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Higher-derivative theories are frequently avoided because of undesirable properties, yet they
occur naturally as corrections to general relativity and cosmic strings. We discuss some of their
more interesting and disturbing problems, with examples. A natural method of removing all the
problems of higher derivatives is reviewed. This method of “perturbative constraints” is required
for at least one class of higher-derivative theories—those which are associated with nonlocality.
Nonlocality often appears in low-energy theories described by effective actions. The method may
also be applied to a wide class of other higher-derivative theories. An example system is solved, ex-
actly and perturbatively, for which the perturbative solutions approximate the exact solutions only
when the method of “perturbative constraints” is employed. Ramifications for corrections to gen-
eral relativity, cosmic strings with rigidity terms, and other higher-derivative theories are explored.

I. INTRODUCTION

Theories with higher derivatives (third derivative or
higher in time in the equations of motion, second deriva-
tive or higher in the Lagrangian) occur naturally for vari-
ous reasons in different areas of physics. Quite often the
higher-derivative terms are added to a more standard
(lower-derivative) theory as a correction. This occurs in
general relativity, for instance, where quantum correc-
tions naturally contain higher derivatives of the metric
(see, e.g., Birrell and Davies!), or where nonlinear o mod-
els of string theory predict terms of order R? and higher
(see, e.g., de Alwis®). It occurs in the case of cosmic
strings where higher-order corrections, dependent on the
“rigidity” of the string, contain higher derivatives,>* and
in Dirac’s relativistic model of the classical radiating elec-
tron.> Unlike lower-derivative corrections, however, it is
false to assume that adding a higher-derivative correction
term with a small coefficient will only perturb the original
theory. The presence of an unconstrained higher-
derivative term, no matter how small it may naively ap-
pear, makes the new theory dramatically different from
the original.

Unconstrained higher-derivative theories have very
distinctive features. As will be shown below, they have
more degrees of freedom than lower-derivative theories,
and they lack a lower-energy bound. There is nothing
mathematically inconsistent with these features, but they
make two almost identical-looking theories, one a lower-
derivative theory and the other the same theory with a
higher-derivative correction added, very different. The
lack of a lowest-energy state for the higher-derivative
theory is probably the most dramatic change. This al-
ways occurs when higher-derivative terms are present (as-
suming no degeneracy or constraints), independently of
how small their coefficients are. The addition of more de-
grees of freedom might be physically more accurate, but
then it means that the original lower-derivative theory
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was incomplete and missing (the most interesting) new
families of solutions. It is particularly disturbing if there
is a progression of higher-order, higher-derivative correc-
tions, each system of which has more and more degrees
of freedom. Classically, more degrees of freedom means
that more initial data are required to specify motion.
Quantum mechanically this means that, for a particle, x
and X now commute since they are freely specifiable, and
it becomes possible to measure the position and velocity
at the same time. The momentum conjugate to x, m,,
still does not commute with x; [x,7, ]=i#, but 7 F#mx.
From the path-integral point of view, the paths which
dominate the functional integral are of a different class:
where once they were nowhere differentiable, now they
are everywhere once differentiable. Examples of all these
types of behavior are presented below. No familiarity
with any of the properties of higher-derivative theories is
assumed.

There is a large class of theories naturally containing
higher derivatives that do not suffer the above problems.
Nonlocal theories, where the nonlocality is regulated by a
naturally small parameter, have perturbation expansions
with higher derivatives. They avoid the above problems
because they are constrained systems. They contain im-
plicit constraints which keep the number of degrees of
freedom constant and maintain a lower-energy bound.
Higher-derivative theories that are truncated expansions
of a nonlocal theory also avoid these problems, once the
proper constraints are imposed. Any theory for which
the higher-derivative terms have been added as small
corrections can be treated in the same manner, also
avoiding the above problems.

Nonlocality naturally appears in effective theories, val-
id only in a low-energy limit and derived from a larger
theory with some degrees of freedom frozen out. A good
example is Wheeler-Feynman electrodynamics,® in which
the degrees of freedom of the electromagnetic field are
frozen out. For two particles of mass m,
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where AxY=x]—x3. The only degrees of freedom
remaining are of the charged particles. This is nonlocal
because the particle-particle interaction is not instantane-
ous and pointlike, but occurs in retarded time (action at a
distance with finite propagation speed). The nonlocal
Wheeler-Feynman theory is not valid for large v /c (e.g.,
particle creation and annihilation is not allowed for), so
there is a natural perturbative expansion in powers of
v/c. Higher derivatives occur directly as a result of the
nonlocality. The action can be naturally expanded as’
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where D; signifies differentiation with respect to ¢ of x;
only, and r=|x,—x,|. To achieve the same solutions as
the original Wheeler-Feynman theory, however, particu-
lar constraints must be imposed. Without the con-
straints, the expansion would have all the problems asso-
ciated with higher-derivative theories, which are not
present in the Wheeler-Feynman theory. The effect of
the constraints is to throw away ‘“‘runaway” solutions.
This is accomplished by only allowing solutions that can
be Taylor expanded in powers of ¢ ~! about ¢ ~!=0 (cor-
responding to infinite propagation speed).

These constraints allow the series expansion to be con-
sidered as a legitimate perturbative expansion. Without
the constraints, higher order does not correspond to
higher powers of v/c, but instead all terms contribute
equally. With the constraints imposed, each term in the
series contributes commensurately less as its order in-
creases. For this reason the constraints will be referred
to as “perturbative constraints.”

The need for perturbative constraints was first pointed
out by Bhabha? in the context of Dirac’s classical theory
of the radiating electron® (and its higher-order generaliza-
tions), although Dirac realized that runaway solutions
should be excluded. The use of perturbative constraints
as a method to remove the problems of higher-derivative
theories in general was discovered independently by Jaén,
Llosa, and Molina® JLM) and Eliezer and Woodard'®
(EW). An explicit method for finding the perturbative
constraints for any system expanded in a higher-
derivative series about some small expansion parameter
was found also by JLM (Ref. 9). Given the perturbative
constraints, a method of implementing them in a canoni-
cal fashion which greatly simplifies the calculation was
found by EW (Ref. 10). Perturbative constraints can be
implemented for either infinite or finite series expansions,
though for the infinite case the perturbative constraints
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are already implicitly present if it is demanded that the
equations of motion converge. For finite series expan-
sions, where convergence of the series is not an issue, the
perturbative constraints play an extremely important
role. The finite series expansion, with perturbative con-
straints imposed, describes a system with the same solu-
tions as those of the full nonlocal series (up to the ap-
propriate order). The finite series expansion without the
perturbative constraints describes a system with solutions
most of which are nothing like the solutions to the origi-
nal nonlocal system.

Finding the perturbative constraints does not depend
on knowledge of the full nonlocal theory. It can be done
just as easily if only a finite number of perturbative terms
are known. For this reason it can equally be applied to
any higher-order system (with a small expansion
coefficient) without knowing whether or not the theory is
part of an infinite expansion. This is where the applica-
tion of perturbative constraints is most powerful and
most underutilized.

