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Integrable equation of state for noisy cosmic string

15 JUNE 1990

Brandon Carter
Departement d'Astrophysique Relatioiste et de Cosmologic, CARS, ObserUatoire de Paris, 92 195 Meudon, France

(Received 2 February 1990)

It is argued that, independently of the detailed (thermal or more general) noise spectrum of the
microscopic extrinsic excitations that can be expected on an ordinary cosmic string, their effect
can be taken into account at a macroscopic level by replacing the standard isotropic Goto-
Nambu-type string model by the nondegenerate string model characterized by an equation of
state of the nondispersive "fixed determinant" type, with the effective surface stress-energy tensor
satisfying (T",)2 —T"„T"„2TO,where To is a constant representing the null-state limit of the
string tension T, whose product with the energy density U of the string is thereby held fixed:
TU To. It is shown that this equation of state has the special property of giving rise (in a flat
background) to explicitly integrable dynamical equations.

The purpose of this work is to point out that the macro-
scopic behavior of a cosmic string under the influence of
microscopic noise perturbations can be modeled by a spe-
cial case within the uncoupled (and therefore self-dual)
subcategory of the broad (in general charge-coupled)
class of elastic string models that was originally de-
veloped' for the quite different purpose of generalizing the
ordinary (intrinsically isotropic) Goto-Nambu model to
allow for various kinds of "superconduction" mecha-
nisms.

Before restricting attention to the physically interesting
"noisy cosmic string" case, it is worth recalling the basic
principles of elastic string mechanics in a flat- or curved-
spacetime background with metric g„,. A covariant
description of the kinematics of the string two-surface can
conveniently be expressed in terms of the tangent bivector
e"' —e"", with c" 'e~ 0, whose integrability is ex-
pressible by s""e',~V„e~ 0, and whose self-contraction
specifies the orthogonal projector onto the string two-
surface as rI", a"'c~„, the normalization of the bivector
and the timelike nature of the string two-surface being
fixed by the trace requirement g"„2. When there is no
external force on the string, its motion will be governed by
a two-surface projected divergence equation of the form

ri~„VpT" ' 0,
where T"" T"" is the two-surface stress-energy-density
tensor, as restricted by the tangential condition y"~T~" 0
with y"„g",—rl"„. For the evolution to be well deter-
mined by (I) some equation of state F(T"„T",T"„) 0 is
needed to restrict the number of independent invariants
from two to one. Instead of the linear and quadratic in-
variants T'„and T"„T'„,it is more suggestive to use the
string tension T say and the string mass-energy per unit
length U say (we use units in which the speed of light is
unity so that mass and energy are equivalent) that are
defined (modulo a sign adjustment) as eigenvalues of the
stress-energy tensor by

the normalization being adjusted so that p v U —T.
These quantities will be associated with corresponding

tangential currents j" pv" and n" vu", which satisfy
the string two-surface conservation laws

g„'V„j" 0, g„'V,n" 0, (4)

that together are equivalent to the tangentially projected
part of the system of equations of motion (I), the remain-
ing part, determining the extrinsic motion, being given by

Uy",u Vpu" Ty",v Vpv'. (5)

It is useful to introduce three more functions of state,
the first two being the (preferred frame) propagation
speeds cL and cT of, respectively, longitudinal and trans-
verse perturbations, while the third is the (self-dual)
"characteristic potential" @say, as defined up to an addi-
tive constant by

u„v" 0, u"v" —u"u" t. "") specifying what generically
will be a preferred reference frame. The exceptions, for
which the eigenvalues coincide, are the null states (to
which we shall return below) meaning states for which
T", has a null eigenvector, as in the limit case of an ordi-
nary cosmic-string model, which is specified by the isotro-
pic expression T"" —Trl"' corresponding to the relation
U T To say for the mass per unit length (whose com-
bination with Newton's constant gives the dimensionless
quantity GU taking the constant value GTo which must be
small to allow neglect of the gravitational effect on the
background). In recent literature on cosmic strings the
energy per unit length is often denoted by the symbol p,
but the latter has a more traditional interpretation here as
the relativistic chemical potential or effective mass per
unit of the conserved number whose density we shall
designate by v, as defined (modulo multiplicative normali-
zation constants) by

dT ' dU1np, Inv

T"' Uu" u ' —Tv"v ', (2)

where u" and v" are a mutually orthogonal timelike and
spacelike unit tangent vector (u„u" —I —v„u", It can be shown generally that the "spasm" speed cL and
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y"„T+ V T-' 0 y"„T- V T+', (io)

the equivalence of the left- and right-hand-side versions
expressing the kinematic integrability condition for the
string two-surface, so that the combined system of (12)
and (13) provides the complete set of equations of motion
of the string.

