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The QCD light-cone Hamiltonian in one space and one time dimension is diagonalized in a
discrete momentum-space basis. The hadronic spectrum and wave functions for various coupling
constants, numbers of color, and baryon number are computed.

I. INTRODUCTION

Quantum chromodynamics (QCD) potentially de-
scribes all of hadronic and nuclear physics in terms of
quarks and gluons as fundamental degrees of freedom.
Many features of the theory are consistent with experi-
ment, especially at large momentum transfer where
asymptotic freedom allows perturbative predictions.
However, confrontation with the most significant and in-
trinsically nonperturbative aspects of the theory, its pre-
dictions for the spectrum and wave functions of hadrons,
as well as the mechanisms for confinement and jet had-
ronization still must wait for theoretical solutions.

In this paper, the application to QCD in 1+1 dimen-
sions of a general nonperturbative approach to field
theory [discretized light-cone quantization (DLCQ)]
developed in Ref. 1 is presented,>? and the prospects for
3+ 1 dimensions are briefly discussed.

SU(N) gauge theories restricted to one spatial dimen-
sion and time were introduced by ’t Hooft* and have been
studied extensively, both analytically and numerically,’
predominantly for the case when N is large. There are
some special properties of these theories peculiar to 1+ 1
dimensions which should be mentioned for the sake of
orientation. Because there are no transverse directions,
the gluons are not dynamical, and (in the 4 ¥ =0 gauge)
their presence is felt only by the constraint equation they
leave behind. Likewise the quarks carry no spin. The
fermion field may be represented as a two-component spi-
nor, and chirality for massless fermions identifies only the
direction of motion. The coupling constant g carries the
dimension of mass, and for one quark flavor of mass m,
the relevant parameter is g/m (Ref. 6). After the sub-
traction of infinite constants, the theory is finite. Finally,
the restriction to one spatial dimension produces
confinement automatically, even for (1+ 1)-dimensional
(QED), ;. The electric field is unable to spread out and
the energy of a nonsinglet state diverges as the length of
the system.

In spite of these idiosyncrasies, these models possess
certain qualities to commend their study, not the least be-
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ing tractability. There are only so many opportunities in
a lifetime to solve, albeit numerically, a confining field
theory with arbitrary coupling from first principles.
With solutions in hand, conceptual questions, points of
principle, or approximation schemes which do not de-
pend on the dimensionality of the model may be ad-
dressed.’

Also, these models provide a test bed for approxima-
tion schemes and numerical techniques which may prove
useful for realistic problems and a check on approxima-
tions, such as the large-N expansion, already in use. Fi-
nally, if these models cannot be solved, there is no hope
for solving QCD in 3+ 1 dimensions.

II. LIGHT-CONE QUANTIZATION

Quantization on the light cone is formally similar to
standard canonical equal-time quantization, but with a
few technical differences which nevertheless make life
much easier. Given a (Lorentz-invariant) Lagrangian
L(x*), a new variable x * =x%+x 3 is defined to play the
role of time, along with new spatial variables (in four di-
mensions), x ~=x°—x? and x, =(x',x?). Independent
degrees of freedom are identified by the equations of
motion. These are initialized to satisfy canonical commu-
tation relations at x ¥ =0, and the creation and annihila-
tion operators from their momentum-space expansion
define the Fock space. The momenta conjugate to x —
and x,, P* and P, respectively, are diagonal in this
space and conserved by interactions. P~ acts as a Hamil-
tonian; in general it is complicated, dependent on the
coupling constant, and it generates evolution in x *. Di-
agonalizing it is equivalent to solving the equations of
motion.

The mass-shell condition, p?>=m?2, for individual quan-
ta implies that p ~=(m2+p2)/p™*, so that positive
(light-cone) energy quanta must also carry positive p *.
This seemingly innocent detail is crucial; the positivity of
p " combined with its conservation is responsible in large
part for the simplicity of this approach. First, x*-
ordered perturbation theory becomes computationally vi-
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able because a large class of diagrams which appear in
the time-ordered analog vanish.® These include any dia-
gram containing a vertex in which quanta are created out
of the vacuum. Since all p * are positive, at such a vertex
the total momentum cannot be conserved.

