In the case of black-hole spacetimes, one expects quan-
tum fields to begin to act dominantly on the geometry
when the curvature reaches order unity in Planck units.
Whether gravitation can still be treated classically at this
level is far from being certain, but one can wonder if
quantum polarization can provide a mechanism to slow
down the infinite rise of the curvature and to maintain it
bounded to Planckian magnitude. To show this, say, for
the Schwarzschild black hole, one would need to quantize
all types of fields in a general, spherically symmetric
background (with two unspecified functions of r), to con-
struct a suitable renormalized expectation value for the
stress-energy tensor (adding up all the contributions), and
then to solve self-consistently the semiclassical field equa-
tions. So far, nobody has succeeded in finding an expres-

sion for ( T„„)in such a general background geometry,
and even for the fixed Schwarzschild metric only approxi-
mate analytic expressions have been obtained.

It is nevertheless possible with a schematic analysis to
outline the possible behaviors for the corrected curvature
when quantum effects are taken into account. Of critical
importance is the sign of ( —T, ) which is interpreted in-

side the Schwarzchild event horizon as a tension along
the axis of the three-cylinder of constant time r =const (r
and t have interchanged their roles as space and time).
We can expect this component of the stress-energy tensor
to be proportional to the curvature squared, with a
coefFicient of order unity that will depend on the number
and types of the quantized fields. This coeScient can be
of either sign. Setting ( —T,') =(3/4m}a m (r)/r [we
use Planck units; a is the coeScient mentioned above,
m ( r } the mass function at radius r) and solving Einstein's
equation dm/dr =4ur ( —T,') we arrive to the follow-

ing expression for the curvature:

m (r) 1

r a +(r/re)

where r&=M' is the radius at which quantum effects
become important. We easily see that for r && r& the cur-
vature function recovers the usual Schwarzschild form
M/r, but that its behavior for small radii depends criti-
cally on the sign of a . Should it be negative, the curva-
ture would blow up at a nonvanishing value of r; should it
be positive, the curvature would remain bounded (and
constant) to order unity as r tends to zero.

Although very schematic, this analysis shows that a
self-regulatory mechanism provided by the quantum
fields is not implausible and that a nonrotating, un-
charged black hole could be adequately described by the
Schwarzsehild solution down to a critical radius r& where
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quantum effects produce a smooth transition towards a
constant curvature (de Sitter) region.

This picture is remarkably similar to the formulation
of Markov's "new law of nature. " In 1982, Markov pro-
posed that because of quantum corrections, spacetime
curvature should always be subject to an upper bound of
Planckian magnitude, and that when the limiting value is
reached the effective stress-energy tensor of the quantum
material would take the false-vacuum form ( T„,)= —pg„„, where p is a constant (positive} energy density.
Although the validity of Markov's law is far from being
established, it is fascinating to look at its consequences.
Such an investigation has been carried by Frolov,
Markov, and Mukhanov (FMM) early in 1989. To
construct the global structure of a nonsingular
Schwarzschild black hole, the authors supposed that the
transition region between the Schwarzschild and de Sitter
regions was of short (timelike) extent and was modeled as
a spacelike, spherical surface layer lying on a hypersur-
face of constant time r =const. The layer's intrinsic
metric hence assumes the form

a)
U

uniform configuration

I'I
b) .::::::-:::;unstable configuration

stable oscillatory configuration

FIG. 2. Several configurations for the transition layer.
Shown in (a) is the uniform configuration where the three-
cylinder radius is constant along the cylinder's axis. Shown in
(b) is an unstable configuration where the radius shrinks down
to zero as would the radius of a cone. Not shown is an alterna-
tive unstable situation where the radius would increase to
infinity. Shown in (c) is a stable configuration where the radius
presents spatial oscillations along the cylinder's axis.

ds =constXdt +r dQ (1.2)

FIG. 1. The FMM model for a spherical, uncharged black
hole. The Schwarzschild solution is joined at r =Ro to the de
Sitter solution with the help of a spacelike, three-cylindrical
transition layer. The de Sitter solution describes a collapsing
and then reexpanding closed universe.

and therefore possesses the topology of a three-cylinder
with coordinate t running along the axis and whose
"cross sections" are two-spheres, all of the same radius r.
To make up a mental picture of this object, it is better to
suppress one of the angular variables such that the layer
would appear as an infinitely long cardboard tube of con-
stant radius r. We will refer to this tube as the uniform
(constant radius along the tube) FMM configuration. It
is important to emphasize that the layer (tube) is a space-
like hypersurface: it therefore exists for a single instant
of time.

