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Noncommutativity of constraining and quantizing: A U(1)-gauge model
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After discussing the general question of (non)commutativity of constraining and quantizing, we

present a quantum-mechanical model with a U(1)-gauge constraint. The phase spaces before and

after the symplectic reduction are topologically nontrivial, and hence the usual canonical quantiza-

tion has to be modified. We show that Isham quantization can be used in both cases. The groups
governing the quantizations are Sp(4,R) =SO(3,2) for the unreduced and Sp(2,R) =SO(2, 1) for the

reduced theory. The quantizations are nonunique and the analysis of the Dirac condition depends
on the quantization chosen. In most cases quantization and constraining do not commute; in partic-
ular, we may find additional observables if we quantize before reduction.

I. INTRODUCTION

A foremost problem in physics today remains the
quantization of theories with gauge degrees of freedom.
Many interesting physical theories possess gauge invari-
ances: for example, gauge field theories, string theories,
and quantum gravity. The main problem lies in the treat-
ment of the unphysical degrees of freedom, whose pres-
ence leads to ill-defined features in both canonical and

path-integral quantization approaches.
If a theory possesses gauge degrees of freedom (or more

general types of constraints}, there are in principle two
ways of proceeding: one can either reduce the classical
system and then quantize the observables of the reduced
system, or quantize first and then apply some quantum-
mechanical reduction to arrive at the "true" quantum
theory. This situation is depicted by the following dia-
gram:

classical uxtreduced theory
qmaratisaticm

quaxttised uxtreduced theory

classical 'reducti on quantum mechanical reduction

classical reduced theory
quantizotioe

reduced quant»~ theory

It is a subtle question whether or not one expects this
diagram to be commutative, and this depends on the
status given to the constraints. In particular cases there
may be physical reasons for adopting commutativity as
an axiom, and this will result in rather stringent condi-
tions on the way both the quantization and the quantum-
mechanical reduction are implemented. However, one
does not expect this to be true in general since the con-
straints themselves may be subject to quantization. This
can lead to quantum effects which are not present when
the system is reduced classically before the quantization,
and hence to the noncommutativity of the above dia-
gram. A similar reasoning can be found in some theories
about the creation of the Universe which rely on the ex-
istence of a phase-space tunneling (see Ref. l and refer-
ences therein). The question may be rephrased in a
quantum-mechanical context: does a particle "know"
that it is constrained? Does it "remember" it is moving
on a submanifold of some bigger phase space?

One example of noncommutativity is provided by
Yang-Mills theory coupled to chiral fermions, as dis-
cussed by Faddeev and Slavnov. There the algebra of
the Gauss-law constraints acquires an anomaly in the

quantization, and this way some of the first-class con-
straints are turned into second-class constraints. As a re-
sult the reduced quantum theory has more degrees of
freedom if we quantize first instead of reducing the classi-
cal theory before quantization.

In this paper we will present a finite-dimensional Ham-
iltonian gauge system where noncommutativity arises in
a different way. We choose the gauge group to be com-
pact in order to avoid that solutions to the Dirac condi-
tion on physical state vectors are non-normalizable. To-
gether with the requirements of freeness of the group ac-
tion this leads to topologically nontrivial phase spaces for
both the original and the reduced systems. The standard
canonical quantization has to be modified, and we show
that Isham quantization can be used in both cases. Then
we compare the quantization of the classically reduced
system with the theory obtained by quantizing first and
then using the Dirac prescription to reduce quantum
mechanically. Neither the unreduced nor the reduced
theory possess a unique quantization, and the analysis of
the Dirac condition depends on the quantizations chosen.
In general we get different results constraining before or
after the quantization. In the latter case we may find
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fewer degrees of freedom or an additional gauge-invariant
quantum observable, reflecting the noncommutativity of
diagram 1.