More importantly for the work described here, but by
essentially the same reasoning, the perturbative vacuum
is an eigenstate of the full, interacting Hamiltonian, with
eigenvalue zero. Quanta cannot be produced from the
vacuum and still conserve p* (Ref. 9). One very desir-
able feature of this remarkable fact is that not only is the
ground state trivial, but also that all the quanta occurring
in higher states are associated with meson and baryon
wave functions rather than disconnected pieces of the
vacuum.

Finally, light-cone quantization simplifies the numeri-
cal work, especially in 1+1 dimensions. The analysis is
essentially frame independent; no absolute Lorentz frame
is specified.! The system is quantized in a box of length
2L in the x ~ direction with appropriate boundary condi-
tions so that momenta are discrete and Fock-space states
denumerable. For the fixed total momentum P,
the relevant dimensionless momentum will be
K=(L/2m)P". To see how K restricts the space of
states, consider K =3, which must be partitioned among
the quanta in each state. The only three possibilities are
(3), (2,1), and (1,1,1). We can contrast this with equal-
time Fock states of definite P'; for equivalent numerical
momentum, partitions will include not only those
enumerated above, but also 4,—1), (104,—101),
(5,5,3,1,—1,—10), and so on. To keep the number of
states finite, an additional cutoff in momentum must be
introduced, whereas this is not necessary in the light-cone
case.

Not only does a fixed K act implicitly as a momentum
cutoff, it also severely limits both the total number of
states of definite momentum and the number of quanta in
each individual state, as the example above demonstrates.
K serves one more role. The continuum limit L — o is
equivalent to K —c as the physical momentum P*
remains fixed. The size of K determines the physical size
of the system, or equivalently, the fineness of the
momentum-space grid.

IIL. SU(N),,,; ON THE LIGHT-CONE

An SU(N) gauge theory is defined by the Lagrangian
=—L1FMF. + (i D—m)Y . (1

Fj, is the field-strength tensor F,=d,47—3,4;
—gf® A} A4S and the covariant derivative is defined as
iD,=i au—gAZT“. In two dimensions, the fermion field
¥=(¢,(x).,¥g(x).) (in a representation in which y° is
diagonal) is a two-component spinor in the fundamental
representation. The subscripts L and R identify chirality,
which for massless fermions specifies only direction of
motion.

A useful gauge choice is 4 1 =0. In this gauge there
are neither ghosts nor negatively normed gauge bosons,
so the Fock-space quanta, and therefore the wave-
function constituents are physical and positively normed.
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Also, in 1+1 dimensions, this gauge choice is Lorentz,
but not parity, invariant. The equations of motion are
then

id_¢Yp=imyy , (2)
—8L A =gyR T =1gj ", 3)
i0,Yp=38A4 TYg+imy , (4)

7 —a

3,347 =gy, T, —1ef™D_A "4 ‘=1igj
(5)

Only Egs. (4) and (5) are dynamical; these will be generat-
ed by the Hamiltonian P~. Equations (2) and (3) are con-
straints, as they involve only derivatives in x ~. At each
time x *, both ¢, and 4 ~* may be solved for in terms of
Yr by inverting these derivatives with appropriate
Green’s functions.

The field 5 is evidently the only independent degree
of freedom and as such is the only field quantized.'!

The standard canonical anticommutator

(4
(R (x)c s ¥RV 4 _
may be implemented at x * =0 by expanding in terms of
creation and annihilation operators:
_ 1 <
( X )c —_—
wR 2L n=1/ 2

2,3/2,...

L+ =88(x "=y ") 6)

—ilnw/L)x ~
(b, e

+dlcei("ﬂ/1')x_) . N

The operators which generate translations in x* are de-
rived from the energy-momentum tensor:

pr=1[dx"©%". (8)

The momentum conjugate to x ,P ™ =2,,k,,+(b:cb,,’c
+d,:r,cd,‘;'), is diagonal while P ™, which generates evolu-
tion in x ¥, is in general complicated and dependent on
the coupling g. Diagonalizing P~ is equivalent to solving
the equations of motion. In this discussion, the role of
boundary terms is explicitly ignored. A more complete
discussion is given in Ref. 12.

The full Hamiltonian P~ in the space of color singlets
may be divided into P~ =mH,+g*H,. The free Hamil-
tonian, m2H ), assigns an energy m2/k " to each quark,
while the interacting piece is given by

gZHI:_i_ngdx—dy-Ix—_y—lj—i-a(x——)j+a(y—) ,
9)

where the current is the normal-ordered product
jTe=2:¢% T%:. The potential |x ~—p ™| is the result
of inverting the constraint equation (3) for 4 .