Using Israel's junction conditions, it is possible to
show that it is always possible to join the Schwarzschild
and de Sitter solutions (except at the event horizon ) at a
r =const hypersurface by interposing a thin shell whose
surface stress-energy tensor is related to the discontinui-
ties in the first derivatives of the metric (in order for the
shell to have a well-defined geometry, the metric itself

must be continuous). If the shell is located inside the
Schwarzschild horizon and outside the de Sitter horizon
(this is the case considered by FMM) then the shell is
spacelike and its surface energy density vanishes while
the surface pressures (axial and tangential) assume finite
values which depend on the value of the shell's radius.
The intriguing global black-hole structure constructed by
FMM is that of an asymptotically Rat universe connected
by a black-hole interior to a collapsing and then reex-
panding de Sitter universe (see Fig. 1).

Although the transition layer plays only the minor role
of gluing together the Schwarzschild and de Sitter space-
times, a more detailed study of its properties is not
without interest. First, the physics of a spacelike thin
shell has never been studied before. While the study of
timelike shells is primarily concerned with the time evo-
lution of a two-dimensional surface (such that its world
sheet is a three-surface), the study of a spacelike shell will
be concerned with the global shape (spatial structure) of a
three-dimensional surface which exists at a single mo-
ment of time. While for a timelike shell one is interested
in the equations of motion for the shell, for a spacelike
shell one focuses attention on the difFerential equations
("shape differential equations" } which describe the spatial
structure of the shell. The philosophical point of view
which one adopts when studying one type of shell is total-
ly different from that adopted for the other type.

Second, it appears important to verify whether the
FMM uniform configuration is stable in the following
sense (see Fig. 2): upon a virtual displacement of the
layer's radius from the uniform configuration, does the
layer's topology tend to change from that of a three-
cylinder (the cardboard tube) to that of cone where the
cylinder's radius shrinks down to zero (or, alternatively,
does the radius tend to expand to infinity); or does the to-
pology remain pretty much the same but with (say) small
spatial oscillations in the cylinder's radius as we move
along the axis'? We will refer to the first scenario as the
unstable scenario, while the second scenario represents
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stability. The spacetime diagram depicting the spatial be-
havior of an unstable transition layer is given in Fig. 3.
The fact that the layer's radius shrinks down to zero
means in effect that the layer focuses to a singularity
since the Schwarzschild region is dragged along with it.
It would hence be something of a drawback if the FMM
uniform configuration would be found to be unstable in
the sense described above.

Third (but related to the second point}, it is also of in-
terest to evaluate whether the FMM configuration re-
quires some fine-tuning. The junction conditions for the
uniform layer provide definite values for the layer's sur-
face pressures, once the radius of the three-cylinder is
specified: what is the effect of varying these parameters?
Is the model going to be destroyed completely or does it
survive in some different form?

It is the purpose of this paper to examine these ques-
tions by providing a space-dependent model for a three-
cylindrical spacelike transition layer separating a de Sit-
ter region from a Schwarzschild region (we allow the
layer's radius R to become a function of proper distance s
along the cylinder's axis). In this model, the original
cardboard tube is replaced by some kind of rubber tube
whose cross-sectional area 4mR can vary along the
tube's axis. The uniform FMM configuration is then
recovered as a limiting case of the general spacelike be-
havior of the three-cylinder radius R (s). We will show
that this uniform configuration is in fact stable (in the
sense mentioned above) against virtual displacement of
the layer's radius and that the FMM model does not re-
quire much fine-tuning: there exists a class of solutions
to the shape difFerential equations which present an oscil-
latory behavior for R (s). Perturbation of the original pa-
rameters (the surface pressures) will hence induce small
spatial oscillations in the radius of the three-cylinder
rather than making it shrink to zero and hence producing
a pinching off of the cylinder into a singularity.