In general relativity typical corrections take the form
of curvature-squared terms in the Lagrangian.!'~!'* Even
for small coefficients these terms can easily dominate the
evolution of the system (as in Starobinsky inflation's).
Applying the appropriate perturbative constraints de-
scribes a (different) system, in which the number of de-
grees of freedom is the same as in Einstein gravity, and
which has no runaway solutions or ghostlike particles. It
is a perturbative correction to Einstein gravity, which we
know to be a very good approximation of nature.

Applying the perturbative constraints is not just an ad
hoc procedure. It is completely natural and necessary in
cases where the higher-derivative theory is a truncated
perturbative expansion of some larger, nonlocal (but oth-
erwise well-behaved) theory. The nonlocal theory itself
may be the low-energy effective limit of some even larger
theory for which fields have been integrated out. It will
be shown that the case of cosmic strings with higher-
derivative “rigidity”’ terms falls in this category.

There is sometimes a small cost to the use of perturba-
tive constraints with higher-derivative theories. Even for
finite series expansions, locality can be lost under the
influence of explicitly time-dependent sources. This is
well known in the case of the self-interacting electron,
where the nonlocal phenomenon of preacceleration (ac-
celeration in response to a force that has yet to be ap-
plied) occurs. An example is demonstrated below. In the
case of the electron, this is considered unimportant, since
it takes place only on the scale of the time light travels
across the classical electron radius. At any rate, acausali-
ty only arises at scales for which the approximation of
the electron as a classical particle breaks down. If a simi-
lar effect were to occur in a theory of gravity the nonlo-
cality would be at the Planck scale. Most physicists,
though, would agree that at the Planck scale the usual
notions of geometry probably break down (e.g., the ap-
pearance of spacetime foam), and so the possible presence
of nonlocality (and the accompanying loss of causality)
should not be worrisome.

The structure of the paper is as follows. First is a re-
view of the behavior of unconstrained higher-derivative
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theories in general, both classical and quantum, with sim-
ple examples of all interesting properties. Next is a dis-
cussion of various higher-derivative theories that have
been studied in the literature, including Dirac’s classical
electrodynamics, corrections to general relativity, and
corrections to cosmic strings. This is followed by a dis-
cussion of the higher-derivative theories that do not
suffer from the above problems, and how the problems
are avoided by the use of perturbative constraints.

Nonlocal systems, when cast into their higher-
derivative expansion, demand the use of perturbative
constraints to reproduce the results of the original equa-
tions of motion. For any finite expansion approximation
to the nonlocal theory, perturbative constraints are still
required, and they must be imposed explicitly. The same
finite expansion without the perturbative constraints
would be a very different theory, completely unrelated to
the original nonlocal theory in terms of its available solu-
tions. The constraints must also be applied to systems
where the purpose of the higher-derivative terms is to
provide small corrections to the original theory. Any
theory which is intended (by construction or by physical
motivation) to provide perturbative corrections to known
solutions, but does not do so, is either incorrect or is be-
ing applied beyond its domain of applicability. The
method of perturbative constraints is the only means by
which a theory with higher-derivative corrections can
self-consistently avoid these problems.

Finally, the specific effects of applying the perturbative
constraints are calculated for the cases of higher-
derivative extensions to general relativity and cosmic
strings.

II. A REVIEW OF HIGHER-DERIVATIVE
THEORIES

(Many of the ideas in this review section are also
covered by EW in a particularly lucid presentation.!” All
the equations presented here apply to one-particle, one-
dimensional systems, but the generalization is trivial.)
The Lagrangian formalism is straightforwardly applied to
higher-derivative theories. For a Lagrangian

L=L(gq,...,q""), (3)

applying the variational principle gives

i
' N d | oL
85 = dt - —— | ==
fti 8q i§0 dt aq(l)
N-1 N
+3 pq<,,8q(” , (4)
i=0 t
where the P, are given by
k—i—1
N d oL
D= - = . 5
Pat0 k=2i+l dt aq(k) ®

Assuming that the 8¢ ‘" are all held fixed at the boundary,
the Euler-Lagrange equation is
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The canonical formalism for higher-derivative theories
was developed by Ostrogradski.!® The canonical momen-
ta are defined by (5), which shows the generality of the
Hamiltonian-Jacobi formalism. The Hamiltonian, as ex-
pected, is given by

S ' +1
H= 2 pq(,,,q'(")—L= > quq‘" '—L . 7
n=0 n=0

It is conserved and generates evolution in time, and so is
equal to the energy of the system. Note that
g M=¢W(q,q,... ,q(N_”,pq(N‘,)) (assuming no degen-
eracy), but all the remaining ¢ are independent general-
ized coordinates and so are not inverted. For this reason,
L=L(q,q,... ,q(N_”,pqun) as well. The first-order
equations of motion are

oH o (n) —

= (n+1)
apq(n) q q ’
(8)
aE;I(In):_pq(n), n=0,l,...,N—-1 5

which reproduce the Euler-Lagrange equation. Note that
it is entirely self-consistent from within this formalism to
consider g and all its derivatives up to N completely in-
dependent. The dependence is regained from the equa-
tions of motion by the first relation of (8), which states

4 MW=g*D for n=0,1,...,N—2. 9
dt

To demonstrate how higher-derivative theories differ
from their lower-derivative counterparts, I will use the
simple example

L=1(1+€0")%  —to’x*— 1% (10

which is a simple harmonic oscillator with the mass term
slightly modified, and an acceleration-squared piece. It
may be helpful to think of ew << 1, but this is never as-
sumed in our calculations. The kinetic term has been
modified only to make the calculations easier; it has no
qualitative effect whatsoever, and all quantitative effects
are small: O(€*0?). This contrasts strongly with the
effects of the last term. It is tempting at first to view the
last term as a small correction, but we shall see that this
is false, independently of how small € is. (The analogous
example in scalar field theory has been examined by
Hawking.!”)

That the number of degrees of freedom of a higher-
derivative theory is more than the lower-derivative
theory can be seen by examining Egs. (4) and (8). For the
unconstrained system, there are 2N constants that deter-
mine the motion, corresponding to the 2N initial and final
q'"s, or to the N initial (or final) ¢'*”s and the N initial
(or final) pq(,,,’s. This is a major qualitative difference
from the lower-derivative theory, which needs only two
constants to specify the motion. This is also reflected in
the quantum theory. The wave function has N arguments,
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and the commutation relations reflect the Ostrogradski
canonical structure:

[q("),P (ml]:ihsnm ’
! (11)
[4",q""1=0=[p m:P m] -

The second of these equations looks especially odd: the
position and velocity of a particle commute. The wave
function of the system will typically be functions of all
the ¢'", although one may, of course, Fourier transform
any of the generalized coordinates and obtain it in terms
of any of the conjugate momenta in their place.