Finally, the interaction may be divided into a part :H;:
which is entirely normal ordered [Fig. 1(b)] and a remain-
ing diagonal part H; g,, [Fig. 1(a)] which contains a
quark mass renormalization. The linear potential in posi-
tion space becomes the instantaneous gluon propagator
(1/p*)? in momentum space. Interactions in which zero
p* are exchanged couple to the total charge operator Q¢
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FIG. 1. Interaction vertices.

and so are discarded in the color-singlet sector. Typical
four-quark interactions in :H;: have the form

2
L g" 1 |gea5c3_ 1 gesg
2r w2 | 41 N 4
anl-+-nz,n3+n4 Tc“b + o
X 2 TRy TRpcyTg.cpTAy
n=1/23n,... (ny+n3)

(10

This quantization procedure follows closely that of the
Schwinger model discussed in Ref. 13, and so is only sur-
veyed here. For a more complete discussion including
the complete Hamiltonian, see Ref. 12.

IV. THE PROGRAM

In order to evaluate and diagonalize P~ numerically,
the system is quantized in a box in x = of length 2L and
boundary conditions are selected. Consequently, the mo-
menta are discrete and denumerable. In order to expand
Y in a complete set of plane-wave solutions of the free
equations of motion, antiperiodic boundary conditions
are employed. Periodic conditions are not convenient
since the term with k * =0, necessary for completeness, is
not a solution of the free equation ktk~=m? except
when m is zero.!* The field ¥z expanded in operators
with discrete momenta as in Eq. (7) is then inserted in Eq.
(8) to produce the discretized Hamiltonian P .

The computer program is set up to run for arbitrary
number of colors N, baryon number B, and numerical
momentum K =(L/27)P" (Ref. 15). Given these, it
constructs the Fock space by generating all possible dis-
tributions of K among quarks in color singlets. In gen-
eral, this construction is overcomplete. The program
then evaluates and diagonalizes the inner-product matrix
(i|j), identifying redundant states by zero eigenvalues
and removing them. Those states remaining are ortho-
normal and complete.

The Hamiltonian matrix i|H|j) is evaluated in this
basis, with the color contractions performed diagrammat-
ically. Because the light-cone Hamiltonian breaks up
simply into H, multiplied by m? and H, by g?, the corre-
sponding matrices are stored separately. Altering g (or
m) involves only multiplying these matrices by the new
parameter prior to diagonalization, with almost no addi-
tional cost in time.!® Setting g/m, combining H, and
H,, and diagonalizing produces the full spectrum, Fig. 2,
subject to the limitations imposed by discretization. In-
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FIG. 2. Spectra for N =3, baryon number B =0, 1, and 2 as
a function of g /m; K fixed.

cluded in the spectra are not only single mesons and
baryons and their excited states, but also multiple-hadron
scattering states. In each case a large number of massless
mesons and baryons appear in the strong-coupling
(small-mass) limit. The spectrum obtained is the full ha-
dronic spectrum of QCD in one space and one time di-
mension, consistent with the resolution parameter K.

V. WAVE FUNCTIONS

Diagonalization gives not only eigenvalues but also
their eigenvectors; i.e., the light-cone hadronic wave
functions. Because the perturbative vacuum is also the
fully interacting vacuum, all quanta in the wave functions
are associated with mesons and baryons, making them
simple to interpret and straightforward to employ in cal-
culations.!” Expressed in terms of the light-cone momen-
tum fraction x =k * /P, they are invariant under lon-
gitudinal Lorentz boosts, and so, in 1+ 1 dimensions are
Lorentz invariant. Parity is still conserved but more
complicated to implement, as it is not respected by the
quantization scheme. The parity of nondegenerate states
may be identified by tracing the state from weak cou-
pling, where parity is simple, or by examining matrix ele-
ments of appropriate odd or even operators.'® For the
special case of gg wave functions, odd (even) parity corre-
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sponds to evenness (oddness) under interchange of the
constituents’ momenta.