The paper is organized as follows: in the next section
we will recall the basic formalism of surface layers in gen-
eral relativity and derive the equations of motion (shape

II. SURFACE LAYERS IN GENERAL RELATIVITY

Junction conditions for timelike or spacelike boundary
surfaces have been well understood since the work of Is-
rael. The case of null shells has been treated by various
authors. The equations of motion for a timelike thin
shell have also been developed by various peo~ple includ-
ing Israel, de la Cruz and Israel, and Chase' (see also
Blau, Guendelman, and Guth" }. In this section we gen-
eralize these results and develop the equations of motion
(shape differential equations) for a timelike (spacelike)
thin shell. The equations derived below are therefore
completely general, but to simplify the discussion, we will
comment on the meaning of the equations as if the shell
were timelike. There is usually no easy physical interpre-
tation of the equations when the shell is spacelike. We
use throughout the conventions of Misner, Thorne, and
Wheeler. '

Let X be a (timelike or spacelike) hypersurface separat-
ing spacetime V into two parts V*. Let n be X's unit
normal vector (pointing from V to V+) and define
e(=+1 for timelike X, —1 for spacelike X) such that
n n =e. Let x z be a system of coordinates in V+ (the
coordinates do not have to join continuously on the hy-
persurface) and let P be a system of intrinsic coordinates
on X. The vectors

Xea
(a) (2.1)

are tangent to X and act as projectors from V onto the
hypersurface; for clarity, we have suppressed for now the
use of the 2 indices.

The four-dimensional covariant derivative of any vec-
tor A' tangent to X wi11 have components along the
tangent vectors e(, ) and also along the normal vector n .
It is easy to show that

difFerential equations) for a timelike (spacelike) shell of
perfect fiuid. We apply this formalism in Sec. III to
derive the shape differential equations of a spacelike,
three-cylindrical transition layer separating a de Sitter fu-
ture region from a Schwarzschild past region. We seek
for the uniform FMM configuration in Sec. IV and then
examine its stability in Sec. V. Section VI summarizes
and concludes.

A =A' e +&A'K nIP (b);b (a) ab (2.2)

where we have defined A —= A'e(, ), the stroke denotes
covariant differentiation with respect to the four-metric

g & whereas the semicolon denotes the same for the
three-metric h, b =e(,).e(b). We have introduced the ex-
trinsic curvature

a P
~ab alP (a) (b) (2.3)

FIG. 3. Spacetime diagram depicting the behavior of an un-
stable transition layer: the layer's radius shrinking down to
zero [as is Fig. 2(b)] drags the Schwarzschild region along with
it. The layer therefore focuses into a singularity.

which is a measure of how X is embedded in V.
From Eqs. (2.2), (2.3), and the Ricci commutation rela-

tions, it is possible to express the four-dimensional curva-
ture tensor in terms of the intrinsic curvature of X and its
extrinsic curvature. The result (the Gauss-Codazzi equa-
tions) can be summarized in
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—2eG pri pg&= g +e(K K b
—K ),

a P b
6~pe (g)ll E g E

(2.4)

(2.5)

the shell as a whole. We therefore find
n a

~

—=u'u K,b~* (the notation is self-explanatory).
Upon adding and subtracting we then have

8nS,b =e([K,b] —h,b[K]) . (2.6)

where 6 & is the Einstein tensor and K the trace h' K,&.

It is also possible to express 6 &e~,~e~[&j in a similar way.
In the presence of a surface layer, the four-metric g &

will be continuous at X, but its normal derivative will not.
It follows from (2.3) that K,b will suffer a jump at the
boundary surface. It can be shown that this jump
[K,b]=K,b

~+ —K,b ~
(the difference of the limits when

we approach X from both sides} is related to the shell sur-
face stress-energy tensor by

n o I++n a
I

=2u'u IC,b,
n a ~+ n— a

~
=u'ub[Kb],

(2.13)

where we have defined 2K,b=K,b~++K,b~ the aver-
aged extrinsic curvature. The remainder of the exercise
consists in expressing the right-hand sides of (2.13) in
convenient forms. From Eqs. (2.4) and (2.6) and the field
equations, it is straightforward to show that E,&S'

e—[T &n n~j; using Eq. (2.9}to express u'M in terms
ofS' and&', wefind

Inversion of (2.6) yields

[K,b ]= 8n e(S,b
—

—,
' h, b S) . (2 7)

2u'u K,b
= — (e[T &n n ~]+PK ),

while combining Eqs. (2.7) and (2.9}yields

(2.14)

