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The internal structure of spacetime inside a black hole is investigated on the assumption that
some limiting curvature exists. It is shown that the Schwarzschild metric inside the black hole can
be attached to the de Sitter one at some spacelike junction surface which may represent a short tran-
sition layer. The method of massive thin shells by Israel is used to obtain the characteristics of this
layer. It is shown that instead of the singularity the closed world can be formed inside the black
hole. It is argued that this property of our model may also be valid in a more general case provided
the gravitation theory is asymptotically free and the limiting curvature exists. After passing the
deflation stage the closed world in the black-hole interior may begin to inflate and give rise to a new

macroscopic universe. The described model may be considered as an example of the creation of a
closed or semiclosed world "in the laboratory. " The possible fate of the evaporating black hole is
also briefly discussed.

I. INTRODUCTION

One of the fundamental problems in classical general
relativity is the problem of singularities which inevitably
arise in the theoretical description of a massive body (or
total Universe) collapse (see, e.g., Refs. 1 and 2). It is
generally believed that the appearance of these singulari-
ties is usually accompanied by an unlimited increase of
spacetime curvature. The singularities in general relativi-
ty are usually considered as "a disease" of this classical
theory which may be "cured, " e.g., by its quantization.
There are some reasons for this point of view. It is evi-
dent that the classical Einstein equations are not applic-
able at high curvatures because the quantum corrections
to these equations at the Planck curvature become of the
same order as the main terms in the equations for the
gravitational field. The true effective equations including
these "corrections" are still unknown and one may only
guess the possible general properties of these equations
and their possible consequences. If we believe that the
singularities are an artifact of Einstein's theory and they
will not be present in the future complete theory it is also
reasonable to assume that the curvature for any solution
for this theory must be restricted by some maximum lim-
iting value.

The following more general argument is also in favor
of this assumption. The quantum fluctuations of a metric
at Planck scales lpl =(Gfi/c )' —10 cm may lead to
a radical change of the usual concept of spacetime at high
curvatures. It may happen that the notions of time,
length, curvature, and so on, lose their sense under these

conditions. ' In this case the time intervals less than the
Planckian one tp,

-lp, /c —10 s, the corresponding
lengths and extremely high curvatures (higher than the
Planckian curvature —1/l f„) have no physical meaning.
In order to be able to use the habitual notions of space
and time one must operate with the effective metric
which arises as a result of averaging over scales larger
than Ip&. It is natural to expect that the curvature for this
efFective metric will never exceed the Planckian curvature
—1/lp|. Of course we do not know yet the exact
modified equations for this effective metric and cannot
verify this assumption. But we can accept this assump-
tion as a hypothesis and investigate its possible conse-
quences.

If we accept this hypothesis the following question
inevitably arises. If spacetime curvature is restricted and
curvature singularities do not arise, what is a black-hole
interior structure~ The aim of this paper is to analyze the
possible spacetime structure inside a black hole in the
framework of the hypothesis on the existence of limiting
curvature. We do not suggest any concrete choice of field
equations but analyze the general properties of spherical-
ly symmetric metrics which may describe the black-hole
interior under the assumption that this hypothesis is val-
id. Our main result is the demonstration that a closed (or
semiclosed) world may arise instead of the singularity in-
side the black hole. This world may give birth to a new
expanding macroscopic universe. We now briefly de-
scribe the main features of such models.

We consider a black hole which arises as a result of a
spherically symmetric gravitational collapse. In the
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framework of standard 3+1 splitting, the spacetime in-
side the black hole out of the collapsing matter can be de-
scribed as an evolution of anisotropic homogeneous
three-dimensional space. According to the vacuum Ein-
stein equations the contraction of this space in two direc-
tions is accompanied by expansion in the third direction
so that spacetime has Kasner-type asymptotic behavior
near the singularity. Such behavior is a consequence of
the classical vacuum Einstein equations which are valid
until the spacetime curvature becomes comparable to the
Planckian one. Particle creation and vacuum polariza-
tion may change this regime. Quite general arguments
allow one to assume that the quantum effects may result
in a decrease of the spacetime anisotropy. Poisson and
Israel have shown that the anisotropy may be damped
during this phase of contraction while the curvature ten-
sor remains of the order of the Planckian value. Unfor-
tunately one cannot hope to prove this result rigorously
without knowing the physics at the Planck curvatures.
In our model we just assume that the isotropization really
takes place and the time required for this process is short
and is comparable to the Planck time ~p, -lp, lc. In or-
der to make our consideration more concrete we assume
also at first that the effective equation of state in such a
resulting isotropic space of the Planck curvature coin-
cides with the vacuumlike equation of state: T„"-A5„",
A-I . This equation of state is generally covariant. It
is the simplest possible one violating the energy-
dominance condition and hence makes it possible to es-
cape singularities. It is interesting to note, for example,
that this de Sitter-type behavior corresponding to the
vacuumlike equation of state arises naturally in the con-
sideration of Poisson and Israel.

Under the described assumptions we show that the
de Sitter-type world at the stage of its deflation arises in-
side the black hole. It should be stressed that the de-
scribed possibility of the junction of the de Sitter-type in-
terior through the transition layer to the Schwarzschild-
Kruskal geometry looks rather remarkable and was not
considered earlier. The described model may be con-
sidered as an example of the "new Universe creation in
the laboratory. " This example does not contradict the re-
sults by Farhi and Guth because their main assumptions
are violated in our model. Our consideration shows that
a formation of a black hole can be accompanied by the
creation of baby universes without violation of any
known fundamental physical laws.