Finally, these wave functions are universal; they con-
tain all of the information about the hadrons. Once com-
puted, masses, form factors and inclusive and exclusive
scattering amplitudes are reduced to computing a few in-
tegrals. For example, in four dimensions, the ratio

R(Q))=(0+ /o + ) 1

e~ —hadrons e efvﬁ,tﬁu_
is a textbook example of a quantity calculable in QCD
when Q2 is large. The relevant matrix element,
(e?/Q*)Dy ,u <hadrons|J% |0) is typically squared and
related to vacuum-polarization graphs, which are then
computed as an expansion in a,(Q?). However, given the
appropriate hadronic wave functions, this matrix element
could be computed directly at any Q2. A feature such as
the p resonance would then appear as an enhancement in
the density of states in the 77 continuum. The experi-
mental resolution 8s /s can be matched to the resolution
1/K of the DLCQ analysis.

The valence wave functions for the lightest N =3
meson and baryon are displayed in Fig. 3 by means of
their quark structure functions:

q(x)=K{($(K)|bb, 16(K)) , (12)

where x =k /K. In deep-inelastic scattering x can be
identified with the Bjorken variable xbj=Q2/2p-q. For
weak coupling (m /g =1.6) the quark mass dominates
p " and so momentum peaks around equal sharing among
constituents: x =1/2 and 1/N for the meson and
baryon, respectively. Stronger coupling tends to broaden
the distribution.

In general, in a quantum field theory the wave func-
tions contain higher-Fock components with additional
numbers of quarks. Figures 4(a) and 4(b) illustrate the
contribution to the quark structure function from the
component of the lightest N =3 meson and baryon wave
function with an additional ¢g pair. Their contribution is
suppressed relative to that of the valence wave function
by 2 to 4 orders of magnitude. Because P must be dis-
tributed among more quanta, the average x is lower. The
characteristic bump structure may be understood in
terms of gg pairs splitting off of the valence quarks, at
least for weak coupling.!” Figure 4(b) also includes the
antiquark functions and gives an indication of what may
be thought of as the pion content of the baryon. Figure
4(c) presents the (negligible) contribution from the Fock
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FIG. 3. Valence structure functions for N =3 baryon and
meson at m /g =0.1 and 1.6.
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FIG. 4. Higher-Fock contributions to N =3 structure func-
tions. (a) Lightest meson. (b) Lightest baryon, including anti-
quarks. (c) Baryon: contribution from two extra quark pairs.
The curves are intended to guide the eye.

state with two extra quark pairs. It is an interesting phe-
nomenological possibility that the true nonvalence Fock-
state contribution to hadronic structure functions in 3+ 1
dimensions actually has the oscillatory shape of the type
obtained here.

Of course, the spectrum consists of many states beyond
the lightest. Because the quanta are associated only with
the hadron, the wave functions need not be disentangled
from the vacuum and are often relatively simple to inter-
pret. In Fig. 5, the first three (weakly coupled) meson
wave functions (or, more precisely, structure functions)
are clearly the first three radial excitations of a predom-
inantly ¢q state. In fact, in the nonrelativistic limit these
become the momentum transforms of Airy functions.?’
Figure 5(d) presents the eleventh state, which is located
in the continuum. The dominant contribution is from
two qg pairs peaked at x =4, with a mass twice that of
the first state; it clearly represents a pair of the lightest
mesons. Figure 6 presents a similar picture for the N =3
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FIG. 5. (a)-(c) First three states in N =3 meson spectrum for
m /g =1.6,2K =24. (d) Eleventh state.
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FIG. 6. (a)-(c) First three states in N =3 baryon spectrum,
2K =21. (d) First B =2 state.

baryons. The pair of baryons in Fig. 6(d) is selected from
the B =2 spectrum. For strong coupling, it is more
difficult to disentangle states due to the presence of a
large number of very light mesons and baryons.

VI. MASSLESS MESONS AND BARYONS
IN THE m /g —0 LIMIT

The massless hadrons at zero quark mass may be un-
derstood by studying the momentum-space transforms of
the SU(N) currents (at x 7 =0)

L i -, _
V;fzé—f_de_e itkm/L)x ™ j+a(x =) (13)

which satisfy the Kac-Moody algebra [V¢,V}]
=ifbeve +—;—18""6k +10- The currents j * are defined
by point splitting along x ~; for 4 ¥ =0, the path-ordered
exponential included to ensure gauge invariance reduces
to one. The algebra may be extended to include the U(1)
current j*=(2/N)"2:¢g:. The transformed operator

V, commutes with the other SU(N) elements, and the re-
|

1 [ tert
VK—1V1|0)=_2_1§; 2 (ch—ndn,c—bnch—N,C)—‘_
n=1/2

The qg piece is odd; therefore this state is a scalar, as a
product of pseudoscalars must be. All the massless
meson wave functions for a given K may be constructed
in this manner; parity will alternate with each additional
V.

