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Crystalline-instanton-liquid model of QCD vacuum and its implication
on chiral and deconfinement transitions
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A crystalline-instanton-liquid model of a QCD vacuum is proposed and its implications on the
finite-temperature phase transitions in QCD are explored. It is shown from this model that both the
chiral and deconfinement transitions may exist in QCD with T,„)Td„and both may be first order.
The critical temperatures are also determined.

Finite-temperature phase transitions in QCD are of
particular interest at this time, because of their possible
relevance to the physics of heavy-ion collisions and the
study of the early Universe. Many theoretical analyses
based on the effective-spin models' and numerical simula-
tions of lattice QCD (Ref. 2) indicate a first-order
deconfinement transition for pure SU(3) gauge theory and
a first-order chiral-symmetry-restoration (CSR) transition
for gluonic theory with light quarks. The questions to
settle are whether both transitions exist in QCD and if
they are connected.

One way to understand the mechanism behind the
chiral-symmetry breaking in QCD and related physics is

by means of the dilute-instanton-gas model. Recent
(infrared-finite) calculations using the instanton-liquid
model of a QCD vacuum yield very reasonable bulk pa-
rameters, and call upon further investigations. However,
no explanation for color confinement is made in the
instanton-based models so far. On the other hand, our
understanding on the confinement and the hadronic
structure is by means of some quite different models in-
volving the MIT bag, the phenomenological string, and
the recently proposed Polyakov-Kleinert rigid string. It
seems that these models have nothing to do with instan-
tons.

An intriguing question is whether these two kinds of
models are related. Our answer here is positive. In fact,
the crystalline-instanton-liquid model (CILM) proposed
in this Brief Report is motivated by the instanton-liquid
model and the Polyakov-Kleinert string mentioned
above. Our main purpose is to find the connection be-
tween these two quite different pictures of a QCD vacu-
um or the hadronic structure and to describe the CSR
and deconfinement transitions within one QCD-
motivated model. Formally, the CILM of a QCD vacu-
um or hadronic structure is the Polyakov-Kleinert string
with liquid crystalline order which can be viewed as the
continuous theory of instanton liquid crystals. We hope
that it can provide an effective description of QCD at
large distances and finite temperature. One may ask how
come one expects this model to describe CSR since the
Polyakov-Kleinert string does not contain fermionic de-
grees of freedom. Our answer is the rigidity term [the
second term in (1)] has its fermionic origin; that is, it ap-
pears as a result of integrating out fermions in functional

integ rais.
Our starting point is the action of the Polyakov-

Kleinert string in the first-order form:

From the Gauss-Bonnet theorem we have

tcG f 1 g&gR =SmtrG(1 —h) (2)

with h being the genus number of the surface I h.
We then restrict our attention to the system with a

liquid-crystalline structure, that is, the trace of the strain
tensor defined by' u, b =(d, x "r)bx" g,b )/2 —vanishes.
This corresponds to imposing an Ansatz for the Lagrange
multiplier,

gab gg ab

and to assume the world-sheet metric to be fiat:

(3)

gab gab (4)

where g,b depend only on the Teichmuller parameters.
For a cylinder g, b in (4) take the form

Nab
= 1 0

0&F2( oo .
2

We now evaluate the path integral of the model on a
cylinder. Since the elastic modulus ~& increases with dis-
tance at low temperature '" and we are interested only in
the large-distance behavior of the system, we expect ~z to
be large in the region under consideration. Therefore,
contributions from changes of topologies to the path in-
tegral will be suppressed for su%cient low temperature.

We use a mean-field approximation to the Lagrange
multiplier:

X=&A, ) =A, (6)

Ansatze (3) and (4) impose a liquid-crystalline order in
our model while Ansatz (6) omits the quantum fluctua-

S (g X )=o fg' 1 (+ fg' 1 g[(bx")1

0,'p

+V (g b t), "t)b „)]+ Gfg' 1 gR .
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tions of the A, field. (The quantum fluctuations of the ~
field have been considered in Ref. 12. It turns out that
these fluctuations only play a role in determining the sub-
leading behavior of the path integral. They would not

alter the results obtained in this Brief Report. )

The path integral on a cylinder can then be evaluated
in a standard fashion. ' ' Using g-function regulariza
tion, we find

Zcylin

' d/2
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where A =rg /2, a =A,P', 8=~n +a /4n,

A,p (d —2)i,p
oez=crp — + 1+in

ao 8a 0

A,p(d —2}
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and

(8)
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From the mass spectrum (12), it is easy to read off the
ground state

mp=a cr,~iap.2= 2 (13)

a "
1

K&(—na)
, n

(9)
We immediately see that the theory is free of tachyons

(14)

F(P)= — gL" 'Z,„„„,
P

(10)

which can be calculated from the path integral (7) and is
then compared with the expression for a collection of free
particles. We find' '

F(P m )=—f ln(1 —e ")1 dd 'k PCS

P (2m)"
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where s =apT2st Ao and the mass spectrum is given by

with K, (na) being the modified Bessel function.
A remark on our result of the path integral [Eqs.