II. THE CLASSICAL GAUGE MODEL

The gauge system under consideration is a finite-
dimensional first-class constrained system, with U(1)
acting as a compact gauge group. The classical phase
space is S =R /IOj with coordinates (x„x2,p„p~) and
the symplectic form co=dx& hdp&+dxz hdp2 inherited
from R ( =T*R ). The Hamiltonian is that of the har-
monic oscillator with unit mass and frequency,
H =

—,'(pi+p2+x f+x2). The gauge group action is

given by the lift to R =T*R of the defining action of
SO(2)=U(1) on R [with coordinates (x„x2)] by rota-
tions about the origin. The corresponding quadratic
phase-space constraint is f =x,P2

—x2pi =0, with the
associated Hamiltonian vector field

cl 8 8 8
Xf — x2 +x i p2 +p]x i x2

(2.1)

1

2r
-1P=&2—(x,p, +xzpz) .

(2.2)

The reduced symplectic form on S„d induced by m is
given by co„d=dXhdP, i.e., [X,Pj =1. Note that now
r =2(X +P ); hence, for the reduced Hamiltonian we
have H„d=X +P . We only mention here that this
model is an example of a constrained system that
possesses a good gauge fixing only after the imposition of
the constraint [the principal U(1) bundle becomes trivial
only after restriction to the constraint surface].

III. QUANTIZATION

Our next task is to quantize the two classical systems
(S,co, H, f) and (S„d,co„,d, H„d) and compare the result-
ing quantum theories. The usual Schrodinger quantiza-
tion in terms of canonical commutation relations

This vanishes only at the origin I 0j and hence generates
a free Hamiltonian U(1) action on R /IOj. We have to
remove the origin from R in order for the quotient
S/U(l) to be a well-behaved manifold. This way the fiat
phase space S acquires a nontrivial topology, a fact which
will have far-reaching consequences in the quantum
theory. Note furthermore that S is not of the form of a
cotangent bundle T'Q of some configuration space Q
(and, strictly speaking, we need now at least two coordi-
nate charts to "patch around the hole" in R /[Oj). The
Hamiltonian H is gauge invariant [H,f j =0; hence it will
project down unambiguously to the quotient space.

After factoring out by the gauge degree of freedom and

going to the constraint surface defined by f=0, we find

the reduced phase space S„d=R /[Oj. It is

parametrized by a pair of canonical coordinates X and P,
with X +P &0. Their explicit form in terms of the old
variables is

[x;,P~. ]=i fi6;J. and square-integrable functions on
configuration space is not appropriate here, as will be ex-
plained in the following.

In the case of phase spaces R ", the reason why one
quantizes the 2n pairs (x;,p, ), i = 1,2, . . . , n, is that they
constitute a complete set of globally defined, smooth
coordinate functions on phase space. Any phase-space
function can be expressed in terms of this basis set.
Thinking of the phase-space functions as generators of
symplectic transformations on phase space, this means
that by the flows of the Hamiltonian vector fields associ-
ated with the (x;,P, ) we can transform any phase-phase
point into any other.

However, as already mentioned earlier, when we re-
move the origin from R ", the (x;,p;) are no longer glo-
bally defined smooth coordinates, and the previous
translation invariance in both the x and p directions is
broken, i.e., the flows corresponding to the x and p ob-
servables do not leave the origin invariant. In the quan-
tum theory this finds expression in the fact that in the
usual canonical quantization the spectrum of the opera-
tors x; and p, is all of the real line, which is incompatible
with the removal of the origin from the phase space.

The quantization of a generic finite-dimensional phase
space which is not of the form R ' (setting aside the dy-
namics for the moment) is, of course, an unsolved prob-
lem. Such phase spaces are usually nonlinear, possess
nontrivial topology, and may not even be of the form of a
cotangent bundle T'Q of some configuration space Q.
Only a few attempts have been made to tackle this prob-
lem in any generality.