The most obviously simple kind of equation of state is
what we shall refer to as the "fixed trace" type, meaning
that T"„is held to a constant value by fixing the sum of U
and T, taking

T"„+2TO 0, U+T 2TO,

which corresponds to

U To+, T To—,v ap,
V ap
20 2

(i2)

where To and a are constants, the latter arising as the free
constant of integration in (3). (Most of the earlier writ-
ings on superconducting cosmic-string mechanics, and
many more recent studies, " have in effect been based
on the use of an equation of state of this "fixed trace"
type, which of course makes no allowance for current sat-
uration effects. The reader should be warned against pos-
sible confusion resulting from the failure, in nearly all of
these writings, to distinguish clearly between the true ten-
sion T and the constant To.)

A "fixed trace" equation of state arises naturally as a
lowest-order approximation in the physical problem under
consideration here, namely that of the macroscopically
averaged effect of the microscopic excitations that will al-
ways be present to some degree in any physically realistic
cosmic-string model. For a simple (isotropic) cosmic
string the formula (7) just gives the well-known result
that propagation occurs at the speed of light, i.e., ci -1 in

the units we are using. For a simple purely "left" or pure-
ly *'right" propagating microscopic wave packet, the un-
derlying isotropy ensures that the corresponding macro-
scopically averaged contribution 8T"' say to the modifi-
cation of effective two-surface stress-energy tensor T""of

the "kink" speed cr will be given by

v dP dT & TcL, cy'
p dv dU' U'

Let L+" and L —"be "right-" and "left-" oriented longi-
tudinal bicharacteristic vectors, and similarly let T+" and
T—"be transverse bicharacteristic vectors. Imposing a
unit normalization condition gives them explicitly as

u~+ cLv~ u~+ cy v~
L.+~, T+~ j'I —c,'

the stress-energy tensor being expressible directly in terms
of the latter as T pvT+ t~T ~.

The introduction of these quantities allows the equa-
tions of longitudinal motion (4) to be reassembled' as the
characteristic combinations

L~~(Vp@T- U&pu ) 0,
while the equations of extrinsic motion (5) can similarly
be expressed in characteristic form as

T"" —Tori""+AT"'+ O(s ) (i4)
which can be put in the standard form (2) by taking
U To+e+O(s ), and T To —s+O(a ). To first order
in s this evidently corresponds to an equation of state of
the "fixed trace" form (11), the corresponding conserved
number density v with its associated effective mass p be-
ing definable, modulo a normalization constant a, by
v 2ae+O(s ), and p 2s/a+O(s ), in accordance
with (12).

The foregoing reasoning is independent of the form of
the "noise" spectrum, but one can of course be more
specific if the microscopic excitations are of purely
thermal origin with an ordinary Bose spectrum, the two-
dimensional adaptation of the standard derivation of a
blackbody radiation distribution leading to the estimate

ak e cr

2ak
' (is)

where e is the temperature and o the entropy per unit
length of string, k being Boltzmann's constant. In the
case of a four-dimensional spacetime background, for
which there are just two transverse polarization modes,
the coefficient a in (15) works out as a 2z/3h, where h
is the Dirac-Planck constant. In this thermal case, i.e.,
when the "noisy cosmic string" is interpretable more
specifically as a "warm cosmic string,

" the number densi-

ty v and the associated effective mass p will have a corre-
sponding thermal interpretation as being respectively pro-
portional to the entropy density and temperature in the
form v o/k, p k8.