(7)—(9)] is now in order. It differs from our former result,
Eq. (2.28) of Ref. 13, by the fact that some important
terms in (8) arising from the zero-point transverse fluc-
tuation of the stretched string were missing there. Re-
sults similar but not as complete as (8) have been ob-
tained by Pisarski and David and Guitter' where the im-
portant P-dependent terms in (8) have been overlooked by
using the Pauli-Villars and dimensional regularizations.
It is worth mentioning that (8) agrees with our most re-
cent result for the effective string tension obtained from a
single rigid string with fixed density [Eq. (16) in Ref. 15].
The only difference is that the numerical factor d in (21)
of Ref. 15 is replaced by d —2 in (8) here. This
discrepancy is because a large-d expansion was used in
Ref. 15.

The free energy of the system is defined by

which can be satisfied if the mean-field solutions' are
achieved:

8~/(d —2)
inA /A, p

(15)

d —2 3P2
(16}

From (15), we see that Ap has an interpretation of the
inverse-squared persistence length. Using the limit value
of I(a) in (9), we see from (16) that Ap approaches zero as
the temperature reaches its critical value from above

A,p
— 1 —T, /T

T T
C

where

(17)

Tc

1/2
30'0

(d —2). (18)

As explained in Ref. 15, ko remains zero below T, .
Since A.o vanishes below T, and becomes finite above T„
it can serve as an order parameter to characterize a
finite-temperature transition. The critical temperature
(18} has been obtained by a number of authors' ' al
though as we see presently that it may be associated with
transitions with different natures. In our case, the critical
temperature (18} is related to a smooth-rough transition
which is analogous to a smectic-nematic transition in
liquid crystals.

We identify this transition as the deconfinement transi-
tion in @CD. The reason is the following. First, the
smooth (smectic) phase corresponds to the confined phase
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Adding such a term to the free energy does not change
the critical temperature (18) but makes A,o discontinuous
at the transition:

(20)

Since A,o is the order parameter, its discontinuous at the
transition simply means the deconfinement transition to
be first order.

As for any stringlike theory, a Hagedorn temperature
can be calculated for our model. Following a procedure
of calculations parallel to that in Ref. 20, we find

(d —2)m.ao
pH= 1+ 0+1 0

(21)

Unlike the deconfinement temperature (18) which is
determined from the lowest-mass state of the free energy,
the Hagedorn temperature (21) is obtained from the
high-inass-level state. Since both ao and A.o in (21) are

since both are characterized by a nonvanishing string ten-
sion while the rough (nematic) phase corresponds to the
deconfined phase since both are characterized by a van-
ishing string tension. The resemblance between these two
transitions becomes more close if we look at the symme-
try breaking associated with these transitions. The model
in the smooth phase has a local SU(~ ) symmetry which
is known as the area-preserving symmetry existing in the
Dirac membrane in the light-cone gauge. ' This is not
hard to prove. Under an infinitesimal general motion
(both tangential and normal motion) of the string sheet,
the dilation is given by' 5$=7,5e, +2nH (H is the
mean curvature of the sheet). In the smooth phase
AD~0, a0~0, and I /ao~ co which implies H —+0.
Therefore, the requirement of fixed density in the smooth
phase implies 5/=V, 5e, =O. All the solutions of 5e,
form a group which is the area-preserving group SU(~)
(Ref. 17). We here emphasize that in the case of the
CILM the area-preserving symmetry is a true symmetry
of the system in the smooth phase which has nothing to
do with any gauge chosen, as is the case for the Dirac
membrane. The smooth-rough (smectic-nematic) transi-
tion associates precisely with the breaking of this symme-
try or its center group O(2} or U(1) which is equivalent to
Z(N, } as N, becomes large, ' which associates with the
deconfinement transition in QCD.

What is the transition order then? A smooth-rough
transition can be second order' while the deconfinement
transition in QCD is possibly first order. ' So far we
have only considered the genus-one surface contribution
to the free energy. However, as argued by Atick and Wit-
ten, ' the breaking or melting of strings may make holes
in Riemann surfaces. This change in topology contrib-
utes to the free energy in the deconfined phase. Since we
expect ~G to be large up to the temperature Tz„, the
dominant contribution of changing topology is, as denot-
ed by X(T),

—8~~~ as T~ T,+,
(19)

variables, pH can be determined by its extreme value.
Using the renormalization-group flow of (15), we find that
PH has a well-defined minimum. From

d
pH =0 and pH (0 with pH&0

dA, '
it is easy to find

(22)

A 8mao=, and PH =e' d —2'

1/2
8m e

3A
(23)

It should be mentioned that the saddle-point value of
ao in (23) coincides with the ultraviolet fixed-point value
found by David and Guitter' and was associated with a
second-order crumpling transition there.