Next we examine how these properties are exhibited in
the example. The equation of motion is

€2D*x +(1+ 2w?)D%x + w’x =0, where D =% .

(12)

Being fourth order in time, it requires twice as many ini-
tial conditions as the e =0 case, independent of the size of
€. This is also reflected in the Ostrogradski canonical for-
malism, where the independent generalized coordinates
are x and X, and their respective generalized momenta
are
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H=127%—e *ri—(1+oM)i *+ox?]. (14)
Note the impossibility of taking the €—O0 limit in this
case. The general solution is

x=A coslot+¢, )+ A_cos(e t+¢_). (15)

For ew << 1, the second mode oscillates extremely rapid-
ly. The modes separate exactly because the Lagrangian is
quadratic in all terms; nonquadratic terms would couple
the modes. The oscillatory nature of the second term is
not related to the fact that the e=0 case is a simple har-
monic oscillator: in the case =0, the solution is
x =x,+vot + A _cos(e 't+4_). In the case €2 <0, the
solution is

x=A_cos(wt+¢,)+ A.cosh(|e| " 't)

+ A sinh(|e| "'t) . (15a)
Quantum mechanically, since x and x are independent
coordinates, the wave function will be a function of both:
P=1(x,x) [though we could also use Yp=t(x,m,),
Y=y(m,,%), or y=4y(m,,7,)]. Note that [x,x]=0, al-
lowing the position and velocity to be measured in the
same experiment to arbitrary accuracy. This is also in-
dependent of the size of €, so long as it is nonvanishing.

_OoL D oL — (14 +E% The quantum-mechanical system is solved exactly in

Tx™ A% ax | coxTex, Appendix A. The energy eigenstates are labeled by two
3 (13)  non-negative integers:

9oL __ >

LERRPYEEE E=(n+Leo—(m+L)e! for n,m=0,1,2,.... (16)
The Hamiltonian is The simplest wave function to calculate is
J
174 2 220 2 gi 2 2 2.2
ool %, %)= exp _o(l—€w)x —4dieoxx — (1 —€w”)x (17)
0o em? 2e (14 €w?)

As expected, the limit €—0 does not approach the purely
simple harmonic-oscillator ground-state wave function.

Strongly related to the fact that [x,X ]=0 is that the
class of paths that dominate the Feynman path-integral
changes. The path-integral sums over all possible paths,
but a particular class of paths dominates the sum, which
can be seen by examining the expectation values in transi-
tion amplitudes.'® First we examine the properties of
these paths for a lower-derivative theory. For a path-
integral skeletonized into time slices of duration §, the
expectation value of the distance crossed in that time is
approximately

(Ax)~8'2%, (18)

So, as 8—0, the typical paths (averaged with a complex
weighting) are continuous. But the expectation value of
the particle’s velocity diverges:

<xd>~<%>~6—”2 .

For a higher-derivative theory, this is not true. The
typical paths for acceleration-dependent Lagrangians
have finite velocities, but their acceleration diverges; i.e.,
the paths are continuous in (x,%) space. The higher the
derivatives in the Lagrangian, the smoother the paths be-
come. An infinite number of higher derivatives would
have, in some sense, only perfectly smooth paths contrib-
uting. (In fact, because the path-integral formulation can
be used to derive Schrodinger’s equation, one can read off
expectation values from the Hamiltonian, as done by
Feynman,'® and as shown in Appendix B.)

To illustrate the path-integral properties of higher-
derivative Lagrangian, we will use the simpler case @ =0:
a free particle with a (seemingly small) quadratic ac-
celeration term (the w0 case is conceptually no more
difficult but requires enormously more calculation):

=1 2_g2x2 =1(—e—22 i — %2
L=3(x"=€X"), H=H—e*m +2m %x—%°).

(20)
We calculate the transition expectations
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(Ax)~%8—0, (Ax)~e 18250,

(xg)~x (xXyq)~%x+0({Ax)/8)~x , 21)

<5fcl>~§+0(<m>/6>+o<<Ax>/82)_m .

The dominant paths are now once differentiable. The ex-
act propagator has also been calculated for this system
using modes, as shown in Appendix C.

Another extremely important property of higher-
derivative theories, both classical and quantum, is the
lack of any lower-energy bound. This can be seen most
easily through (7). The only dependence on the P,m for

n <N —1 is linear, permitting the Hamiltonian to take
on arbitrarily negative values. This carries over into the
quantized system as well.'° This property is easily
demonstrated by our example system: the Hamiltonian is
manifestly indefinite in Eq. (A2). The energy for the gen-
eral solution given in Eq. (15) is
E=1(1—-€w*)o*4} —e724%), (22)
which is also manifestly indefinite. The effect of even a
small amplitude for the negative mode leads to enor-
mously negative energies (for ew <<1). Even though ex-
citing the negative-energy modes leads only to oscillatory
behavior (for the €2>0 case), it is nevertheless unstable
since even small excitations of those modes lowers the en-
ergy dramatically. Any coupling present in a not purely
quadratic Lagrangian system would make the problem
worse. The quantized system has the same negative-
energy problems, as seen in (16) and Appendix A. At-
tempts have been made within quantum mechanics to
change the minus sign in (16) into a plus by giving half of
the quantum states negative norm.'>!” This merely shifts
the problem from the lack of a ground state to the lack of
unitarity (arising from the now possible zero-norm
modes), but it is really the same problem transformed.

Higher-derivative field theories have the related prob-
lem of ghosts: excitations (particles) of negative energy
(mass) (see, e.g, Hawking!”). They behave analogously to
the oscillatory excitations of negative-energy states in our
example. Creation of ghost particles not only costs no
energy, it produces excess energy, causing them to be
spontaneously produced in infinite numbers.

In short, the distinct features of higher-derivative
theories fall into two major categories, either deriving
from the more numerous degrees of freedom than the
lower-derivative case, or from the loss of a lowest-energy
state. It should be noted that there is nothing fundamen-
tally contradictory or mathematically inconsistent with
higher-derivative systems. A good example of this kind
of theory is the pure R? theory of Horowitz?° (although
there are still problems with the negative-energy modes,
as pointed out by Eliezer and Woodard!?).

These features do become serious problems in most
cases, however. Except in a purely cosmological context,
the lack of a ground state is very unphysical. It is also
unphysical when there is a sequence of higher-order
theories for which the higher-order terms are supposed to
provide small corrections, but instead introduce new de-
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grees of freedom and new behavior at every step. In our
example above, the problems become manifest when the
system is compared to a simple harmonic oscillator
(e=0). These problems cannot be avoided in uncon-
strained higher-derivative theories, whether oscillating
particles, flexing cosmic strings, for R 2 gravity.