For this particular simple model with the de Sitter-type
interior one can trace the details of the future evolution
of the closed (or semiclosed) world arising inside the
black hole which after the stage of deflation may begin
inflating. It is important to stress that the main features
of the model (e.g., the existence of a closed or semiclosed
world in the black-hole interior) are not directly connect-
ed with the assumption about a de Sitter-type equation of
state at the limiting curvature and may be valid in more
general situations. Some more general models are also
discussed in this paper.

The paper is organized as follows. We begin by consid-
ering the general properties of spherically symmetric
spacetimes and by giving a more accurate formulation of

our "limiting curvature" hypothesis in such spaces (Sec.
II). In the framework of this hypothesis we discuss the
possible structure of the spacetime inside an eternal non-
rotating black hole. Although the model of the eternal
black hole (i.e., the black hole which was not formed by
gravitational collapse but exists forever) is oversimplified,
it appears to be useful when considering more realistic
(but more complicated) situations. A more realistic case
of a black hole which arises as a result of the gravitation-
al collapse is considered in Sec. III. Section IV is devoted
to the discussion of possible final states of evaporating
black holes. The "future evolution" of the black-hole in-
terior and the possibility of creation of a new macroscop-
ic Universe inside a black hole are discussed in Sec. V. It
also contains some general remarks concerning the main
features of our model. The formulas of the thin-massive-
shells approach used in the paper and the details of calcu-
lations are collected in Appendixes.

In this paper we use the sign conventions of Misner,
Thorne, and Wheeler and Planck's units.

II. ETERNAL BLACK-HOLE INTERIOR

A. Limiting-curvature hypothesis in a spherically
symmetric spacetime

We restrict ourselves by considering spherically sym-
metric black holes. It is instructive at first to discuss the
case of an eternal black hole and later to consider a more
realistic situation when the black hole arises as a result of
a gravitational collapse. The conformal Penrose diagram
for the spacetime of such an eternal black hole is shown
in Fig. 1. We assume that the mass m of the black hole is
large (m »mp, —10 g) and is invariant in time. In or-
der to suppress the change of the mass due to Hawking
radiation one may assume that the black hole is sur-
rounded by a thermal bath, the temperature of which
coincides with the black-hole temperature.

The metric of a static (with the Killing vector
)=Pc}„=c},} spherically symmetric spacetime can be
written as

ds = —g(r) 'dr +f(r)dt +r dco

=@[ dr +F(r)d—t ]j+r (r)dco~, (2.1)

where des =d(9 +sin Hdg is a line element on a unit
sphere and

g(r}=e~g(r)~= —Vr Vr, f(r)=g
dr= —~g(r)~

' dr, eF(r)=f(r(r)} .
(2.2}

The left-hand side of Eq. (2.3) vanishes if and only if

(2.4)

One can verify that the Ricci tensor R „for this metric
is diagonal R„"=diag(RO, R I,R2, Rz), and obeys the in-

equality

4R "R"—R =—(2R —Ro —R') +2(RO —R', ) &0 .

(2.3)
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For a particular case of a spherically symmetric space-
time our main hypothesis about the existence of the limit-
ing curvature may be presented in the form

(2.5)

ro=(12/a)' (2m/I)' (2.6)

is the value of the radius r at which the invariant
% =48m r for the Schwarzschild metric reaches its
limiting value al . For 2m » l one has I «ro«2m.
The inequality ro &)l indicates that when describing the
geometry of spacetime at r & ro (up to r -I) one may use
the classical metric g„„and neglect its quantum Auctua-
tions. The inequality ro &(2m means that the surface Xo
(where r =ro) is spacelike.

'
It lies inside the event hor-

izon (see Fig. 1) and has a topology S XR ', i.e., it is an
infinite (in direction t) "tube" of a radius ro. Strictly
speaking in order to describe the geometry of the space-
time out and inside the event horizon (including the re-
gion near Xo) one must use the Kruskal-type analytical
continuation of the Schwarzschild metric. But if we are
interested in a description of the metric only in the vicini-
ty of Xo it is also possible (and much more convenient for
our purpose) to use the Schwarzschild-type element (2.1)

FIG. 1. Conformal diagram for the spacetime of an eternal
black hole.

where I is the characteristic (Planckian) length and a is a
dimensionless parameter comparable to one. One can
verify that Eq. (2.5) implies that the other possible
quadratic-in-curvature invariants C —=C

& &C ~~,
R „"R",and R are also positive and limited.

In order to make our consideration more concrete we
assume at first (and this is our second hypothesis) that
when the curvature reaches its maximum value the equa-
tion of state becomes of the vacuumlike type (2.4) or
equivalently R =4R "R„". (A more general model for
which this assumption is violated will be considered later
in Sec. II D.)