Regardless of the thermal or other (less unmusical?)
nature of the microscopic noise spectrum, it is of interest
to consider the nonlinear modification of the foregoing
equation of state that will be needed when the amplitudes
of the microscopic excitations are sufficiently large for
corrections of higher order in the energy deviation

(U —T)/2 to be important. The need for a nonlinear

the string will have the form bT"' I"I', with BT„' 0,
where P is a suitably normalized null (lightlike) tangent
vector field along the direction of propagation of the pack-
et in the string two-surface. When added to the isotropic
stress-energy contribution T"" —Torl"' of the original
unperturbed cosmic string this gives a net stress-energy
tensor of the form T"" —Top""+Pl', with I'l, 0
which is the standard form for a null state [i.e., the degen-
erate alternative to the generic form (2)] in which (modu-
lo a sign adjustment) To is the repeated eigenvalue.

The combined effect hT"" QBT""produced by many
such microscopic packets moving in both directions will
retain the property of being trace-free while breaking the
isotropy, thus determining a preferred rest frame charac-
terized by timelike and spacelike unit vectors u" and v" as
introduced above, in terms of which one will obtain ex-
pressions of the standard form

rl"" —u" u "+v"U", aT"" c(u "u "+v"U"),

where s is the corresponding rest-frame energy perturba-
tion. Thus at a macroscopic level one obtains for the total
effective two-surface stress-energy tensor T""of the per-
turbed or "noisy" string an estimate expressible as
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correction to the naive "constant trace" equation of state
can be seen following the consideration that this equation
(11) is (uniquely) characterized by the property (which
was effectively demonstrated from a different point of
view in the analysis of Spergel, Piran, and Goodman )
that longitudinal perturbations always propagate at the
speed of light, i.e., cL 1. However, the transverse pertur-
bations have a reduced propagation speed, cr 1 —2e
+0(e2), so that here is a dispersion effect for the "fixed-
trace" model which should not occur in a realistic treat-
ment of the "noisy-string" application.

To see why a satisfactory "noisy-string" model should
be dispersion-free, meaning cL cr, it suffices to consider
that if one zooms in to a microscopic perspective, what
had appeared to be longitudinal perturbations in the non-
degenerate macroscopic string model will become resolved
as packets of very-short-wavelength transverse oscilla-
tions. At the microscopic level all the perturbations,
whether of short or long wavelength, will move along the
same null characteristics of the isotropic string model.
What changes at the macroscopic level is that as a result
of twisting and turning through the microscopic wrinkles
of the isotropic string two-surface, the unresolved
smoothed average paths of these microscopically null
characteristics will be timelike, but being slowed down to
subluminal averaged speeds should not change the fact
that all propagation modes share the same characteris-
tics.

It can be seen from (7) that the crucial condition
cL ci. leads uniquely to the replacement of the "fixed
trace" equation of state by a "fixed determinant" equation
of state, meaning that the determinant of the mixed form
T„"of the two-surface stress-energy tensor, i.e., the scalar
—,
' c""c~ Tg T„is held to a constant value, To say, by fixing

the product of U and T:

(T"„)~—T"„T„' 2T), UT~T$.
This "fixed determinant" equation of state has a paramet-
ric representation in terms of the characteristic potential
@in the form

U Tocoth@, T Totanh@, (17)

so that cL cr tanh4 with v (aTO) ' csc4, and

p (To/a) 'l sech@, where a is normalized so that in the
relativistic limit as v and ii tend to zero, this formulation
is consistent with the "fixed trace" limit as given by (12),
whose analogue for the "fixed determinant" case will be
given by U To(1+v /aTO) '~, and T To(1 —ap /
To)'~. In the opposite (Newtonian) limit as 4 tends to
zero this equation of state goes over to a form describable
as that of a nonrelativistic polytrope with index equal to
minus one.

The "no-dispersion" property T ~ " I.+ " that thus
uniquely characterizes the "fixed determinant" equation
of state gives rise to another elegant special property by
enabling (9) to be used to extend (10) by removal of the
orthogonal projection, giving a full set of equations of
motion in the single expression

L+ '&,L ~" 0.
This means that the unit tangent to the "left"-moving

characteristics is parallel propagated along the "right"-
moving characteristics and vice versa.