III. NATURALLY OCCURRING
HIGHER-DERIVATIVE THEORIES

As stated in the Introduction, higher-derivative
theories appear naturally in at least two contexts. The
first is as corrections to a lower-derivative theory. The
oldest example of this is the Abraham-Lorentz model of a
nonrelativistic, classical, radiating, charged particle (see,
e.g., Jackson?!) and the relativistic generalization due to
Dirac.’ In attempting to take into account the loss of en-
ergy due to radiation, a third-derivative term is intro-
duced into the equation of motion. The higher-derivative
term has a small coefficient, 7=2(e?/mc*)~10"2 s, yet
there are now twice as many solutions as for the nonradi-
ating electron, and half the solutions are runaways: solu-
tions qualitatively different from solutions of the nonradi-
ating electron. (This is a dissipative system due to the ra-
diation, so the lack of a lower-energy bound is not mani-
fest.) As an example, Dirac’s equation of motion in the
absence of external forces

o,=7(¥,—v,0"v,) where n,,=(—,+,+,+), (23)

M
has the general solution (for motion in the x direction)

v, =sinh(e*/"+b), v,=cosh(e*’"+b), (24)

where s is proper time and b is an integration constant, or

v, =const . (25)

For the first solution, the free electron accelerates to near
the speed of light in a time comparable to 7. For the
second, the electron remains unaccelerated, which is the
expected answer for zero external force.

Another example of a naturally occurring higher-
derivative theory is the case of cosmic strings. If treated
as an unconstrained higher-derivative theory, as is always
done in the literature, it suffers from all the above prob-
lems. The number of degrees of freedom is dependent on
which order the higher-order expansion is stopped. The
excitations of the newly available modes contain negative
energy, just as in the case of the oscillator above. Note
that this is independent of the sign of the coefficient of the
higher-derivative term (corresponding to rigidity). It is
completely analogous to the acceleration-dependent
harmonic-oscillator example above. For €?<0 the
negative-energy modes are exponential in time and obvi-
ously unstable, but even for €?> 0, exciting the negative-
energy modes allows arbitrary amounts of energy to be
extracted. Even a small kick (4 _ << 4, in the example)
can extract large amounts of energy since the negative en-
ergies are inversely proportional to the small parameter,
in this case the width of the string. We shall see below
that the perturbative constraints must be applied for con-
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Higher-order corrections to general relativity itself can
arise either quantum mechanically or classically. Quan-
tum mechanically, conformal anomalies give rise to an
effective action with higher-derivative terms (see, e.g.,
Birrell and Davies!), which can be local ( «< R 2) or nonlo-
cal (not expressible in local quantities such as the metric
and Riemann tensor). Renormalizability arguments
demand the presence of terms < R? and « R, R (Ref.
13). The effect of these terms is to give additional fami-
lies of solutions, some of which are “runaways.” The
negative-energy problem manifests itself when coupled to
matter; there is in general no positive-energy theorem!'?
(with the exception of special initial conditions for certain
higher-derivative terms®?). There are also, in general,
problems with ghost fields and local instabilities due to
the presence of negative-energy modes.!! The concept of
a runaway solution on a cosmological scale is somewhat
unclear in the case of gravity where, with an ordinary
cosmological constant, exponential inflation is a physical
solution. Nevertheless, the smaller the coefficient of the
higher-derivative terms, the faster the rate of inflation it
can induce. These extra solutions are non-Taylor ex-
pandable in powers of the small coefficient. Lovelock
gravities?>?* have similar problems, despite the fact that
they are, strictly speaking, not higher-derivative theories.
Lovelock theories contain higher-order terms in the La-
grangian which are dimensionally extended Euler densi-
ties. They allow extra solutions to the field equations,
though the number of new solutions is finite, not a con-
tinuous family. Nevertheless, some of the new solutions
are dramatically different from the original and can be
considered runaways.

Classically, string theory gives higher-order (local)
corrections to the action in higher power of curvature
and its derivatives, as shown below in (50). If left uncon-
strained, in addition to all the problems of the preceding
paragraph, each theory obtained by truncating the expan-
sion at a given order has a different number of degrees of
freedom than the previous one.

IV. HIGHER-DERIVATIVE THEORIES WITHOUT
THE PROBLEMS

When higher-derivative theories occur as a result of
truncating a perturbative expansion of a nonlocal theory,
the usual problems of higher-derivative theories do not
occur because the perturbative constraints must be ap-
plied. They guarantee that of all possible solutions to the
unconstrained higher-derivative equation of motion, only
solutions that are Taylor expandable in the small expan-
sion parameter are permitted. All other solutions are
considered runaways, solutions that do not exist in the
limit of zero-expansion parameter. This corresponds to
the limit of infinite propagation speed of instantaneous
interactions in the Wheeler-Feynman model. The extra
solutions have extremely rapid behavior for small expan-
sion coefficients and are always associated with negative-
energy behavior. The remaining solutions form a two-
parameter family.’ The first use of the exclusion of runa-
way solutions was in the context of removing obviously
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unphysical solutions such as (24) from the Dirac model
(and its nonrelativistic variations). It was suggested that
runaway solutions be isolated and defined by their late
time behavior, that the acceleration should be finite in the
far future for finite forces. Imposing future boundary
conditions at large scales is undesirable, since, if there is
acausality present in the Universe, it is likely to be only
at the smallest (i.e., Planck) scales. Furthermore, the
finite acceleration criterion does not generalize well to
other classical theories, such as general relativity, which
has extremely varied cosmological solutions. Bhabha
pointed out that for Dirac’s theory (and higher-order ex-
tensions) all nonrunaway solutions are Taylor expandable
in the natural small expansion parameter of the theory 7.
Imposing the perturbative constraints is equivalent to
throwing away runaway solutions, but relieves us of the
obligation to specify future conditions.?

Nonlocal systems, such as the Wheeler-Feynman
theory, when cast into their higher-derivative expansion
(first done for the Wheeler-Feynman theory by Kerner’),
demand the use of perturbative constraints to reproduce
the results of the original equations of motion. The per-
turbative constraints are implicit in the Lagrangian by
demanding convergence. This will be demonstrated
below with a simple model. For any finite expansion ap-
proximation to the nonlocal theory, perturbative con-
straints are still required, but must be imposed explicitly,
since they are no longer demanded by convergence of the
series. The same finite expansion without the perturba-
tive constraints is a very different theory, completely un-
related to the original nonlocal theory in terms of its
available solutions.

It is also perfectly self-consistent and valid to impose
perturbative constraints on a higher-derivative system
even without the sure knowledge that it is a truncated ex-
pansion of some nonlocal theory. This was done by
Dirac when he threw away the undesirable runaway solu-
tions. It is not unreasonable to apply it to any higher-
derivative theory for which the method is applicable and
examine the consequences. It is absolutely necessary if
the higher-derivative theory is to resemble at all the origi-
nal lower-order theory in its behavior.

The JLM procedure for finding the perturbative con-
straints strictly imposes the condition that all solutions
must be Taylor expandable in the perturbative expansion
parameter.’ It is not possible to invert all of the canoni-
cal momenta within the limits of Taylor expandability,
which signals the presence of a primary constraint.
Secondary constraints are obtained by taking time deriva-
tives of the primary constraints. Linear combinations of
the constraints can always be put in the form

xV—fi(x,%)=0, i=2,...,N . (26)

Add the constraints in this form to the Lagrangian with
Lagrange multipliers, and proceed either to the Euler-
Lagrange equations or the Hamilton-Dirac equations
(whose equivalence for constrained higher-derivative sys-
tems has been shown by Pons®).