As the Polyakov-Kleinert string, our model is charac-
terized by two parameters: the string tension at zero
temperature oo and the stiffness a '. Since a ' is di-
mensionless and asymptotically free, the so-called dimen-
sional transmutation occurs: the dimensionless a '(p)
and the dimensional scale A can be traded with each oth-
er. This can be seen explicitly from (21) and (23). It is
easy to convince ourselves that

TH & T, (T, =Tq„) (24)

since A,o is an increasing function with T [see Eq. (16)]
and A,o= A /e is the maximum value at which pH
achieves its minimum. So that, A,0=A /e & 8ma&T, [see
Eq. (2)]. This proves Eq. (24).

A discussion on the physical implication of our result
(21)—(24) is now in order. The main result found in this
Brief Report is that there exist two phase transitions in
the model: the smooth-rough (smectic-nematic) transi-
tion and the Hagedorn transition with the critical tem-
perature TH & T, . This differs from that obtained from
the Nambu-Goto string' ' ' and the Polyakov-Kleinert
string' ' ' where only one transition is present. The
reason for this is not hard to find. In the case of the
Nambu-Goto string, only one parameter era is involved
while in the case of the Polyakov-Kleinert string where
two parameters 00 and ao are involved, the transitions
are related to tachyonic singularities. ' ' ' Such transi-
tions related with tachyons must coincide. Since if
THAT„suppose TH & T„ there exists a region such that
TH & T & T, within which the theory is ill defined due to
the tachyonic singularity. This explains why only one
transition is allowed to exist in these string models. In
the present model, however, none of the transitions are
related with tachyons. Beyond T, [e.g. , Eq. (18)], o,s.

reinains zero rather than becomes negative [e.g., Eqs. (8)
and (14)]. This is because the condensate of the Lagrange
multiplier which compensates the influences of thermal
fluctuations. As is well known, such a rough phase with
(T ff 0 is a desired phase for fluid membranes. In the
case of QCD strings, though the string is melted (cr,&=0)
by thermal fluctuations in this phase, the instantons may
still exist and play an important role. ' It is the ex-
istence of such a phase which is the major motivation for
us to call the model as the crystalline-instanton-liquid
model. (We remind the reader that, though o,s=O in the
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rough phase, both the bending rigidity 1/n and the dila-
tion modulus Ao/a take finite values, that is, something
stringy survives in this phase. More explicitly, the mass
spectrum (12) shows that the system contains a whole set
of massive excited states in this phase though the
ground-state mass remains zero.

From (22), we see that dA, /dP~& &
~ 00, which means

that A,o jumps at TH. Since the theory has a cutoff' A, we
expect that A,o jumps from A /e to A at Tz. This in turn
means that 1/a jumps from (d —2)/8m to zero at TH.
We thus see that ko/ao can serve as an order parameter
to characterize the Hagedorn transition associated with
the O(4)-symmetry breaking and unbreaking. Above TH,
the hadrons enter the isotropic phase or the crumpling
phase with the Hausdorff dimension infinite where the en-
tropy dominates. This is the expected phase of quark-
gluon plasma. In this phase, the chiral symmetry is re-
stored due to isotropic orientation of the instantons or in-
stanton molecules. [We remind the reader that due to
the special property of instantons, the orientation of the
instantons in the color space is identical to that in space
at least for SU, (2).] We then identify the Hagedorn tran-
sition with the chiral transition in QCD which is also
analogous to the nematic-isotropic transition in liquid
crystals. Since the order parameter A,o/ao jumps at TH,
the transition is of first order.

It is also interesting to note the following isomorphism:

SU(2) X SU(2)
Z2

(25)
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This relation implies that our CILM describes effectively
QCD with two light quarks (i.e., u and d quarks).

Finally, we make some numerical estimates of our
results. Taking o 0

=(400 Me V) and TH
=M,.„„;,„,„,q„„k=340 Mey, we obtain Td" =276 MeV

Our conclusion is that both the CSR and
deconfinement transitions exist in QCD and both are con-
nected and of first order with T,& )Tz„. We have shown
in our CILM that both instantons and strings are very
useful concepts in describing QCD vacuum or hadronic
structure. In fact, they are nothing but the simple collec-
tive coordinates which characterize the extremely com-
plicated (inhomogeneous) QCD vacuum or the hadronic
structure in different (temperature) phases or spatial re-
gions. Our results qualitatively agree with most of the
phenomenology available for QCD.
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