Under these two hypothesis the metric (2.1) describing
the spacetime of an eternal black hole allows the follow-
ing specification. The Schwarzschild metric [i.e., Eq.
(2.1) with g(r)=f(r)=2mr ' —I] can be used to ap-
proximate the geometry for r & ro where

FIG. 2. Conformal diagram for de Sitter spacetime.

with g =f&0 so that r is a timelike coordinate. It is
worthwhile noting that for the case of a black hole inside
the thermal bath the relation 2m » I implies also that the
change of the geometry due to the presence of the
thermal radiation at (2m/I) 1 »r & ro can be neglected.
As for the future evolution of geometry for r & ro (r & r )0

we cannot specify two unknown functions in Eq. (2.1) un-
til we know the exact field equations. Nevertheless our
second hypothesis guarantees that beginning with some
time moment r& &ra (r& &ro) we can approximate these
field equations by Eq. (2.4). In the case of a spherically
symmetric spacetime it means that the geometry is de-
scribed by the de Sitter metric which can be written in
the form (2.1), with g (r) =f (r) =(r/I) —1, where
1 =(A/3) '~. Thus the geometry of this region coin-
cides with a part of the complete de Sitter space. The
standard conformal Penrose diagram for the complete de
Sitter spacetime is shown in Fig. 2. If we assume that the
length parameter I in the de Sitter solution coincides with
the parameter I in (2.5) then we would have a =24.

B. Transition layer and "massive thin shell" approximation

In the general case the global structure of the space-
time under consideration may depend on details of the
evolution in the transition layer ~0 (7 (1

&
~ In the partic-

ular case when the duration 6~=7 ] 10 of this transition
regime is short (Ar-I) only some of its integral charac-
teristics become important. In the latter case one may
consider this layer as a "thin massive shell" and to sew
the Schwarzschild metric (r & ro) with the de Sitter one
(r&r&) using an approach developed by Israel. ' (This
method is discussed in detail in Ref. 3; see also Appendix
A of this paper where the necessary formulas are collect-
ed. ) It should be stressed that one of the main features of
our problem is using a spacelike "shell" to describe the
geometry evolution during the transition regime;
meanwhile, timelike and null she11s representing the
motion of some real matter are usually considered (see,
e.g., Ref. 11).

According to the "thin shell" approach we assume that
r, =ro and consider Xo (r =ra) as a junction surface
which separates the Schwarzschild and de Sitter
geometries. The junction conditions at this surface re-

quire that (i) the three-geometries induced on Xo by both
(Schwarzschild and de Sitter) four-geometries are identi-
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cal and (ii) the jumps [K„]of the external curvature E„
(m, n = 1,2,3)

[+n l = (+n }de Sitter (+n )Schwarrnchild

obey the relation

[E„]—5„[E„"]= —8m S„

where

S„"=f 'drT„.
0

(2.7)

(2.8)

(2.9)

The tensor T„" is the effective energy-momentum tensor
which is defined in the transition layer as the right-hand
side of the modified gravitational field equations written
in the Einstein-type form

G" —=R' ——'5'R =8m T"
P 2 8 P (2.10)

S,'= A, /4m,

Ss =S~~=(a+A, )/8m,

S'=0r

(2.11)

a.:[Ett]=-
I2

rp

I

2 —1/2
m 2m

Pp fp2

—1/2

(2.12)

g 1
)t,:—[Kit]=

I'p

l'p
2 1/2 ' 1/2

2m

Tp

The junction condition (i}can be easily met because the
forms of the Schwarzschild and de Sitter metrics in the
(t, r, 8,$) coordinates are identical. The junction condi-
tion (ii) gives (see Appendix 8}

ds = —dr +( 3r/4m—)
' dt

+( 3r/4—m) (2m) dao (2.15)

It describes the Kasner-type contraction of spacetime in-
side the black hole. As the proper time r( & 0) grows the
radius r-( r) i d—ecreases, while the scale along the t
direction increases as ( —r) ' . After passing the sur-
face Xo (representing the transition layer) this anisotropic
contraction turns into the isotropic de Sitter contraction.
Using the relation r =I cosh( r/I) one—can rewrite the
de Sitter metric in the form

C. Properties of the model. Delation

The conformal Penrose diagram for the spacetime un-
der consideration is shown in Fig. 3. It can be obtained
from diagrams shown in Figs. 1 and 2 by removing the
part r ) ro (for the de Sitter space) and the part r & ro (for
the eternal black hole) and by subsequent gluing dia-
grams together along the hypersurface Xo (r =ro). For
convenience the freedom of the choice of the Penrose
conformal coordinates for the spacetime of the eternal
black hole (see Fig. 1) is used in order to guarantee the
same "coordinate form" of Xp in this diagram as it has in
the diagram for the de Sitter space (Fig. 2).

Now let us consider the properties of the spacetime in
our model in more detail. First of all it should be noted
that the spacelike surface Xp is located in the T region:
i.e., in the region where Vr 't7r & 0 (it is also known as the
domain of trapped surfaces' }. In this region the radial
coordinate r is decreasing along any future-directed
causal curve. For r ((2m the Schwarzschild metric can
be approximated as

For 2m ))I these relations read

z = l '(1+P/2),
A, =l '(1 —P),
P—=(a/12}'

(2.13)

rsurface

y
21 Qy2

where y = (2m /I)'i . Although this choice is rather nat-
ural we cannot exclude other values for a. That is why in
what follows we shall not specify the values of a.