In this paper we will follow the group-theoretical
quantization approach by Isham" which uses some im-

portant ideas from the theory of geometric quantization
(see, for example, Refs. 5 and 6). This method gives a
quantization algorithm for a well-defined generalized
class of nonlinear phase spaces. It applies to systems for
which one can find a transitive symplectic group action
by a finite-dimensional Lie group on phase space. This
Lie group (called the canonical group) is the analogue of
the Heisenberg group for the case of quantization on R ",
and determines a preferred class of observables [a finite-
dimensional subalgebra of the Poisson-brackets algebra of
the smooth functions C" (S)] which are given operator
status upon quantization. One then looks for ine-
quivalent unitary irreducible representations of this alge-
bra on some Hilbert space.

This scheme takes the nonlinear structure of phase
space seriously, and as a consequence we neither end up
with canonical commutation relations, nor usually with a
unique quantum theory associated with a given classical
theory. In an infinite-dimensional context this scheme
has recently been successfully applied to the quantization
of Hamiltonian gravity, leading to a complete set of ob-
servables in a loop-space representation.

In the case at hand we need to find canonical groups
for both R /I 0 j and R /[0 j which encode the nontrivial
topological structure of these phase spaces. This will lead
to preferred sets of basic observables, i.e., phase-space
functions whose Poisson-brackets algebra is isomorphic
to the commutator algebra of the generators of the
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canonical group. Unlike in the quantization on R ",
these basic variables are not the x, and p;.

In the quantization the preferred classical observables
are mapped into corresponding self-adjoint operators,
whose commutator algebra is the same as the Poisson-
brackets algebra of the underlying classical observables,
with appropriate factors of i A. The choice of a preferred
set of observables is in accordance with the fact that we
are not able to consistently quantize all classical phase-
space functions, as is exemplified by the Groenewald-Van
Hove theorem for the case of R " (see, for example, Ref.
8).

B. The canonical group for S„d

In the present case we are lucky because canonical
groups exist for both the original and the reduced sys-
tems.

For S„d it is given by the three-dimensional real sym-
plectic group Sp(2,R). Sp(2,R) acts on S„d by its
defining representation in terms of real 2X2 matrices
leaving invariant the skew-symmetric symplectic two-
form dX h dP on R . The phase-space functions generat-
ing this action are bilinear in the basic coordinate func-
tions X and P and we will take them to be

h = ,'(P +—X ), g =
—,'(P —X ), c =XP, (3.1)

A. The group Sp(2n, R)

Let us now make some general remarks about the
group Sp(2n, R) which will be needed in the following
sections. The real symplectic group Sp(2n, R) is the non-
compact simple Lie group of dimension 2n +n of linear
transformations on R " preserving the standard symplec-
tic form g,",dx; h dp;. Its maximal compact subgroup
is U(n). Sp(2n, R) is not simply connected, its fundamen-
tal group being m. ,(Sp(2n, R))=Z, and it has a unique
twofold covering group Sp(2n, R). The noncompactness
of Sp(2n, R) implies that all unitary irreducible represen-
tations are necessarily infinite dimensional. Representa-
tions of Sp(2n, R) have been studied, for example, in con-
nection with the theory of collective motion in nuclei
(see, for example, Ref. 9 and references therein).

Since quantum-mechanical states are given by rays in

Hilbert space, we are not only interested in unitary irre-
ducible representations of Sp(2n, R), but also in those of
Sp(2n, R), giving rise to projective representations of
Sp(2n, R). However, in the discussion below we will ana-
lyze in detail only irreducible representations of Sp(2n, R)
and its twofold covering, which will be sufficient to illus-
trate the main point of this work.

with Poisson-brackets algebra

I h, g I
=2c, ( h, c ]

= —2g, Ig, c) = —2h . (3.2)

The one-parameter subgroups corresponding to the
generators —,'P, —,'X, and XP are given by

1 (a, 0,0)(X,P) =(X+aP,P),
1(0,b, 0)(X,P)=(X,P —bX),

1(0,0, c)(X,P)=(e'X, e 'P) .

(3.3)

To show that this group action is transitive on R /{0),
we will give the explicit form of the transformation from
a point (X,P) to a point (X',P). The complementary
transformation from an arbitrary point (X,P) to a point
(X,P') is found in a completely analogous manner and
will be omitted here. For the transformation
(X,P)~(X',P) we have to distinguish between two cases.