There is no issue of whether or not to quantize on a
large phase space and apply weak constraints afterwards,
because there is no larger phase space. The perturbative
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constraints are second-class constraints, and hold strong- constraints, with Dirac brackets.?’
ly. One must use the Dirac procedure, with Dirac brack- In quantum cosmology there is not, in general, a spe-
ets instead of Poisson brackets, calculate the Hamiltoni-  cial physical quantity that takes the role of time which is
an, and use the Hamilton-Dirac equations to quantize the  so essential to Hamiltonian-based quantum mechanics.
system.26:?7 In these cases the action is taken to be the fundamental
There is an easier method to put the system in canoni-  basis and quantization can proceed using the Feynman
cal form, however, based on the fact that we know what sum-over-histories approach. The technique is to Eu-
form the final answer must take, due to EW (Ref. 10) and  clideanize the action and sum over all paths with a
quickly reviewed here. There exists a local, lower-order  specified boundary condition, which produces a specific
theory equivalent to the higher-derivative theory plus the = quantum state. This does not require any canonical for-
constraints.?’” By knowing the energy, reduced to a func-  malism. If there is a special time parameter or symmetry
tion of x and x only, E,(x,x) (once the constraints have  that allows a useful canonical formalism, the EW method
been applied), and knowing that the Hamiltonian is equal  can be used for ease of calculation of the action, but is
in value to the energy, the value of p, the canonical not required.
momentum to x, for a reduced version of the same system Let us observe all the above properties and characteris-
can be inferred. In order that tics of a nonlocal theory with a simple model. The model
. is solved exactly, both classically and quantum mechani-
x={x,H,(x,p)] 27 cally, and can be expanded in an infinite or arbitrarily
hold true, we must have truncated series in higher derivatives. The system is a
one-dimensional harmonic oscillator but for which the
+p(x,0) . (28) potential depends not only on the position at a given
3% ’ time, but at all times past and future. Distant times,
however, contribute exponentially weakly. We begin
with the equation of motion

+dp OE,(x,v)
)= [ 25

[There may be some uncertainty in the choice of p (x,0),
but this corresponds to the uncertainty in the initial La-
grangian of whether to add total derivatives of the form e 2 [ —Isly
AL =dF(x(t))/dt, which one always has the freedom to 0=%+o fo dse” "3[x(t+es)+x(r—es)]
do. This addition corresponds to the making the canoni-
cal transformation

=5c'+w2f+w%e_|slx(t+es). (30)
x'=x, p'=p+3F/dx .] (29) o

We can then invert (28) to get X(x,p) and arrive at When ew <<1 we might expect this system’s behavior to
H,(x,p)=E (x,x(x,p)) and L,(x,x)=p(x,X)%x be very similar to a simple harmonic oscillator, and
—E,(x,%). Using the new x and p, where {x,p}=1,is indeed this is the case. Using the ansatz x = Ae'?" we
equivalent in every way to using all the x(”’,px‘,.,, and find two roots:

J

yi= —2,—2 Where Y=(1+1V1+4e20?) 1 2=1—-1ew?+ - . (31)

The second root, when reinserted into the equation of motion, fails to converge, and so is not a solution. The remaining
root corresponds to the solution we expect: harmonic motion with frequency close to the original, ¥y =w[1+ 0 (€*0?)].
The general real solution is

x = A cos(yt+¢) . (32)
To put the system into a Lagrangian form, we expand out the equation of motion into an infinite series
0=x+tw* 3 (eD)*x 33)
n=0

and we can construct a Lagrangian that will give us this:
- oL
0=—>(—D)"—,
n§0 a( D "x)

5 %2—0*x 40?3 I [(eD)*"*'x (D)™ *!x +(eD)** *2x (eD)*™ T 2x]

n=0m=0

(34)

2

=%[:’c2—w2x2+w2 +

x —f+w%§-e_|“x(t+es)

— 00

2
f+w%e*|“e)&(t +es)] } } .

—
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There are, of course, other Lagrangians that give us the
same equations of motion. For instance, we can always
add the total derivative (d /dt)f (x) without changing the
classical equation of motion. When adding total deriva-
tives with higher derivatives, however, one must exercise
caution, or the variational principle necessary for quanti-
zation will be lost. Details of the need for a valid varia-
tional formulation are discussed in Appendix D.

Since there is only one true degree of freedom (i.e., the
evolution is specified completely by x; and x;), not
infinitely many as implied by the infinite expansion, there
must be an infinite number of constraints implicit in the
expansion Lagrangian. They must express all higher
derivatives in terms of x and %, and can be put in the
form of (26). By inspection of the known solution (32)
they must be

D2n +2x =( _1)n+1},2n +2x

D2n+3x=(__1)n+1,y2n+2)-c nzo’l"" ’ (35)

or some linear combination. The JLM procedure is un-
necessary here because we have the general solution (32),
and finding constraints to enforce it can be done by in-
spection. These constraints may be put explicitly into the
Lagrangian with Lagrange multipliers. It is not neces-
sary, since the convergence of the series enforces the con-
straints implicitly, but it is helpful to acknowledge them
explicitly as well.

0 .
I=1[" drii+elx?-

— o

The action is still nonlocal in real time, even though the
paths are in Euclidean time. The path integral can be
done exactly since the action is quadratic in x (Ref. 18).
There is only one classical solution with finite Euclidean
action: x4 =xge?”. Let X =x_,+gq. Then

Uolxg)= [ Dge ~Ilale ~Ixal

const

=const><e_mx(2’/2 , (39)
where
n=2—x*=1+0(%?), (39a)
SO
1/,O(x)OCe~m2[1+0(e2w2)]/2 (392)

as expected.

This system can be put into canonical form in two
ways: expanding the nonlocal integrals into infinite sums,
defining the momenta by Eq. (5), applying the (second-
class) constraints of Eq. (35) with Lagrange multipliers,
and using Dirac brackets, or by the calculationally much
simpler EW method discussed above. The reduced
relevant quantities given by this method are

2
f—f+w%e“mi(t+tes)] —
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The energy is calculated using the Ostrogradski Hamil-
tonian:

o n—1

- oL
E= (D" ~™x) |(—Dy"—2— | —
n§1m2=0 x a(DHX)

+
=%x2+w2xf_m %e“'s\x(t+es)
—%wz fow ds e x(t +es)fow ds'e *x(t—es') .

(36)

Note that lim,_, o E = 1(x 2+ w”x?), as expected.