(2.14)

It is worthwhile noting that the "large parameter" 2ml
does not enter these relations so that S"-I ' and hence
there is no contradiction with our assumption that the
proper time interval h~ of the transition is short.
Undeed if we suppose that T"„ in the transition layer
reaches the Planckian value (T"-I ) then the proper
time duration of this layer can be estimated as
Ar-S„ /T„and it is comparable with the Planckian
time l.

It is interesting to note that the expressions (2.12) are
greatly simplified for a particular choice a=12. In this
case,

FIG. 3. Conformal diagram for an eternal black hole with
the de Sitter-type world in its interior. The surface Xo where
r =ro=const is a junction surface which represents a short
transition layer. After passing this surface the anisotropic
Kasner-type contraction of space inside the black hole is
changed into the isotropic de Sitter contraction (deflation). The
surface X& corresponds to the moment of "minimal size" of the
de Sitter world. After passing this surface the de Sitter world

begins its inflationary expansion.
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ds = —dH+sinh ( —r/1)dt +I cosh (
—r/I)des

(2.16)

At this stage the rate of contraction decreases while the
scale parameter characterizing the isotropic contraction
is changing as -exp( —v/I). This type of evolution is
just the opposite to that known in cosmology as inflation.
That is why we call it defiation. At the deflation stage
the radius r decreases from rp to 1. The proper time
~0- I ln(2m /I) of this evolution is greater than the analo-
gous time in the Schwarzschild spacetime where ~0- I.

The coordinates (~, t, 8,$) do not cover the complete de
Sitter space. The metric (2.16) in these coordinates has a
coordinate singularity at v =0 which corresponds to the
null surfaces Hz—where r =1 and Vr Vr=0. The space-
time in the future of the surface X (see Fig. 3) is regular.
It should be stressed that X is not a global Cauchy sur-
face. Since Hz are the Cauchy horizons such a global
Cauchy surface does not exist at all.

The conformal diagram in Fig. 3 resembles to some ex-
tent the maximal analytical continuation of either
Reissner-Nordstrom or Kerr metric in its structure. One
of the main differences is that in our case one may expect
the stability of the Cauchy horizons Hs* while the Cau-
chy horizons in Reissner-Nordstrorn or Kerr spacetime
are shown to be unstable' (see also Ref. 14). This insta-
bility is related to an infinite blueshift of signals sent into
the black hole from external space and registered by an
observer crossing the Cauchy horizon. This effect com-
bined with the classical or quantum radiation falling
down into a black hole will result in the divergence of T„"
near the Cauchy horizon and its instability. In our case if
only the hypothesis about the limiting curvature ex-
istence is valid the back reaction of the matter does not
allow % (and hence T„")to grow without limit and after
the curvature reaches its limits we would have the de
Sitter-type space. Hence we may expect that in our case
there is no such instability.

The T region is bounded by the event horizons H +—

and by the Cauchy horizons H&*. Beyond the T region
(at a surface X, ) the deflation changes into the de Sitter
inflationary expansion. The surface X, has topology S
and in this sense the diagram presented in Fig. 3 de-
scribes the closed-world formation inside the black hole.
A possible future fate of this world is discussed in Sec. V.

g(r)= —1,2m (r)
1

then the field equations (2.10) give

dm = —4~r T, ,dl'

f (~& ~r)
dr g g

(2.17a)

(2.17b)

The mass function m (r) corresponding to the model
with the short transition layer described above can be
written as

T
m (r) =m 8(r —r )+ 8(r r)—.0 IP 0 (2.18)

It is constant beyond r ) rp and may have jump at r = rp.
This jump describes the contribution of the matter in the
transition layer to the total mass of the black hole. For
the particular choice a=12 [see Eq. (2.14)] the mass
function is continuous at r =r0. The value m (r) at r=0
vanishes. Equation (2.17b) shows that f =g everywhere.

One can easily generalize this model by assuming that
m (r) is an increasing smooth function of r with the
asymptotic behavior

r'/2I', r « I,
m(r)- '

m, r)&rp . (2.19)

The corresponding function g(r) is schematically shown
in Fig. 4. This function possesses two zeros: r+ ——2m
and r =I and its maximum is at r =r, . If in addition
we choose f (r) =g(r) (and hence T,'= T„") then the
geometry of spacetime is uniquely determined. The Pen-
rose conformal diagram for such spacetime is schernati-
cally shown in Fig. 5. This diagram in many respects
resembles the one given in Fig. 3. The spacetime con-
tains a closed world inside the black hole. After the
defiation stage the size of this world may become compa-
rable with l. In the general case this closed world is
nonhomogeneous and anisotropic. It may be completely
homogeneous and isotropic only if m(r)=r /2l begin-
ning with some value r0() I). If this value r0 is close

D. Closed-world formation inside the black hole

and asymptotic freedom

Before considering the interior of a black hole which
arises as a result of a gravitational collapse we make a
few general remarks. Tke model described above is based
on the assumption that the equation of state at the limit-
ing curvature is de Sitter type and the transition layer is
short. Now we show that our main conclusion about the
possibility of the closed-world formation inside the black
hole is not directly connected with both these assump-
tions and may be valid in a more general situation.