If the gauge group had been U(X) rather than SU(N)
(Ref. 21) an additional term associated with the extra
U(l))

2

L g <t
-_— 2 19
Yy kglakak , (19)

K—1—-(172) 1-(1/2)

2

m=1/2
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lated operator a, =(2/k)'/%e(k)V, satisfies the free bo-
son commutation relations [ak,a;r]=8k’ I

The interacting part of the Hamiltonian is greatly
simplified when expressed in terms of these operators:

2
— L vy~ —v =ity —V;tagy, —
P; me_de dy lx "=y litUx ity Ty (14)

becomes
L g> & 1
—zﬁ?ﬂjkzz_m;?Vf %k - (15)

Because V/_,=0Q¢ the contribution at k =0 is propor-
tional to the total charge Q°Q“ and so may be discarded
in the singlet sector.

The ¥V, are color-singlet bilinear operators in ¥, and
so may be used to create mesonlike states with momen-
tum Pt =27k /L. In the limit where m /g is zero, the
entire Hamiltonian is given by Eq. (15). Because the V,
commute with the ¥} which appear in P,

2k

L
Not only is the state created by acting with ¥, on the
vacuum an exactly massless eigenstate in this limit, but
states formed by repeated applications are also exactly
massless. Furthermore, acting with ¥V, on an eigenstate
of nonzero mass produces a degenerate state of opposite
parity as k approaches zero. These arguments are in-
dependent of the value of the numerical momentum K
and so give an exact continuum result.

Just as the existence and number of massless states is
most simply discussed in terms of the ¥V, so also are the
wave functions of these states. Applying one ¥V, to the
vacuum

M2V, |0)= [P,V 1l0)=0. (16)

1 K —(1/2)

S bi,dll0) (17)

VK|0> e ae———
\/2N n=1/2,3/2,...

yields a continuum wave function of ¢(x)=1 (where
n/K —x). Because ¢ is even under the interchange of x
and 1—x, this state is a pseudoscalar. The wave func-
tions of momentum K created by applying V twice are,
for any ! <K,

te +
2
b[(—l-*-mdm,c2
n=1/2

t
b,ilnd,[c] o) . (18)

[

would appear in P~. The a; satisfy free bosonic commu-
tation relations, and this additional interaction is there-
fore the discrete light-cone Hamiltonian for free bosons
of mass squared §2/21r. These formerly massless states
created by the a, are promoted to the free massive bo-
sons found in the Schwinger model and discussed in Refs.
13 and 22. Though now massive, the wave functions for
these states remain unchanged.

Note that while the entire U(1) spectrum may be built
up entirely from these noninteracting bosons,'* for U(N)
or SU(N) they describe only part of the spectrum; these
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are the massless mesons for SU(N). In addition there are
massive states which include excited g7 pairs.
Similarly, the composite baryon field

_ L — —ilkn/L)x ™ Yoy, oy, te _
Bk_—..-%—f—de e Hlear/L)x ECIH.CNIPRl(x ) lﬁRN(x )

(20

commutes with the V¢, and, in the limit m /g —0, with
the Hamiltonian P . As in the case for mesons, this field
creates an identically massless baryon. Repeated applica-
tions on the vacuum produce a massless state with arbi-
trarily desired baryon number. Furthermore, degenerate
states with the same baryon number may be created by
acting with the massless mesonic operators ¥, —, in con-
junction with the B,. Again, these results are indepen-
dent of K and are true in the continuum limit. The (un-
normalized) wave function associated with this massless
baryon is

1 te,

B, |0) =2(2—L)“_v—_1—)_/7,,2l8’(’2n'661 : ~~chnl

te
S b 0) .