If we define T~ to be the "background" stress-energy
tensor of V (in general different from one side of X to the
other} then the full stress-energy tensor will be composed
of T ~ plus a distributionlike contribution proportional
to S' e~, ]e~[&). The conservation equation for this stress-
energy tensor then leads to [using (2.5) and the field equa-
tions]

u'u [K,b]=8m(P+ —,'eo) . (2.15)

Substituting (2.14) and (2.15) into (2.13) finally gives the
shell's equations of motion

n a ~++n a
~

= — (e[T n n~j+PK),2
o.+eP

S b +e[Tb„] 0 (2.8) (2.16)

where T&„=—T~&e~&~n .
We now specialize to the case where the shell is com-

posed of a perfect fiuid. It is then possible to write the
shell stress-energy tensor as

S,b =o u, ub+P (h,b+ eu, ub ), (2.9)

where u ' is the three-velocity of the shell ( u 'u
= —e, u n =0), P,b

=—h,b+eu, ub is the projector to the
two-space orthogonal to u' (rest frame). If the shell is
timelike, o can be interpreted as a surface energy density;
if the shell is spacelike, however, o becomes a (longitudi-
nal) pressure. In both cases, P is interpreted as a surface
(transverse) pressure. If we now contract the conserva-
tion equation (2.8) with u' and P', we get, respectively,

(o u ')., + ePu' ,= [T &u n~],. (2.10)

which is in effect a continuity equation for the inertial
mass of the shell with an external source of work found
on the right-hand side, and

n a [
—n o

~

=8m(P+ ,'eo) .— (2.17)

HI. THE SCHWARZSCHILD-de SI'I IER MODEL

We now proceed and apply the general formalism
developed above to the case of a spacelike (e= —1),
three-cylindrical transition layer separating a de Sitter re-
gion (V+) from a Schwarzschild region (V ) (see Fig.
4)

We suppose for definiteness that the layer is restricted
to lie outside the de Sitter horizon and within the
Schwarzschild event horizon. This means that we are
free to use the usual Schwarzschild coordinates (r, t, 8, $)

Together with Eq. (2.10), Eqs. (2.16) and (2.17) determine
the motion of any type of shell (spacelike or timelike) in
any background V. These results generalize the work of
Chase. '

(a+eP)a'+P' (P b+e[Tb„])=0, (2.11)

which are Euler's equations describing the internal
motion of the constituting particles of the shell
(a'—=u'. bu is the transverse acceleration}.

The shell's equations of motion now follow simply by
applying Eq. (2.2) to the shell four-velocity u =u'e~,

~
(as

measured from either side of X):

(2.12}

While a' describes the shell's internal motion, it is the
normal component n a which describes the motion of

FIG. 4. A spacelike transition layer X separating a de Sitter
future region from a Schwarzschild past region. Shown are the
normal vector n, the axial vector u, as well as the different
coordinates. The angular dimensions are suppressed.
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Schwarzschild region can therefore be integrated to give(r now being a time coordinate; t a space coordinate} in

which the metric on both sides takes the form
(3.10}Pq Ps—=4n RP,

its = f—'gr +f cft2+r gQ (3.1}
without making any assumption on the layer's equation
of state P, (Pi }. This is a consequence of the fact that we

have a conservative system, i.e., that the right-hand side
of Eq. (2.10) is identically zero. By multiplying Eq. (3.10)
by (Pz+Ps }one gets

(3.11)

which upon difFerentiating with respect to s reproduces
Eq. (2.16). The only independent shape equations for the
system are therefore Eqs. (3.8} and (3.10}, together with
an equation of state relating the axial pressure P, to the
transverse pressure P~.

(mrs t} =gs2+R2gf12 (3.2)

(we stress once more that the layer occurs only at a single
moment of time; we are interested in finding the global
shape of the layer, not its time evolution).

The axial vector of X, as viewed from either side, can
be expressed as

IV. THE UNIFORM CONFIGURATION

In this section we will recover from the general shape
Eqs. (3.8} and (3.10) the uniform configuration [in the
sense that R (s)=R0=const] considered by Frolov, Mar-
kov, and Mukhanov. It is convenient at this point to in-

troduce dimensionless variables to replace the original
ones. Since we are interested in a transition layer with
radius of order m '~~ (in Planck units}, we define a new ra-
dial coordinate x such that

u =(u",u', ue, ut')=(R, f 'P, O, O), (3.3)

where P=(R +f}' and where the overdot denotes a
differentiation with respect to proper length s. This en-
sures that Eq. (3.1) reduces to the intrinsic line element
(3.2) on the path of X. The choice of sign for P means
that t increases monotonically with s. From the ortho-
gonality condition u n =0 and our convention that n

points towards the de Sitter region, we get
R =X '(Xm)' x . (4.1}

We also define s, m„and mj according to
(3.4)n, =(f 'P, —R, O, O) .