Let us write down the function g(r) —= Vr Vr which—
enters the line element (2.1) in the form FIG. 4. The function g(r) = —Vr.Vr.
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symmetric dust cloud. According to our assumptions
one may use the Einstein equations to describe the evolu-
tion of this cloud up to Planck curvatures. The metric
inside the matter during this evolution coincides with the
metric of a part of the closed Friedmann universe and
reads

ds =a (rl )( —dg +dy +sin y dao ),
where

(3.1)

a (rl ) =ap(1 —cosrl ) (3.2)

(3.3)

and 0&y &go & a /2 The. parameter g =ncorr. esponds
to the maximum expansion of the dust cloud when
a (m') =2ap. The internal mass of the cloud M is constant
during the evolution and is equal to

300
M = (gp —sinypcosgp) .

2

FIG. 5. Conformal diagram for the complete spherically
symmetric spacetime which corresponds to the metric (2.1) with

f =g for the function g (r) shown in Fig. 4.

enough to ro then the solution reproduces all the main
features of our model with the short transition layer. It is
interesting to note that the mass function obeying condi-
tions (2.19) naturally arises in a simple model considered
by Poisson and Israel in which the vacuum-polarization
effects are partly taken into account.

The asymptotic behavior m(r)-r /2I at small dis-
tances guarantees that spacetime is locally Euclidean at
r=0. It means that a regular closed world in the interior
of the black hole may arise instead of the singularity only
in the case when the mass m (r) at small distances van-
ishes. The quantity m(r) plays the role of the gravita-
tional charge. Vanishing of the gravitational interaction
at small distances is a characteristic property of the so-
called asymptotically free theories. The possibility that
the gravitation is asymptotically free and that there is no
singularity inside the black hole was considered in a num-
ber of papers. ' To summarize our discussion we can
conclude that one may expect the formation of a closed
world inside the black hole not only in our simple model
with a thin transition layer but in a general situation pro-
vided the curvature is limited and the gravitation theory
is asymptotically free.

After these general remarks we return to our simple
model and discuss the problem of a spherically symmetric
gravitational collapse.

The external (Schwarzschild) mass m of the cloud is less
than M due to the gravitational self-interaction and reads

os +0 .3 (3.4)

The radius of the cloud's boundary evolves according to
the law

r =a (rl )simp . (3.5)

At the moment of maximal expansion this radius is
r =2apsinyp. Then the boundary of the cloud begins con-
tracting and after passing the surface r =2m it enters the
black hole. The curvature inside the matter grows as

2

R =60 ap

a (g )
(3.6)

and at the moment g when
' 1/6

a (g )=a= 6O ap

a

' 1/3

(3.7)

the curvature reaches the limiting value (R =al ). At
this moment the radius of the boundary surface is

' 1/6 ' 1/3

P =f0= 15 2m

I
(3.8)

It is approximately the same value as rp given by Eq.
(2.6).

In accordance to our hypothesis we assume that after
some short transition layer the geometry in the region oc-
cupied by matter ~ould also become de Sitter type. It is
convenient to write the de Sitter line element as

III. GRAVITATIONAL COLLAPSE
AND BLACK-HOLE INTERIOR ds =a+(q+)( —dvP++dy +sin ydco ), (3.9a)

In a realistic situation when the black hole is formed
by collapsing matter, the spacetime structure differs from
that shown in Fig. 3. The difference is due to the matter
presence. For the sake of simplicity we consider the
spherically symmetric gravitational collapse and assume
that the collapsing matter is a homogeneous spherically

where

a+ (g+ ) = I /sing+ . (3.9b)

The jump conditions at the junction surface Xp which
separates (3.1) and (3.9) can be written in the form (see
Appendix C)
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da+
Q+

9+
1/2

da
a

dn- . :—
2

a+ (vP+ ) =a (vl ), S„=— 5„,
4m

where

1/2

(3.10)
and vacuum is regular and does not require any "shells. "
The corresponding jump conditions at FK lead to the re-
lations (3.4) and (3.5). The boundary of the T region
outside the matter coincides with the part of the event
horizon H+ and with the Cauchy horizons H&—. It is
nonstatic inside the matter. This boundary is shown in
Fig. 6 by the solid line.

1 ao
2 —1

a a

a —1
I

(3.11) IV. FINAL STATE OF EVAPORATING BLACK HOLE

For a particular choice a=15 one has V=1(2au/1)'~
and A, =O. In this case the solutions (3.1) and (3.9) are
smoothly sewed together without any "shell. " The ener-

gy density changes continuously while the curvature in-
variant % jumps at Xo from 151 to 241 . For the
other values of a the transition layer is needed. For
tip » 1 we have

A. =l '[(a/15)' —1] . (3.12)

r=0 . r-0

As earlier this relation shows that the assumption about
the short duration of the transition regime is noncontrad-
ictory.

The Penrose conformal diagram for the spacetime of a
black hole which arises as a result of the gravitational
collapse is shown in Fig. 6. It contains three distinct
domains denoted as E, S, and F in which the metric coin-
cides with Schwarzschild-Kruskal, de Sitter, and Fried-
mann metrics, correspondingly. The jump conditions at
the junction surface FS separating the Friedmann and de
Sitter domains are given by Eqs. (3.10) and (3.11). The
jump conditions at the surface KS outside the collapsing
matter were considered in the previous section [Eqs.
(2.11) and (2.12)]. The boundary FK between the dust

ds =f du +2du dr+r den

f—: Vr V—r =2m (u)r ' —1 .