The next step is to quantize the system. As usual,
finding the ground state of the system (which would not
exist if it really were an unconstrained higher-derivative
theory) can be done without reference to the canonical
formalism or Poisson and/or Dirac brackets. The
ground state can be calculated using the Euclidean sum
over paths:

Yolx)= [ Dx e x0T, (37)

where the Euclidean action I =.S,t =—u7, the sum is
over all paths of finite Euclidean action ending at x;, and
X(1)=x(t). We may take the final Euclidean time to be
7, =0, without loss of generality:

fho%e‘mef(t +ies)

— o

A

—
E,=ln(x2+y*?), p=n%,
H,=4n"'p*+nyix?), (40)
L=inx*—yX?).

The function p(x,0) is determined in this case by
demanding L (x4)=L,(x,), which gives p(x,0)=0.
Now we know the whole system is canonically equivalent
to a simple harmonic oscillator, so, in particular,

Hy,=ly(n+1)¢, where n=0,1,...,
; (41)
¢0=Ce—m/x 72 ’

which agrees with the Euclideanized sum-over-histories
calculation of the ground-state wave function.

Now suppose we are not given the full theory, but only
the first N terms. We may not even know where they
came from. But we do know that the zeroth-order term
is a good approximation when €w << 1. Or perhaps we do
not have the tools to solve the full theory, but only for
the first N terms:

N
LN=% % 2—w*x 3 (eD)*Mx |+total derivatives . (42)
n=0
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The cases N =0,1 are trivial, and the solutions are the
same as the solution to the full nonlocal theory, to order
(€w)? and (ew)?, respectively. If left unconstrained, how-
ever, the case N =2 has all the quirks and problems of
the acceleration-dependent oscillator above: twice as
many solutions as the zeroth-order case, negatively un-
bounded energy, etc. For N =3,4,..., the number of
solutions continues to increase and all associated prob-
lems get worse.

The perturbative constraints are needed explicitly here
(they are implicit in the full theory). The new “solutions”
to the unconstrained finite series approximations do not
converge when put in the equation of motion for the full
theory. The appropriate constraints can be obtained by
the JLM procedure, which is necessary when the full
theory is not known, and gives

X+yix =0, (43)

where ¥y depends on the expansion order N, and
vk —v*=0((ew)*™ *?). Higher-derivative constraints
are obtained by differentiating and substituting as neces-
sary. Solving this system, for finite N, gives the correct
solutions of the full infinite system (to the appropriate or-
der), whether classical or quantum, whether via the La-
grangian or Hamiltonian. Solving the system without the
perturbative constraints, while describing a well-defined
system, does not approximate the full nonlocal system in
any sense.

The above nonlocal oscillator is an example of a per-
fectly well-behaved system that appears sick when ex-
panded naively in a perturbation series. But when ex-
panded properly, with the knowledge that the only con-
tributing solutions are those close to the zeroth-order
solutions, the expansion is useful, perturbative, physical,
and agrees with the full theory to the appropriate order.

The one important aspect of higher-derivative and
nonlocal systems that does not appear in the above exam-
ple is the appearance of acausal solutions, i.e., preac-
celeration types of effects. These appear when the system
is coupled to explicitly time-dependent terms. The best
known example is Dirac’s classical electron. In the case
of a nonzero force, the electron experiences a preac-
celeration on times of the order of 7 (Refs. 21 and 5). For
a one-dimensional delta-function impulse the equation of
motion (23) in the nonrelativistic limit becomes

TX — X =kb(t) (44)

which has the general solution % =c,e'/"+c, for t#0
with an instantaneous change in X of x across t =0. For
t >0, c¢; =0 by requiring finite acceleration in the infinite
future. For ¢t <0, ¢, =0 if we desire zero velocity in the
far past. The solution is

kre'’", t<0,

kT, t>0, 43)
which has nonzero acceleration before the force is ap-
plied, but the time scale it occurs on is 7. In general,
noncausality only appears at the scale of the small expan-
sion parameter, and as shown by Wheeler and Feynman
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for similar theories, the noncausality decreases as the
number of particles rises.?® At any rate, for theories in
which the nonlocality appears only as a low-energy
effective theory, the theory itself is only an approxima-
tion at that scale, and its results at that scale will reflect
this. If the theory is truly nonlocal, as the true theory of
everything might be (we have no experimental evidence
whether or not nature is local near the Planck scale), then
the nonlocality will be manifest in the solutions.

The JLM procedure fails in the presence of external
sources, though a related procedure has been proposed.?’
Note that (45) is not analytic in 7, and so whatever
method is needed to remove ill-behaved solutions will
most likely not allow a solution of this form. The non-
causality may still manifest itself, though probably in a
different way. The form of the source term might be re-
stricted due to (nonlocal) back reaction, on the order of
the expansion parameter.

It is important to mention and put to rest a common
fallacy that the extra degrees of freedom of higher-
derivative theories are somehow related to the degrees of
freedom frozen out in creating the effective nonlocal
theory; for instance, that the higher-derivative degrees of
freedom in a cosmic string arise from the lost degrees of
freedom of the scalar and gauge fields, or that the
higher-derivative degrees of freedom from curvature
squared corrections to general relativity arise from the
frozen-out massive string modes. The field degrees of
freedom frozen out to create the nonlocal effective theory
are gone and cannot be regained. The apparent higher-
derivative degrees of freedom, as in the model above, are
artifacts from trying to perturbatively expand a nonlocal
theory without the necessary perturbative constraints.
This is also particularly relevant in the case of cosmic
strings, where negative-energy modes are available in the
unconstrained higher-derivative case, yet exact traveling
wave solutions along a string in the full field theory have
only positive energy.*®

V. EFFECTS ON GENERAL RELATIVITY, COSMIC
STRINGS, AND OTHER THEORIES

Under what circumstances should perturbative con-
straints be applied? They must always be applied in the
case where the theory in question is known to be a trun-
cated expansion (with a small coupling constant) of a
nonlocal theory. The nonlocal theory may itself be a
low-energy limit of some larger local theory. Specific
cases of this are Wheeler-Feynman electrodynamics and
cosmic strings (as will be shown below). If the expansion
is to be perturbative, then the perturbative constraints
are the only means of enforcing it. To verify whether the
perturbative expansion itself is appropriate, check the be-
havior of the zeroth-order approximation (e.g., a slowly
moving electron for which radiation effects are ignored,
or a very straight slow cosmic string). If it is appropriate
to approximate the system with only the zeroth-order
term, then it is appropriate to use higher-order perturba-
tive corrections, and hence the perturbative constraints.
This is certainly the case for Wheeler-Feynman electro-
dynamics and cosmic strings without too much curvature



(i.e., no kinks or cusps). Where the zeroth-order approxi-
mate theory is inappropriate (e.g., electrons with speeds
near ¢ and intersecting cosmic strings), the perturbative
expansion is inappropriate as well. The expansion
without perturbative constraints is never appropriate.