s =X 's, P, =(X/4n)n;, Pi .=(X/4n)ni . . (4.2)
A straightforward calculation now shows that

where f =f~=X r l, t —=tz in the de Sitter region,
whereas f =fs—=2m/r —l, t =ts in the Schwarzschild

region. The parameter g ' represents the size of the de
Sitter horizon, it is of the order of the Planck length but
not necessarily equal to it. The layer is described by the
relation R (s) (which expresses that the three-cylinder ra-

dius can vary with proper distance along its axis) and

possesses the intrinsic three-metric

n a =K*,=P/R, K e=K~t, =P/R . (3 5)
It is then simple algebra to show that Eqs. (3.8) and (3.10)
reduce to

By noting that (T tt)s, s;«„=—(3X /8n)g ti whereas

(T p}Schwarzschild=0, We alSO find
(x +x —a )' —(x +2/x a)'~2=x—n;,
(x n., )' —ni(x 2)' =0,

(4.3)

(4.4)

[T &n n~]=3X ISn, [T tin u~]=0 . (3.6)

If we substitute Eqs. (3.5) and (3.6) into Eq. (2.17) we
obtain

Pg
—Ps =8rtR (Pi —

—,
' P, ), (3.7)

where we have redefined our notation from P to P~
(tangential pressure), and from 0 to P, (axial pressure).
Using Eqs. (3.2) and (3.6), the conservation equation
(2.10) reduces to

where the overdot now denotes a differentiation with
respect to the rescaled proper distance s and where
a = (Xm) ~—s is a negligible quantity for a macroscopic
black hole.

Differentiation of equation (4.3) (but neglecting a2 with
respect to the other terms; we consider a situation where
the layer's radius is such that X

' «RD «2m} and use
of Eq. (4.4) yields

(x+x)(x +x )

(R P, )
—Pi(R )'=0, (3.8) —(X —1/x )(x +2/x) ' =2ni n, . (4.5)—

which implies R (Pi ,'P, }=—,'(RP, )'. —Eq—uation (3.7}can
then be integrated to

Pq
—Ps =4nRP, +const . . (3.9}

The constant can be evaluated by considering the limit
X=m =0 (flat spacetimes on both sides, which implies
that there is no shell}. The left-hand side then vanishes,
together with the first term of the right-hand side; the
constant therefore has to be zero.

The shape differential equations pf a three-cylindrical
transition layer separating a de Sitter region from a

n '=1 —X0, ni '=1—X0/4, (4.6)

where X0—:2' x0 . These values agree with those
found by FMM.

It is possible to fix x0 by requiring that the curvature
invariant R &„sR~r be continuous (and equal to the
limiting value) at RD. We then have 48m R0 =24', or
2x0 =1, so we find

A uniform solution is obtained if one puts x=x=0 in
Eqs. (4.3) and (4.5). This provides values for the pres-
sures m, and ~~ once the transition radius x0 is specified:
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x =2' =1.1225 . {4.7)

If the value of xo is uniquely specified, it is not so for the
actual layer's radius Ro since the parameter y is left un-

determined. This is also true for the exact value of the
limiting curvature

R p sR ~~ ~24' =P/I (4.8)

where l is the Planck length and P a free parameter of or-
der unity.

If we substitute Eq. (4.7) into Eq. (4.6) and translate
back to the original variables, we obtain

P,"'=—y(2'" —1)/4~,

Pi '=y(1 —2 )/4m .
(4.9)

The axial pressure P,' ' is negative (the stress along the
axis of the three-cylinder is a tension) whereas Pi ' is pos-
itive (the tangential stress is a pressure). Equation (4.9)
expresses the values that the pressures must possess in or-
der to support a uniform three-cylindrical transition layer
with radius Ra=2'~6y '(ym)'~. It is also possible to
find such values for arbitrary radii, as shown in Eq. (4.6);
it is also possible (and easy) to generalize to the case
where the inequality g ' &(Ro &&2m is not satisfied.