21

Whether this state is a fermion or boson depends on N
being odd or even. The quark distribution derived from
this wave function for N =3 becomes 6(1 —x) in the con-
tinuum limit; this x dependence is clearly evident in Fig.
3. The general expression for the quark distribution for a
single baryon in the m /g —0 limit is

g(x)=N(N—-1)(1—x)V"2. (22)

For N =2, q(x)=2, which apart from the normalization,
is identical to the meson distribution for all N.

VII. NUMERICAL ACCURACY

A great deal of information about solutions in the con-
tinuum limit may be extracted by restricting the Fock
space to a single g7 pair. This is a good approximation to
the lightest meson and its radial excitations, but it
neglects a large part of the low-lying spectrum when g /m
is large.

Restricting the eigenvalue equation

M ¢(P))=P Pt|¢p(P")) 23)

to the ¢g subspace and taking the limit K — oo yields the
integral equation?’

2 ) =m2 | L1
Mp(x)=m . + T—x d(x)
2 [ a2
_ g |N°—a 1, d(y)—é(x)
T 2N Pfody (y —x)?
2
(1—a)N 1
+E | [y e (24)

For SU(N), a=1, and a=0 for U(N). The continuum
wave function ¢(x) is defined by
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dx
)=
¢ fO [47Nx (1—x)]'"?
X¢xble_ .dl . 10). (25)

This equation incorporates all of the leading-order dy-
namics of the large-N approximation.* Because it could
be derived from the discretized Hamiltonian in the con-
tinuum limit K — o, it demonstrates that this limit is
sensible. Also, it shows trivially that, when m =0,
#(x)=1 is an eigenfunction with M?>=0 for SU(N),
g2/2m for U(N). The latter is the well-known Schwinger
model boson.

More importantly for this work, it shows the error due
to discretization as that of an integral evaluated numeri-
cally on a regularly spaced grid, with spacing e=1/K.
This is not normally an efficient method, and this case is
not even normal. In addition to the typical errors of or-
der €", n 22, the principal-value-regulated singularity in
Eq. (24) induces an error of order €. Also, for small x,
#(x) < x4, with a given implicitly by*

7T"'l2

N?—1
2N

1—amcotlam)=
2

, (26)

and ranging from zero (when m /g =0) to one (g /m =0).
This nonanalytic end-point behavior produces additional
a-dependent errors. As a result, a physical quantity such
as a mass measured at finite K behaves as

kT

M(I/K)—M(OH-?%- Kita

27

with M (0) the continuum limit. This behavior, as well as
Eq. (26), apply as well to baryons and higher-Fock
states.'? Knowing Eq. (27), the convergence may be im-
proved significantly by Richardson extrapolation; that is,
by computing M at n different K and fitting to Eq. (27).
An estimate of the error in determining M (0) is then
given by the nth term. This extrapolation has allowed for
meaningful numerical results from the relatively low
K =10, as well as for error estimates.

The masses of the lowest-lying states are generally of
the most interest and are the quantities most likely avail-
able for comparison from other methods, especially lat-
tice calculations. The masses of the lowest-lying meson
and baryon for N of 2, 3, and 4 at a selected set of cou-
plings are listed in Table I and displayed in Fig. 7.

In all cases, that is at every m /g and K, the lightest
N =2 meson and baryon have identical masses, and
M . /M, =1 for N=2 is an exact result. The results
quoted in Table I are extrapolations to continuum results
by matching to a series in 1/K for 2K in the range of
roughly 16-24, and the numbers in parentheses give the
magnitude of the last term in the series fit. For
m /g 0.2, these are reasonable estimates of the actual
error. Beyond this, the largest K employed is likely not
large enough for these to be more than a rough guide.
However, when m /g =0 identically, the lightest state for
any N or B is exactly zero, independently of K.
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Finally, these data may be compared with previous cal-
culations. Figure 8(b) demonstrates the rapid meson
mass approach to the large-N limit from Ref. 4 as N in-
creases from two to four. In Fig. 8(a), points from the
Hamiltonian lattice calculation of Hamer for N =2 agree
well with the light-cone results.’ This is gratifying in
that, while both techniques possess peculiarities, they are
peculiar in different ways. Also, the ratio of lightest
meson to baryon masses in the strong-coupling limit for
N =2, 3, and 4 are consistent, to within the roughly 10%
error, with the ratio 2sin[7/2(2N —1)] derived by bo-
sonization.?*