(4.1)

(4.2)

Here v is the advanced time coordinate (at infinity

f = —1 and u = t + r). This metric is a solution of
Einstein's equations for the energy-momentum tensor:

1 m
2 d47Tl v

(4.3)

Such an energy-momentum tensor describes a spherically
symmetric fiow of radiation into the black hole. When
dm /dv (0 the energy density of this flow is negative. Of
course the metric (4.1), (4.2) is not the solution for a
spacetime of an evaporating black hole. Nevertheless, it
is often used as a model metric to describe the decrease of
the mass during the evaporation process (see, e.g. , Ref.
17).

When the black-hole mass is variable the spacetime
structure may di6'er from that described in the previous
section. According to our model this spacetime can be
obtained by attaching the Vaidya metric (4.1), (4.2) to the
de Sitter one. As earlier the junction surface Xo is defined

by the condition A =al . The invariant % for the
Vaidya metric takes the simple form

Let us discuss now what happens when the mass of a
black hole decreases due to the process of its quantum
evaporation. The radiation of energy to infinity in this
process is accompanied by the negative-energy Aux

through the horizon into the black hole. As a result the
mass of the black hole decreases. The exact solution of
the gravitation equations describing this process is not
known. In order to describe the black hole with variable
mass we shall use the Vaidya metric' which we write in
the form

48m (u)
6

(4.4)

and the equation of Xo is

1/6 1/3

r =ra(u):— 12 2m (v)
I

(4.5)

FIG. 6. Conformal diagram for the spacetime of a black hole
formed by a collapsing spherically symmetric dust cloud. The
domains corresponding to the Schwarzschild-Kruskal, Fried-
mann, and de Sitter solutions are denoted by K, F, and S, re-
spectively. The boundaries FK, FS, and KS which separate
these domains are also shown.

The jump conditions and the parameters of the "thin
massive shell" at Xo are given in Appendix B.

The junction surface Xo lies inside the apparent hor-
izon (f=0) until the advanced time reaches the value ui
defined by the condition ro(ui)=P '1, where
P=(a/12)' . lf the evaporation ends before this time
the resulting possible structure of spacetime is qualita-
tively the same as presented in Fig. 6 or as given in Fig. 7.
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0

pnration

FIG. 7. Conformal diagram for a possible spacetime struc-
ture in the case when after the end of a black-hole evaporation
there is a stable remnant with the mass m, „=l/2.

In this case the black hole of a minimum possible mass
rn;„)1/2 remains ("maximon"' or "elementary black
hole"' ). If the final mass m;„ is smaller than I/2 then
there arises a version of a "semiclosed" world. It is
necessary to stress that the "massive thin shell" approach
in such a situation becomes questionable and one must
treat the results obtained in the framework of this ap-
proach with cautions. If stable "maximons" do not exist
then one may expect that the remnant of a black hole
may just disappear at the final stage of evaporation. This
pure quantum effect would change the topology of space
and hence it does not allow the regular classical descrip-
tion.

white-hole creation may occur only if the de Sitter phase
decays on the surface r= const.

The considered model may be interpreted as "the
creation of the universe in a laboratory" via a black hole
which may be formed by contraction of matter up to high
density. This conclusion does not contradict the theorem
of Ref. 9. The reason is that in our case the assumptions
of this theorem (in particular the existence of a global
Cauchy surface as well as the condition of energy domi-
nance) may be violated.

In conclusion it should be stressed once again that the
consideration in this paper is based on rather restrictive
assumptions about the properties of the effective gravita-
tional equations at high curvatures. For example at small
distances it may become important that real spacetime
dimensionality is higher than 4. We cannot exclude also
the formation of a few or many closed baby universes in-
side a black hole. Nevertheless we hope that the de-
scribed model with a closed world in the interior of a
black hole may be useful and this picture or its main
features will survive in a future theory. If it happens then
the possibility (which was discussed earlier in connection
with the Reissner-Nordstrom or Kerr spacetime) "to
travel" from our Universe into a new one which is in the
absolute future with respect to us may still become open.
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APPENDIX A

V. FATE OF BLACK-HOLE INTERIOR

Now we briefly discuss the possible fate of the de Sitter
world which according to our model may be present in
the interior of a black hole. First of all it should be noted
that de Sitter space is usually unstable. If the hy-
pothesis about the limiting curvature existence is valid
then such an instability at the stage of deflation might be
suppressed. There is a possibility that at the end of
deflation when the closed world has Planckian dimen-
sions it can just disappear in the process of quantum an-
nihilation. If it does not happen then the decay of this
world which begins its inflationary expansion may create
a new macroscopic Universe in the same manner as it
happens in the usual inflation models. The result of
this decay depends on the effective hypersurface at which
it occurs and hence on the nature of the A term. In par-
ticular one may expect that a new macroscopic closed
Friedmann universe will arise as a result of this process.
In this case de Sitter space decays at some hypersurface
X2 (see Fig. 6). The spacetime in the future with respect
to X2 will coincide with the spacetime of an expanding
closed Friedmann universe. Another possibility is the
creation of a white hole in a new asymptotically flat
universe which lies in the absolute future with respect to
the original asymptotically flat space. Such a process of

ds '~' =g ' 'dx '~'"dx '~'" .pv (Al)