(a) PAO: we simply have

(X', P) =l(1/P(X' —X),0,0)(X,P) . (3.4)

(b) P=O: (in this case neither X=O nor X'=0 since we
have excluded the origin from R ). The explicit transfor-
mation is given by

(X',0)=1(0, bXIX', 0)1(1/—b (1—X'/X), 0, 0)1(O,b, O)(X,O), (3.5)

X =R cosN, P =R sinN,

the generators (3.1) read

(3.6)

h = 2R, g = —
—,'R cos2%, c =

—,'R sin24, (3.7).

for arbitrary b&0. The action is not transitive on R be-
cause the Hamiltonian vector fields of all the generators
vanish at the origin. Hence we have found a good canon-
ical group for the quantization of the reduced phase
space; moreover, the reduced Hamiltonian H„d is al-

ready contained in the linear span of the algebra of ob-
servables since H„,d =2H.

However, this action is only one of a whole one-
parameter family of possible Sp(2,R) actions on R /IOI.
Note that in terms of polar coordinates (R, N), where

h„=(1/n)R

g„=—( 1 ln)R cosn4,

c„=(1/n)R sinn+,

(3.8)

for arbitrary real n) 0, forms an sp(2, R) algebra under
Poisson brackets, as can easily be checked. The Hamil-
tonian vector field Xz =(2/n)B/8@ corresponding to the

n

observable h„generates the U(1) subgroup of Sp(2,R).
We can integrate these relations to get a symplectic and
transitive group action whenever 2/n is an integer; i.e.,
the possible values for n are n =2/k, k =1,2, 3, . . . .

and the symplectic form is co=R dR h d4. Now, the set
of phase-space functions
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For a given value of k the Sp(2,R) action winds k times
around the origin in R as the U(l) parameter varies be-
tween 0 and 2m. The reduced Hamiltonian is given by
H„d=nH„. The above "natural" Sp(2,R) action corre-
sponds to k=1.

The action on S„d we will have to use in order to corn-
pare the quantum theories is the one with n = 1, induced
from the canonical group action on S. Only for this
choice of n the level spacing for the quantum Hamiltoni-
ans 8 and 8„d is the same.

C. The canonical group for S

Similarly, for S =R /[0} the canonical group is the
ten-dimensional real symplectic group Sp(4,R), acting by
real 4 X4 matrices leaving the symplectic form
m=dx, h, dp, +dx2hdp2 on R invariant. Again it is
straightforward to show that the action is transitive if we
exclude the origin. The generators can be written as bi-
linear functions in x, , xz, p&, and p2. We can choose a
basis of the algebra in such a way that both f and H ap-
pear explicitly among the generators:

H =
—,'(pi+p2+x, +xz),

C =x )p] +x2pp

C —x]p[ x2p2

D =—x)x2

(3.9)

& = pplpz ~

f =X)p2 Xpp)

F =x,p2+x2p] .

One checks that the observables H, 6, C, and F are
gauge invariant and that there are no linear combinations
K of the other generators with [K,f] =0 (strong gauge
invariance) or [K,f] =0 (weak gauge invariance). The
functions H, G, and C form an sp(2, R) algebra under
Poisson brackets and they project down to observables on
the reduced phase space:

family of possible Sp(4,R) actions on R /[OI. This is
easily verified in terms of polar coordinates (R&,4, ,

Rz, @2). There are now two U(1) subgroups, we can in-
troduce real parameters n

&
and n2 exactly as before and

again get the condition of integer valuedness for 2/n
&

and
2/n2 for possible Sp(4,R) actions. However, only if we
choose n i

=n 2
=2, do the observables H and f have a po-

lynomial relation with the set of basic Sp(4,R) generators
(if the relation is nonpolynomial we do know how to
quantize these observables), so we are forced to adopt the
original "natural" Sp(4,R) action.