V. STABILITY OF THE UNIFORM CONFIGURATION

We have found so far that a spacelike, three-cylindrical
transition layer between a de Sitter and Schwarzschild re-
gions can have a uniform behavior (in the sense that the
cylinder's radius is constant along its axis) provided that
its principal pressures be given by Eq. (4.6). The space-
dependent equations now allow us to verify whether the
uniform configuration is stable [in the sense mentioned in
the Introduction (Fig. 2): when perturbed, an unstable
layer would tend to have its radius shrinking down to
zero as the radius of a cone, while a stable layer would
remain cylindrical with perhaps the presence of small
spatial oscillations in its radius] and what the effects of
slightly changing the layer's internal parameters from the
uniform configuration are.

By squaring Eq. (4.3) twice, it is possible to bring it to
the form

we take the limit where a is taken to be vanishingly
small, it is straightforward (if tedious} to check that
V(xo ) = V'(xo ) =0 if m, and m.i are given by Eq. (4.6).

The stability of the uniform configuration depends on
the sign of V"(xo); if it is positive, V(x) has a local
minimum at x =xo and the layer is stable, if it is nega-
tive, then V(x) has a local maximuin at x =xo and a
small perturbation in the layer's radius will provoke an
irreversible expansion or contraction of the cylinder s ra-
dius. Unfortunately, we cannot proceed any further with
this analysis until we specify an equation of state m;(m. i)
for the layer's pressures, which after integration of Eq.
(4.4} will yield m; as a function of x. It is clearly impor-
tant to have this information in order to draw the general
shape of V(x). Unfortunately, we do not know anything
about the internal physics of the transition layer {which
is, we recall, a model for a smooth transition region be-
tween the Schwarzschild and de Sitter regions}. For the
time being, therefore, we have complete freedom on the
choice of the equation of state and this represents the
only major difficulty of this analysis. A look at Eq. (4.9)
tells us that the layer's pressures both depend linearly
upon g (and only y). It is not physically unreasonable to
require that the equation of state be independent of the
free parameter y such that one natural choice for the
equation of state is a linear relationship

P = —cPs i

where

(5.3)

2.0

1.5—

1.0—

0.5—

c =(2' —1)/(1 —2 ) =0.2692 .

Alternatively, Eq. (5.3) is clearly the simplest relationship
one can try. With this choice, we can now integrate Eq.

x + V(x)=a (5.1)

V(x}=—
2 2

x —2/x (xn,)—+2/x,
2x&

(5.2)
Q5

-1.0—
which is formally similar to the equation of motion of a
particle with energy a moving in a potential V. [Al-
though Eqs. (5.1) and (5.2) do not describe a time evolu-
tion in any way (they describe the spatial variation of the
three-cylinder radius along its axis), we shall nevertheless
continue to use the terms "energy" and "potential" in or-
der to discuss Eq. (5.1). We will have to remember that it
is only a formal analogy. ] Now, a radius x for which x is
zero satisfies the equality V(x)=a, whereas a radius for
which x vanishes corresponds to an extremum of the po-
tential. A uniform configuration would therefore corre-
spond to a radius x for which V(x) =a and V'(x) =0. If

-1.5—

-2.0 I I 1 I

05 06 07 08 09 10 11 12 13 14

FIG. 5. The potential function V(x), as defined by Eqs. (5.2)
and (5.4). Values of x for which V(x) =a ~0 are points for
which x=O; values of x for which V'(x)=0 are points for
which x=O. The point xo therefore represents a uniform
configuration (constant radius for the three-cylinder as we move
along its axis). Since the potential presents a local minimum
there, the uniform configuration is stable.
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V(x) V(x) V(x)

FIG. 6. Shown here are different behaviors for the potential
function corresponding to different choices for the parameters c
and a. Found in (a) is a potential for which oscillatory
configurations are generally possible. In (b), a uniform or oscil-
latory solution is possible only if the energy parameter a is
large enough. In (c), the local minimum of V(x) has disap-
peared; the possible uniform configuration is therefore unstable.

shape depicted in Fig. 6(b). Here, one needs to carefully
adjust the value of the energy parameter in order to re-
cover either a stable uniform configuration or an oscilla-
tory behavior. Worse things can also happen if one
chooses negative values for c (e.g. , c = —1, considered by
Blau, Guendelman, and Guth" in a different context), as
shown in Fig. 6(c}. In such cases, the local minimum of
V(x) ceases to exist and therefore the uniform
configuration found there is unstable. The region of the
(c,a) plane which produces uniform or oscillatory solu-
tions is nevertheless broad enough to allow us to con-
clude that the FMM Schwarzschild —de Sitter model does
not require fine-tuning. In its generic form, the model
consists of a three-cylindrical transition layer whose ra-
dius presents spatial oscillations along the axis.