Consider the case of cosmic strings. The usual deriva-
tion of the string action*® begins with the full gauge
theory

S=[d*xV—g L(¢,0,6,4,,F,,) . (46)

Let d=¢y(x#), A,= A ,(x*) be a field configuration that
describes a string and let x*=X* be the location in
spacetime of the string. We want to write down an
effective action based only on the movement of the string,
i.e., formed only from functions and operators acting on
X*. First pick a coordinate system such that two coordi-
nates £° are in the world sheet of the string and two coor-
dinates p“ are Gaussian normal coordinates perpendicu-
lar to the world sheet

xH=XME)+pink , (47

where nf; are two (arbitrary) unit vectors normal to the
world sheet, a=1,2, and 4 =1,2. The action, still exact,
now reads

S=[dd*[Lipg Ay)+ -]

X [V—y

1
1+PAKA+EPAPBKAKB+ ] ] ’

(48)

where v,,(£%) is the metric on the world sheet and
K ,(£°) are the traces of the two extrinsic curvatures. We
can make an effective, nonlocal theory by integrating out
all degrees of freedom off the string world sheet. It is
nonlocal because the string has finite thickness, so the en-
ergy of a piece of the string propagates not only along the
string but also over and around it, but those extra degrees
of freedom are now frozen out of the picture. Once we
have done this, the lost degrees of freedom cannot be
recovered; i.e., we cannot reconstruct the original system
from the effective theory. This effective, nonlocal theory
is not usually examined per se, but is itself perturbatively
expanded, effectively in powers of the string width multi-
plied by the extrinsic curvatures

R N
Spern=—n [ d%V =y 1+70K"KA+ L, @9

where p is the string tension, s, is the ‘“rigidity,” etc.
The zeroth-order term is just the Nambu-Goto action.
Higher-order expansions contain higher derivatives via
the extrinsic curvatures and their derivatives. If left un-
constrained, these higher-derivative terms would have
the usual disastrous effect, making the so-called perturba-
tive theory totally different from the full nonlocal theory.
Instead, enforcing the perturbative constraints produces
solutions consistent with the full gauge field theory, al-
lows the expansion to be truly perturbative, and removes
all the problems of extra degrees of freedom and negative
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energy.

For cosmic strings the perturbative constraints ensure
that all higher-order solutions remain close to the solu-
tions of the old, zeroth-order, Nambu-Goto action. Since
it has been shown that solutions of the Nambu-Goto ac-
tion are also solutions when the first-order “rigidity”
corrections are present,’ the appropriate constraint, for a
noninteracting string, is that the original equations of
motion remain unchanged. The result is that, for an iso-
lated string, the rigidity term has no effect at all on the
motion, independently of the sign of its coefficient. The
first contributing corrections to the Nambu-Goto action
must come from higher-order terms, e.g., torsion or
derivatives of extrinsic curvature. As in the case of
Dirac’s theory, however, the rigidity term will certainly
play a role once external forces are considered.

Similar to the cases of nonradiating electrons and
cosmic strings, Newtonian gravity and its post-
Newtonian corrections can be derived from a perturba-
tion expansion of an effective non-local theory ultimately
derived from Einstein gravity. One might expect the
same phenomenon to occur, since the effects of gravitons
have been integrated out. Acceleration-dependent terms
do occur in the post-Newtonian and post-post-Newtonian
approximations, but only linearly, which is a degenerate
case (though perfectly suited to the Ostrogradski canoni-
calization procedure with second-class constraints’!).
The higher-derivative terms at these low orders arise only
from coordinate and gauge choices,’? but there is little
reason to doubt that nondegenerate higher-derivative
terms will appear at higher order.

Another important case where perturbative constraints
have not been considered, but should be, is the case of
gravity as a low-energy limit of string theory. Einstein’s
equations and the corrections to arbitrarily high orders
(in the slope parameter) can be obtained from nonlinear o
models (e.g., de Alwis?). The first-order corrected gravi-
tational action in D dimensions is

Scxdex\/—-_g R—E—’—(R

7 Ruvpe R¥P7—VR)

+ (matter terms)+O0 (a'?) |, (50)

where o' is the slope parameter. As in the preceding
case, to the extent that the zeroth-order theory (Einstein
gravity) is a good approximation of nature, higher-order
terms produced by this method should only be perturba-
tive corrections; they should not completely alter the dy-
namics of the system. The perturbative constraints must
be applied for consistency.

It is important to note in this case that the large nonlo-
cal theory which Einstein gravity and the constrained
higher-order terms approximates well is not string theory
itself. It is a nonlocal, low-energy effective theory that is
derivable from string theory and is appropriate in cases
where Einstein gravity is also a good approximation
(though not as good as the nonlocal low-energy effective
theory). Neither is appropriate in regions of very high
curvature or near singularities. The analog of the inter-
mediate nonlocal theory for the case of electrodynamics
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would be the Wheeler-Feynman theory, which falls be-
tween full field-theoretic electrodynamics and slowly
moving, nonradiating, Lorentz-force-law motion. Just as
the Wheeler-Feynman theory is not accurate at high en-
ergies (comparable to the electron mass), neither general
relativity nor general relativity plus string corrections
will be accurate at high curvatures.

When the higher-derivative corrections arise from
quantum effects, then the above argument does not hold.
One may or may not choose to apply the perturbative
constraints. But one should be aware that the higher-
derivative theory without perturbative constraints is
dramatically different from Einstein gravity, while the
same higher-derivative theory with perturbative con-
straints is a true perturbative correction. If there is any
reason to believe that the quantum corrections will not
radically alter the behavior of the system, then the per-
turbative constraints must be applied. (The same holds
for Lovelock gravities, which, while strictly speaking not
higher-derivative theories, have some solutions that are
close to Einstein gravity and others that are far from Ein-
stein gravity. One must throw away the dramatically
different solutions, i.e., impose the perturbative con-
straints, if the corrections to Einstein gravity are intend-
ed to be small.)

The perturbatively constrained system has qualitatively
different properties than the unconstrained higher-
derivative theory. The renormalizability gained from the
higher-derivatives is lost once the constraints are applied.
The extra particles (degrees of freedom) present in the un-
constrained theory do not exist in the constrained theory,
since any solution containing them is nonanalytic in the
expansion parameters.

For higher-order terms « R?2, all vacuum solutions to
the Einstein action are still vacuum solutions, and so just
as for the case of cosmic strings and the unforced Dirac
electron, the perturbative constraint is just the old equa-
tion of motion. This has the effect that the new equations
of motion ignore the R? piece entirely (though again,
when coupled to matter, this could easily change).
Dramatically different solutions, such as those offered in
Starobinsky-type inflation,'* are excluded from the realm
of acceptable solutions. For the additional nonlocal,
higher-derivative terms arising from quantum correc-
tions, the first-order terms contribute nontrivially even in
vacuum, but do not dominate the evolution.®? In the case
of Lovelock gravities, the de Sitter-like and anti-de
Sitter-like solutions®* are disallowed as acceptable spheri-
cally symmetric solutions.