D. Quantization of the reduced system

g =(1/i )(i' —BIBz +z BIBz),

c =i (ur +2zBIBz) .

(3.13)

A basis of H' ' is given by a complete set of (unnormal-
ized) eigenstates of h:

f„(z)=, , n =0, 1,2, . . . .(z —i )"

(z + i)"'+" (3.14)

The spectrum of h is discrete and the eigenspaces are
nondegenerate:

The unitarity irreducible representations of Sp(2,R) are
well known and have been classified a long time ago by
Bargmann' (see also Ref. 11). Note that we have lo-
cal group isomorphisms Sp(2,R)=SL(2,R)=SO(2, 1)
=SU(l, l). We will discuss only representations in which
the spectrum of the Hamiltonian is bonded from below,
the so-called positive discrete series. '"

We recall that unitary irreducible representations in
this series are labeled by a positive integer m 2, with
Hilbert space H' ' given by the holomorphic complex-
valued functions f (z) on the upper half plane Si which
are square integrable with respect to the measure
dp =y dx dy, with z =x +iy. The scalar product on
H"' is

(f,g)= I dp f(z)g(z), f,g EH' ' . (3.12)

The quantization of the basic classical observables h, g,
and c of the reduced phase space yields the following
self-adjoint operators, acting on holomorphic functions
onS, :

f =(1/i)(~z+ a/az+z'a/az),

H d=X +P

G„,= X&X'+P', —

C„d=P+X +P

hf„( )=z( tU +2)fn„( )z.

(3.10)
The quantum commutation relations are

(3.15)

[h, g ]=2ic,

[h, c ]= 2ig, —

[g,c]= 2if . —

satisfying (3.16)

[H„d,G„,d ] =2C„d,

[ G„,d, C„d I
——2H„d,

(3.11)

with respect to the Poisson brackets on S„d.
Similar to the case of Sp(2,R), we find a two-parameter

There also exist other unitary realizations of the posi-
tive discrete series: e.g., in terms of square-integrable
holomorphic functions on the unit disc or in terms of a
subspace of functions L (Sp(2, R)) in the regular repre-
sentation. There is also a lowest-weight representation
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E=h —g —c (3.17)

For the positive discrete series we have g=tU —2w:
1.e.,

1

2
3

—1

0
3
8

1

2
3
4

Spectrum of h

7
8
9

10

corresponding to w= 1 (called mock discrete representa-
tion by Lang), which however does not have a realization
in terms of holomorphic functions on the upper half
plane.

A tool that will help us in identifying certain irreduc-
ible representations is the Casimir operator k, whose ei-
genvalues characterize inequivalent irreducible represen-
tations of Sp(2,R). It is given here by"

„(x~, xz ) =(m + n + 1 )4 „(x~, xz ); (3.21)

(which coincides with ,N—here) and spin s, these are the
representations D (tU', 0). Again, representations for
m'=2 and w'=3 exist, but they do not possess the above
realization in terms of square-integrable functions.

The other case in which we are interested is the spinor
representation of Sp(4,R) (Ref. 14). It is induced by the
Schrodinger representation of the phase space R, and as
such is defined on functions f(x, , xz) in L (R ). The
generators (3.9) have their usual coordinate representa-
tion in terms of self-adjoint operators. The subset of
gauge-invariant operators again satisfies algebra (3.19) by
construction.

We get a basis for L (R ) by forming binomials

(x, )'P„(xz)=4 „(x~,xz), m, n =0, 1,2, . . . , from
two sets of harmonic-oscillator eigenfunctions. The spec-
trum of H is discrete:

(3.18)

There also exist similar representations for nonintegral
w & 0, which are lowest-weight representations of the cov-
ering group of Sp(2,R} (Ref. 12) [topologically
Sp(2,R) = S ' XR, hence its covering group has the topol-

ogy of R ].