We assume that the surface X is either spacelike or time-
like. 2' The Gaussian normal coordinates (q,y' ') can be
introduced in U' ' in which

ds ~si2 = —v d 2+ $ Isi(q ls+)dy jsi'dy IsV (A2)

q=O is the equation of X, v=+1 for the spacelike sur-
face, and v= —1 for the timelike surface. Denote by n"
the unit vector which is normal to X and is directed from
U' ' to U'+'

n n"= —v.P (A3)

In the Gaussian normal coordinates n "0 =8 .
The three-geometries dh ' ' induced on X by the four-

dimensional metrics g„' ' can be written as

dg ~sn=gIs~(p ~s+)d 'ls~'dy'jsii
IJ

In this appendix we collect the main formulas of the
massive thin shell approach. Let X be a surface which
separates two spacetime domains U'+' and U' '. We
shall use 5 to distinguish the quantities which are defined
in these domains by assuming that 5=+ for U'+' and
5= —for U' '. Thus the line element ds' ' in U' '

reads
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dh =h; (x")dy'dyJ . (A5)

The external curvature E„'„'of the surface X is defined
as

In general relativity these metrics must be isometric
while the external curvatures may have jumps at X. One
can use the freedom in the choice of the coordinates y' '
in order to imply that h +'=h . We write the three-
dimensional metric dh on X in this coordinate as

APPENDIX B

ds =f du +2 du dr + r dc@ (B1)

This appendix contains the details of the calculations
of the external curvatures and jump conditions at the jun-
tion surfaces in spherically symmetric spacetimes for the
cases which are considered in the paper. For our purpose
it is convenient to write the metric in the form (see, also,
Ref. 22)

g (&) p(&)ap(&)Pq(f'))n
pv p v a np &

where

P ' '"=5" vn n "—

(A6)

(A7)

where dao =d8 +sin 8dg, f=f (r, v)= Vr —Vr, and u

is an advanced time coordinate which is normalized at
infinity (where f = —1) by the condition Vr Vv= l.

Let X be a surface in this space defined by the equation
4=0 where

In the Gaussian normal coordinates (A2) one has 4—:R(u) —r . (B2)
(5)

1 Bh,"
K"

2 Bq
(A8)

Gpv =R pv p g p,vR =8m'Tpv (A9)

which in (3+ 1}form read

G. ='"G.—va (K 5' K} v. [—KK. —~5' (K K" +K. ')]i j 2 j k m

To obtain the jumps of the external curvature at X one
can use Einstein's equations

dh =ve (u)dv +R (v)dao

=vdq +p (q)da)

where

ve (u)=f(R(v), v}+2 =F(u}+2dR dR

(B3)

We denote by U'+'(U' ') the domain of the spacetime
where 4) 0 (4 (0). The internal geometry on X which
is induced by the metric (B1}is

=8m T',

GJ"=v(KJI; K~~ )=8n—TJ",.

(A10}

(A 1 1)

v=sgn(ve ),
dq =e(u)dv, p(q)=R(u(q)) .

(B4)

G„"= —
—,
' ' 'R ,' v( K K—)'K—/)= 8m—T„", (A12)

where ' 'G'=' 'R' ——'5' ' 'R ' 'R' is the Ricci tensor for

h;, , ( ) ~; denotes the covariant derivative with respect to
the metric h; and A .:: =n„A . ::'. If we denote

[K,, ]=K,',.+' —K,.', (A13)

then by integrating (A10} over q in the vicinity of X we
get

The surface X is a spacelike one in the case v=+1 and it
is a timelike surface for v= —1.

The unit vector n" which is normal to X and directed
from U' ' to U'+' is

n"= ——1,F+,0,0
v

dv
(B5}

It is convenient to consider this vector as one of the vec-
tors (e~o) of the tetrad eg (8=0,1,2,3) the other vectors of
which are defined as—v([K& ]—5J [K]) = 8mSJ',

where

(A14)

(A15)

e~~ =e '( l, dR /du, 0,0),
e~z =R '(0,0, 1,0},
et3 =(R sin8) '(0, 0,0, 1) .

(B6)

By calculating the jump of Eq. (Al 1) at X and using Eq.
(A14) we get These vectors obey the normalization conditions

SJI, = [T,"], — (A16)
e"e- =q-

bp Qb

where

(B7)

h [T"]=T'+' "—T'i i i'
Equation (A14) gives the relation between the jumps of

the external curvature at X and the integral characteris-
tics of the "shell" while Eq. (A16) provides the "equation
of motion" of this "shell. " If the field equations
(A10)—(A12) are satisfied in both domains U'+' and U'
then other relations which can be obtained from
(A10)—(A12) are just identities.

} 7sd~i g( —av, v, 1, 1) . (B8)

The external curvature tensor E, . for the hypersurface
X has the following nonzero tetrad components:

v ay 1 aIK-'= —P+ —" + ", K =K- =op -', (B9)0' 2 dr 2e Bu
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where

V dRo. = —n"V r =—F+
e dU

(810)

( ) =e"-, V„( }=e '
( ).

dU

Using Eqs. (810) and (811)it is easy to find that

(811}

and the overdot denotes the differentiation in the direc-
tion of e~1:

then

S,' =A./4n, S2 =S3=(«+A, )/8m . (820)

f ' '=2m (u)r ' —1

and we have

(821)

It is easy to verify that [T;"]=0 and correspondingly Eq.
(A16) is satisfied identically.