All the numbered results above apply to a spacetime
background of arbitrary curvature and any dimension
greater than two. If the background is now restricted to
be flat then the most general solution to (19) can be ob-
tained explicitly as the locus of midpoints of straight lines
between points on an arbitrary given pair of timelike gen-
erating curves, the corresponding characteristic curves be-
ing obtained by restricting one or the other end point to be
fixed. While knowning the Minkowski coordinates, x"
say, of points on the string two-surface is not quite
sufficient by itself, specification of the characteristic
curves provides all that is needed for a complete dynami-
cal description, since from L+" and L —"one gets the
state parameter 4 [since L+„L—" —cosh(24)] and the
preferred rest frame [since 2u" sech@(L+"+L -")].
Let us express the two freely chosen timelike generating
curves as x" 2f ~ "(A,), where 1L. is an arbitrary, in gen-
eral, improper, time parameter, and let us use a dot for
differentiation with respect to an affine time parameter, r
say, as defined by f+" A.df+ "/dX with the normaliza-
tion condition f+„f~" —1. Then the corresponding
string two-surface locus and the associated unit bicharac-
teristic vectors will be given by

x" f+"(k+)+f "(A, ), L-~" T~" f~ "(k~),
(19)

the two independent parameters 1L, + acting as characteris-
tic coordinates. It is always possible to use an affine pa-
rametrization, identifying X with r, but it is often prefer-
able to use a nonaffine gauge condition identifying k with
the coordinate time, x say, along each generating curve,
giving the constant values df~~/dX 1, so as to obtain
X++X,— x .

The general flat-background solution given above is
akin to the well-known Eisenhart flat-background solution
for the degenerate (ultrarelativistic) case, which is also
given by an expression of the form x" f+"(A, +)
+f "(A, ) but with the restriction that the separate gen-
erating curves x" 2f "(A,) are not timelike but null.
Although it has the advantage that the gauge choice
X++A, xo ceases to be inconsistent with affine parame-
trization, the null tangency condition is a restriction
whose implementation' raises nontrivial problems. " The
much discussed phenomenon of cusps (where T+" and
T " coincide) that are well known to occur as a generic
(though transient) feature in the ultrarelativistic "silent"
cosmic-string case in a background with dimension less
than the critical value five' (and as durable rather than
transient features when the dimension is less than four, as
in the effectively three-dimensional case of a string motion
within a plane in ordinary spacetime such as is illustrated
in Fig. 1) will have its critical dimensions reduced in the
"noisy" string case due to the extra degree of freedom got-
ten from removal of the null tangency restriction on the
functions f+ "(A,). For a "noisy" cosmic-string model,
the occurrence of cusps (corresponding, in this case, not to
motion at the speed of light but to singular concentrations
of infinite energy density U) will, as a generic feature, be
entirely absent in a four- (or higher-) dimensional space-
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FIG. 1. The figure shows successive space configurations for
two neighboring (periodic but nonstationary) spinning-loop
solutions obtained by subjecting the spinning-line solution for an

ordinary cosmic string to a small perturbation within the plane
of rotation: first while retaining the use of the ordinary
("silent" ) cosmic-string model so that the cusps remain as a per-
manent feature at the extremities; and second with allowance
for some "noise" energy in the perturbation by the use of the
"fixed determinant" string model so that the cusps are smoothed
out except for a transient occurrence (which would disappear al-
together if the motion were allowed to deviate from the plane).

time background. Even in the effectively three-
dimensional case of motion in a plane, cusps will generi-
cally occur only as transient features, as is apparent in the
example illustrated in Fig. 1, which represents a slight de-
viation from the solution that (apart from a stationary
ring, which is possible' ' except in the Goto-Nambu lim-
it) is the simplest, namely a spinning line, stationary with
respect to the corotating frame, with tension determined
by the angular frequency co as a function of radius by
T /To (ro r)—(co —r2), diminishing to zero at
cusps at the extremities, r ro, where the string turns
back on itself. [The spinning-line solution has as a non-
stationary but axisymmetric analogue the radially bounc
ing circle solution with harmonically varying radius
r rocosrot, in which the tension is given by T /To

I' /(co po +r ) ]
It is to be remarked that (16) is an example of a "self-

dual" equation of state that also turns up' in another
physical context as the outcome of the Nielsen mecha-
nism' ' (a prototype for the more realistic "supercon-
ducting string" mechanisms introduced by Witten )
whereby a Kaluza-Klein procedure is applied to a simple
(isotropic) cosmic string, starting from a spacetime with
an extra dimension in the form of a bundle structure
whose fibers are Killing vector trajectories.

Note added. The validity of the model presented above
has recently been confirmed using a different approach by
Vilenkin. '
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