E. Quantization of the unreduced system

N=1, 3, 5, 7, . . . (even spinor representation),

N =2,4, 6, 8, . . . (odd spinor representation) .
(3.22)

the degeneracy of the rth eigenspace (with eigenvalue
r +1}is r +1. The Hilbert space splits into two irreduc-
ible parts H =H'"'"+H', spanned by the subspaces of
functions with even and odd parity, with spectrum of the
Hamiltonian

[H, C]=2iC, [H, C]= 2iG, —

[C,C]=—2iH, [H,f]=0,
[~ fl=o [C f]=o.

(3.19)

The eigenvalues of H are

First of all note that the group Sp(4,R} is isomorphic
with SO(3,2), the group of symmetries of anti —de Sitter
space. Again we will only discuss representations in
which the spectrum of the Hamiltonian is bounded from
below, and from the positive discrete series we will only
consider those with Hilbert spaces of holornorphic func-
tions valued in C, and not in C", for n & 1.

These unitary irreducible representations are labeled

by a positive integer m'~4, with Hilbert space H' ',

given by the holomorphic complex-valued functions f (z)
on the Siegel upper half space Sz. This is the space of
symmetric complex 2X2 matrices z =x+iy for which
det(y)=y»yzz —yfz)0. The explicit form of the wave
functions and the self-adjoint operators can be found in
Ref. 9. The quantum commutators of the gauge-
invariant observables are

In Fronsdal's classification these are the so-called
singleton representations, D ( —,', 0) and D ( 1, —,

' ).

F. Reduction of the quantized system

Spectrum of H

Degeneracy of eigenspace

2 4 6 8

2 4 6 8

The next step is that of quantum-mechanical reduc-
tion, i.e., implementation of the Dirac condition to pro-
ject out physical states. The spectrum of the quantum
constraint f is discrete and hence we do not encounter
any problems with non-normalizable eigenvectors of the
condition f%'~h„, =0. For the set of quantum theories
considered above we find three qualitatively diff'erent

cases.
(i) Spinor representation on H' . None of the ele-

ments in this irreducible representation is annihilated by
the constraint:

X =2m'+2r, r =0, 1,2, . . . , (3.20) No. of gauge-invariant functions 0 0 0 0

and the degeneracy of the rth eigenspace is

,'(r +1)(r +—2),i.e., 1,3,6,10,15, . . . .

In Fronsdal's classification' of the discrete series of ir-
reducible representations of SO(3,2) according to
D{Eo,s), with Eo the lowest eigenvalue of the energy

i.e., the physical state space is empty, H'h, = [0I.
(ii) Spinor representation on H'"'". There is exactly

one gauge-invariant eigenfunction in each eigenspace of
H:
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Spectrum of 8
Degeneracy of eigenspace

I 3 5 7

1 3 5 7

No. of gauge-invariant functions 1 1 1 1

The operators 8, 6, and C' act irreducibly on H'h'„"„and

we identify this representation with the quantum theory
of the reduced system with value K = —1 for the Casimir
operator k

(iii) Discrete series representations. Since we know the
explicit realization of the irreducible representation la-
beled by w', we can construct the gauge-invariant linear
combinations for each eigenspace of8. The result is

Spectrum of 8
Degeneracy of eigenspace

No. of gauge-invariant functions

2w' 2w +2 2w'+4 2w'+6

10

The number of gauge-invariant functions in the rth eigenspace of 0 (starting with r=0) is [rl2]+1. The gauge-
invariant functions for given w are conveniently labeled by a pair of integers (r, 1},r, 1 =0, 1,2, 3, . . . , 21 r:

(ZllZ22 Z12Z21+ 1)
[ 4z12z2l (z1 1 z22 ) ]

[z]tz22+ 1 (2]] +zygo ) z]2zp) —1]
(3.23}

Since the spectrum of the Hamiltonian is degenerate, it is
clear that H h„, does not carry an irreducible represen-
tation of Sp(2,R).