Now we turn to the case when the surface X is the
boundary between the Vaidya (5= —) and de Sitter
(5=+ ) metrics. For this case,

e=o+vp . (812)

f' '=2mr

It is easy to verify that

(813)

We discuss at first the case of the short transition layer
which separates the Schwarzschild (5= —) and de Sitter
(5=+ ) metrics and obtain the parameters of the corre-
sponding "massive thin shell. " In this case R(u)=rv,
I & rp (2m. The Schwarzschild metric can be rewritten
in the form (81) where

and

vej 'z(u)=2m (u)/R (v) —1+2dR/du,
o' '= v(e' ') '[2m (v)/R (u) —1+dR /dv),

vm+ m
P1 e( ) P2 6( )P

( —)
SC(-) 2=Sr(-) 3=

P
3

(822)

(823)

and

e=e' '=—(2mr ' —1}'0

cr =o' '—:(2mr ' —1)'0

=dq +r

(814)

(815)

f '+ '= (r lI) —1,
ve'+' =[R (u)/I] —1+2dR /du, (824)

It is easy to find the following expressions for the de Sit-
ter metric:

m 2m —1
1

rp rp

' —1/2

1 2m)2=X(
2 3

ro rp

1/2 (816)

The nonzero components of the extrinsic curvature E(,
are equal to

and

cr'+'=
( ) I [R (u)/I] —1+dR /du I,

g(+) 1 — "+ P g(+) 2 g (+) 3—1 .. v ~(+ )

(+) P ~2 2 3

(825)

For the de Sitter metric we find
For the jumps of the extrinsic curvature we obtain

f(+ 'I („/t)2

dI ~+~2=dq2+r2dm2,

' e'+= 'o'+=[(r /l)z —1]1/2 (817)

«:—[K', ]=, , p+

I,=—[K ]=p '(o'+' —o' ')

and

1 .. Vm m
( —) P 2 ~( —)

(826)

K'+''= —[(r /I) —1]1 )p 0

K'+ "=K'+' '= [(r /I)' —1]' '1

0

If we introduce the notation

Si =A/4n, S2=,Si =(«+A, )/8n .

The "conservation law" (A6) takes the form

Ap +(A, —«)pp= —ve 'm

In the simplest case, when A, =O, Eq. (828) gives

V dm

PE dP

(827)

(828)

(829)

+—[(2m /ro ) —1]
rp

(818) Taking into account (826), we find in this case that
a' '=cr'+' and correspondingly [see (812)] e' '=e'+' or

A,:—[K2 ]= —
[ [(2m /ro ) —1]'1

rp
p=(2m (u)/I )' I . (830}

—[(r, /I }'—1]'"I, (819)
If we use this equation, then Eq. (829) can be written in
the form
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3vp (831)

APPENDIX C

In this appendix the problem of matching the closed
Friedmann universe metric to the de Sitter one is con-
sidered. We write the metric for these spaces in the form

ds' ' =as(ris)( d—tls+dy +sin ydto ) . (Cl) p -t g (ON.~
One has, for the closed Friedmann universe (5= —) with
dustlike matter (p =0),

a (ri ) =an(1 —cosri ),
while for the de Sitter space (5=+ },

a+(g+)=I/sinai+ .

We suppose that the junction surface is de6ned by

g&=g&=const .0

(C2)

(C3)

(C4)

p=0

t'» 0
=0

The three-geometries induced by the metrics (Cl) at this
surface are identical provided

a (g ) =a+(xi+) . (C5)

The components of the external curvatures I(' '~ can be
written as

FIG. 8. Conformal diagram for the spacetime of the
Friedmann-de Sitter universe. The surface Xo is a junction sur-
face at which the Friedmann metric is matched to the de Sitter
one. The T region shown in this picture corresponds to the
particular choice of the parameter a= 15.

g(S) i
J

1

as(mls) drys
(C6) g=g*(g )=—,'nk —,'(ri —tr), (C10)

Using this expression one finds

S' = — 5'. ,
4m

y=g+(g+) = —,'m+ —,'(il+ —n/2) .

For the particular choice tz= 15 (A, =O) one has

(Cl 1)

A, =(a+ da+/dq+) 0
—(a da /di) )

Q+ g+

(C8)

The junction condition (C5) and the explicit expressions
(C2) and (C3) for as(ris) allows one to rewrite Eq. (C8) in
the form (3.11).

We have defined the T region as a domain where
Vr Vr(0. The boundary BT of this domain is the sur-
face where V r Vr=0. One can write the equation for
dT in the spacetime (Cl) as

(C12)

The conformal diagram for spacetime for this case is
shown in Fig. 8. The spacetime structure is qualitatively
the same for other choices of the parameter a. The main
difference is that in the general case the relation (C12) is
violated, so that there is a nontrivial part of the surface
BT which lies on Xo.

It is also easy to show that when one considers
not the complete closed world but only part of it
(0~&~go&tr/2) then the surface BT intersects the
dust cloud boundary y =go at the point where

as 'das/des=+coty . 7' —277l (C13)

The solutions of these equations can be written in the
form

Here r and m are given by Eqs. (3.5} and (3.4), corre-
spondingly.
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