VIII. LARGE-N APPROXIMATION

Most previous work on this model employed the large-
N approximation to leading order. By obtaining numeri-
cal solutions at finite N, the validity of this approxima-
tion for interesting values of N such as three can be test-
ed. From Figs. 7 and 8, for weak coupling (large quark
mass) it is quite good. The meson mass is already well
approximated for N =2, and, as expected, the baryon
masses increase proportionally with N. The low-lying
states are indeed ¢g excitations; higher-Fock contribu-
tions are negligible. For strong coupling (small mass), the
approximation is not as reliable; the effective expansion
parameter g>N /m? is no longer small.?> Light baryons
exist for all finite N and so may not be neglected. The
low-lying meson spectrum is dominated by states with ar-
bitrary numbers of quarks rather than ¢g excitations. Fi-
nally, for U(N), the meson mass (as m /g —0) of g2/27 is
neglected in the large-N limit.

- ()

@n/N)"2 Mg

0 0.5 1.0 15
(2n/N)y"2 mig

FIG. 8. Comparison of N =2, 3, and 4 meson masses with
large-N and lattice calculations.

IX. PROSPECTS IN FOUR DIMENSIONS

In three-plus-one-dimensions, the application of DLCQ
to QCD becomes much more challenging, as introducing
transverse directions greatly increases the degrees of free-
dom. Quarks with spin and physical, transversely polar-
ized gluons must be included. Both carry transverse
momentum, which may be discretized on a Cartesian
grid, pi =(2m/L )n!. The n! can be negative, and must
be restricted by a cutoff. However, in principle, diagonal-
izing the light-cone Hamiltonian will yield not only the
spectrum of QCD, but also the light-cone Fock-state

TABLE 1. N dependence of meson and baryon mass.

Mmes /g Mbar /g

m/g N=2 N=3 N=4 N=3 N=4
1.6 4.314(4) 4.618(6) 4.845(2) 10.71(2) 21.2(3)
0.8 3.913(4) 4.40(5) 4.743(2) 10.4(1) 20.9(5)
0.4 2.61(5) 3.1(5) 3.4(2) 7.3(6) 15(1)

0.2 1.17(7) 1.5(5) 1.4(1) 3.1(2) 6.0(8)
0.1 0.38(5) 0.5(2) 0.43(5) 1.1(3) 1.9(3)
0.05 0.10(1) 0.2(2) 0.12(1) 0.31(9) 0.42(6)
0 0 0 0 0 0
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wave functions needed to compute structure functions for
inclusive reactions, distribution amplitudes for exclusive
reactions, and the hadronic matrix elements needed for
weak-interaction phenomenology.

In contrast with 1+ 1 dimensions, QCD;, ; requires a
nontrivial renormalization. A cutoff may be implement-
ed directly on the space of states by restricting it to those
whose invariant mass satisfies!’

kf+m2

X

M*=3 <A%. (28)
The cutoff A must be sufficiently larger than the scale of
interest, with physics beyond it absorbed into the cou-
plings and masses. One can also restrict the kinetic part
of the mass of the intermediate state in order to focus the
physics on the nonrelativistic binding regime.?® We are
also exploring the use of broken supersymmetry as a
gauge-invariant ultraviolet regulator of non-Abelian
gauge theories, as an alternative to Pauli-Villars
methods.?’” Gauge invariance of the light-cone Hamil-
tonian approach may be checked by showing, for exam-
ple, that in the continuum and large-A limits matrix ele-
ments such as q#(0|j“|q ) vanish, and, for QED, that the
photon remains massless.
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A crude estimate of the difficulty of the (3+41)-
dimensional problem may be made by selecting minimum
appropriate values for A of 1 GeV and 1 fm for (L, /27).
These correspond, by Eq. (28), to x~1/K~1/25 and
n, ~5. This allows some hope that systems with a longi-
tudinal momentum K comparable to that used in 1+1 di-
mensions combined with the first several transverse
modes may begin to provide a recognizable picture of ha-
dronic physics. Presently, programs for diagonalizing the
light-cone Hamiltonian for QED;, ; (Refs. 26 and 28) and
QCD;,; (Ref. 26) are under investigation. In the cases
where one is interested in only determining the lowest
levels, a variational method can be used. An initial study
of the lowest eigensolutions of positronium at large « has
recently been carried out utilizing this method.?
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