The quantum observables 8, 0, and C act on the F"";
in particular, the action of the Hamiltonian is given by

8F'"'"=(2w'+2r)F'""
W N (3.24)

In order to determine the Sp(2,R) representation we
have constructed by this Dirac prescri tion, we compute
the Casimir operator k =8 —0 — on the physical
state space 8 phys Its action on physical wave functions
1s

G. Planck's constant

So far no mention has been made of how Planck's con-
stant enters into our considerations. On the one hand, A'

introduces a scale in the quantum theory, on the other
hand, it allows quantities to become physically dimen-
sionful. Although we have argued earlier that the usual
Schrodinger quantization on R with self-adjoint opera-
tors x =x and P =( 1 li)Ad ldx is not appropriate here, it
nevertheless helps us in determining the quantum scale.
Regarding the spinor representation of Sp(2,R) as being
induced by the Schrodinger quantization on R leads to
the following modification of the commutation relations
(3.16):

EF'":"= [4w' —4w' —8!(1—21 —2w')]F'"'"

+8(r —21}(r—21 —1)F~""+". (3.25)

[b ',g ']=2ikc ',
[b', c ']= 2ifig ', —

[g ', c ']= —2iA'f ' .

(3.26)

We see that in general the F'"'" are not eigenfunctions of
k. Since k commutes with, 0, and C', we know that in
an irreducible representation it can only be a multiple of
the identity operator. Hence we conclude that H phy,
decomposes into irreducible subspaces under the action
of Sp(2,R), according to different eigenvalues k ofk

One can show that for given w', H phy decomposes
into an infinite number of irreducible representations of
Sp(2,R), labeled by an even integer m =0,2, 4, 6, . . . ,
with Casimir eigenvalue k =4(w'+m) —4(w'+m).

In other words, on the representation space H ~ „„,we
find a new nontrivial auge-invariant quantum observable
k, commuting with, Ci, C:, and f. This new observable
does not have a classical analogue, and it does not appear
if we solve for the physical degrees of freedom before the
quantization.

The spectrum of f ' becomes (n + I/2', n =0, 1,2, . . . ,
but, like in the spinor representation of Sp(4,R), this rep-
resentation splits into two irreducible ones with spectra

fl, —2', —2R, e ~ ~

and (3.27}

Ry p Ry 2 Ay ~ ~ ~

i.e., successive energy levels differ by the constant 2A. If
we assume that this is also true for the eigenvalues of the
Hamiltonian in the other Sp(2,R) representations, the
scale in the quantum theories for both S and S„d be-
comes fixed.
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IV. CONCLUSIONS

In the example presented above, due to the nontriviali-
ty of the phase spaces S and S„d, the corresponding
quantum theories are not unique, and therefore the ques-
tion of commutativity of constraining and quantizing be-
comes slightly more involved.

Since in many physical applications one has problems
with the quantization of the classically reduced system, it
is interesting to ask what kind of reduced theory we may
obtain by following Dirac s prescription. In order to il-
lustrate this point, we looked at various possible quantum
theories, without aiming at a complete analysis of the
representation theory.

If we reduce the gauge system classically and quantize
the reduced system, possible quantizations correspond to
different unitary irreducible representations of Sp(2,R),
labeled by the value of the Casimir operator k

If we quantize first and reduce at the quantum level, we

find that the analysis of the Dirac condition f4 „„,=0 is
representation dependent. In our investigation three
qualitatively different cases occurred: the physical sub-
space Hvh„, C H (i) is empty (there are no physical states),
(ii) coincides with one of the quantum theories for the re-
duced system, or (iii) contains infinitely many quantum
theories for the reduced system.

Only in case (ii) we can speak of commutativity of con-
straining and quantizing. In case (i) we end up with a
different number of degrees of freedom, and in case (iii)
we find a new gauge-invariant quantum observable which
does not have a classical analogue.

We only mention here that it is physically consistent to
use the weaker Dirac condition on matrix elements,
(~It'h„„,f% h„,)=0, instead of f4 „„,=0, to determine a
subset of physical states. Using this condition for the spi-
nor representations of H' and H'"'" again leads to
infinitely reducible representations of Sp(2,R).
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