VI. CONCI. USION

(4.4) d (x m, ) n~d—(x ) =0 to obtain m, as a function of
x:

~, = —ax
—r (5.4)

where y—:2(1/c +1)=9.4294 and where the constant of
integration a:—(2'~ —1)2r~ =0.5624 has been chosen
such that n, (xo ) =n.,' '.

Equation (5.4) now allows us to draw the general be-
havior of the potential function V(x), see Fig. 5. The po-
tential possesses a local minimum at x =xo -—1.1225 so
we immediately see that indeed, this point corresponds to
a stable uniform configuration. We can then conclude
that the FMM model is stable against a virtual displace-
ment of the layer's radius from uniform configuration, as
well as against small perturbations in the global parame-
ters of the system (the black-hole mass m and the de Sit-
ter horizon radius y '). Variation of the latter induces

only small spatial oscillations in the layer's radius.
Figure 5 also shows that two other kinds of behavior

for the three-cylinder radius are possible: one can have a
cylinder (pictured as the rubber tube) whose radius is
zero at both ends and increases monotonically to a max-
imum value in the middle; the cylinder can also have an
infinitely large radius at both ends (now infinitely far
apart) which decreases monotonically to minimum value
in between. The situation where the layer's radius would
be infinitely large at one end and monotonically decreas-
ing to zero at the other end is not allowed since the ener-

gy parameter a =(ym) ~ is restricted to be roughly
less than one in order for the Schwarzschild horizon to lie
outside the de Sitter horizon. These two new config-
urations clearly have nothing to do with the FMM mod-
el, so we shall not discuss them any further.

It is important to note that the shape of the potential
and in particular the existence of a local minimum (i.e.,
the existence of a stable uniform configuration), crucially
depend on the value assigned to the parameters c and a
defined in Eqs. (5.3) and (5.4). There exists a region in the
(c,a} plane around the values given above for which an
oscillatory behavior for the layer's radius is still present,
as shown in Fig. 6(a}. However, there also exists values
of c and a corresponding to a potential of the general

We have presented in this paper a study of one aspect
of the black-hole interior model suggested by Frolov,
Markov, and Mukhanov according to which a
Schwarzschild black hole would give rise to an

inflationary universe via a sudden transition from the
Schwarzschild solution to a de Sitter solution occurring
at the "quantum radius" r-m' . While these authors
considered a situation where the transition layer is a uni-
form (constant radius) three-cylinder occurring at one in-
stant of time, we have allowed the radius to become a
function of proper distance along the cylinder's axis.

Our space-dependent shape equations for a spacelike,
three-cylindrical transition layer separating a de Sitter fu-
ture region from a Schwarzschild past region (together
with a reasonable equation of state relating the axial pres-
sure to the transverse pressure) succeeded in showing that
the FMM uniform configuration is stable in the sense
that a variation of the layer's global parameters (the
black-hole mass m and the de Sitter horizon radius y '),
as well as of its internal parameters (the surface pres-
sures) from the uniform configuration does not force the
three-cylinder radius to shrink down to zero (as the ra-
dius of a cone), but rather induces spatial oscillations in
the radius as we move along the axis. This oscillating
three-cylinder would then represent the FFM model in its
generic form. There is a broad range of values for the pa-
rameters c and a for which an oscillatory behavior is pos-
sible; it is, however, also possible to vary them in such a
way that the model would be destroyed.

The main assumption in the analysis regards our
choice for the equation of state P, (Pj }. Nothing being
known about the internal physics of the transition layer,
any choice is in practice as good as the other. We have
chosen a linear relationship mainly for simplicity and be-
cause it removes the dependence on the free parameter g
(the uniform configuration values P,' ' and Pj ' depend
linearly upon it}.

The transition layer is, of course, only a crude model
for a smooth transition from Schwarzschild to de Sitter
phases. It nevertheless remains interesting to study the
physics and "architecture" of such a layer if only for the
intriguing properties of spacelike objects in general rela-
tivity.
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