VI. SUMMARY

Higher-derivative theories occur in various places
throughout theoretical physics, usually as a correction
term to a standard, lower derivative theory. In particu-
lar, they arise in the context of theories of gravity and of
cosmic strings. Though the higher-derivative theories are
mathematically self-consistent, there are distinctive
features of unconstrained higher-derivative theories that
set them apart from similar lower-derivative theories.
There are more degrees of freedom, associated with new
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solutions called “runaways,” qualitatively different from
those of a related lower-derivative theory. There is no
lower-energy bound. In the case of field theories, these
features can cause the problems of “ghost” fields and loss
of unitarity.

There is a natural way to constrain many higher-
derivative theories and save them from the above prob-
lems. It applies in cases where the higher-derivative
terms are associated with a small, perturbative, expansion
parameter. The method, called the method of perturba-
tive constraints, is to exclude solutions that have no Tay-
lor expansion in that small expansion parameter. The
effect is to throw away all the runaway, negative-energy
solutions. Without the perturbative constraints, higher-
order terms in the expansion contribute as much as the
lower-order terms, not commensurately less.

Higher-derivative theories that are expansions of a
nonlocal theory require these perturbative constraints to
give the same results as the full nonlocal theory. The per-
turbative constraints are actually present implicitly in the
full theory, but they must be included explicitly for any
finite expansion. Important examples of this case, where
the perturbative constraints should be (but have not been)
applied include higher-order corrections to general rela-
tivity from string theory, and to cosmic strings from the
original gauge theory from which they arise. Nonlocality
is a common feature in low-energy effective theories, and
is not at all necessarily present in the full theory from
which they are derived.

Higher-derivative theories which are not necessarily a
truncated version of an infinite series, but can still be
viewed as corrections to a valid lower-derivative theory,
can also reap the benefits of the method of perturbative
constraints. The constrained theory will resemble the
original, lower-order theory in its solutions and number
of degrees of freedom, and will have a lower-energy
bound, all of which one would hope for in a perturbative
expansion. The constraints are necessary if the perturba-
tive higher-derivative corrections are to produce pertur-
bative solutions. The unconstrained version would have
all of the associated problems of higher-derivative
theories, and the higher-derivative “correction” would
completely dominate the behavior of the solutions, com-
plete with negative-energy modes.
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APPENDIX A

The quantized version of the system presented in Eq.
(10) can be solved exactly by algebraic methods. We
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define the new canonical variables

1 1
= (% —m,),
e Vices
P =2 _ _(x—m.)
T V1= *
(A1)
q = (i —7,)
1—€o? 7
1 1 22
ey —m.),
P " l—eza)Zwa 7,

such that the Hamiltonian is in the form of the difference
of two harmonic oscillators:

oy 1 ixm; .
%o(x,x)—T/—z—;f dm.e  'Poo(m,,X)

1/4

H=p% +0’q% —(p% +e %q2). (A2)
The energy spectrum is then given by
E=(n+Lo—(m+L1e"" for n,m=0,1,2,....
(A3)
The wave function can then be put in the form
Yo (T, X )= X (G + ))(m,e_l(q_) , (A4)

where X, is the standard simple harmonic-oscillator
wave function with energy level n’ and frequency o', and
q. are defined above. ¥,,,(x,%) is given by the Fourier
transform: e.g.,

01— 20 )x 2 —diew*xx — (1 —e*w?)% ?

exp

o
em

APPENDIX B

The rules for reading off the expectation values from
the Hamiltonian are simple:

(g'™)=i#8 X coefficient of (pq(,.)) )

(B1)
((g'™)?) =i#8 X coefficient of ((pq(n>)2) , etc.,

but they only apply when the Hamiltonian and/or
Schrodinger formulation is equivalent to the Feynman
path-integral formulation of quantum mechanics (for
more details on when this is true, see, e.g, Popov>*).

To calculate meaningful quantities, take the expecta-

2e 1+ €*w?)

(AS)

[

tion value of classical expressions (since path integrals are
semiclassical approximations at the smallest scale). For
example, when calculating the expectation value of veloc-
ity, take the transition expectation value of

vy~%x+0(Ax /8) . (B2)

For the example, in Eq. (20), v, is given exactly by the
derivative of (C1).

APPENDIX C

The general solution for the system described by (20) is

x(0)={(x;—% )sin[e "NT —1)]+ (e %tx; —€ *tx;—€ *Tx,—%;+%,)sin(e " 'T)
+(%;—%,)sin(e " 't)— e (T%, +x,—x,)cos[e (T —1)]
+e NTx;+x,—x;)cos(e” ') +e ™ (—tx;, —tk+ T%k;, —x,—x )cos(e " 'T)

+e Nkt ik, +Tx,+x,+x7) e[ —2cos(e™'t)—e ' Tsin(e ') +2]7" (}))

for a particle beginning its motion at x; at time ¢ =0 and
ending at x, at time t =7. From this we can compute
the classical action

S=SE [A(x}+x3)-2Bx%,
—2e71C(x;+ %, )x;—x/)
+e D (x;—x,)], (C2)

where

A=—4€¢ 'Tcose 'T+3€¢ T cos2e”!IT

+4sine” 'T+ (e 2T*—2)sin2e 'T+e™'T,
B=4e 'Tcose 'T+e 'Tcos2e™ 'T

+2(e 2T2+2)sine " 'T—2sin2e ™ 'T —5¢'T ,
C =8cose 'T—2cos2e 'T+2¢ Tsine” 'T

—€ " 'Tsin2e™'T—6, (C3)
D=¢"'Tcos2e 'T+4sine” 'T—2sin2¢ 'T—€"'T,
E=16cose 'T +(e 2T?*—4)cos2e T

+8¢ 'Tsine ™ 'T—4sin2e T —e 2T?—12 .
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Because the Lagrangian is quadratic, the quantum transi-
tion amplitude given by the path-integral formulation is
exactly

K (xp,%p,t;+ T5x,,%,t,)=F(Te*S, (C4)

where F(T) can be derived from the classical action alone
(see, e.g., Marinov*® for details):

. 12
F(T)Z%

—BD —C?

iz (C5)

Schrodinger’s equation for this system can be obtained
directly from (C4) without the use of canonical formalism
or the Hamiltonian.'®

APPENDIX D

One may always add any total derivative to a Lagrang-
ian without affecting the equations of motion, but not
every Lagrangian had a valid variational formulation as-
sociated with it, and without one, the associated
quantum-mechanical wave function will not fold. A sim-
ple example of a Lagrangian without a valid variational
formulation is

La=%(fc2—a)2x2)+a5—t(xx) for a#0,—1 (D1

for which the variational principle is
8S,=— flz(x +wx)8x dt +(1+a)%8x |} +ax8% 2 .

(D2)

This tells us to fix four boundary conditions for a
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second-order equation, which is an overdetermined sys-
tem. Any Lagrangian lacking a valid variational formu-
lation can regain it by adding a total derivative. In this
case, the most obvious total derivative to add is
—ald/dt)(xx). Note that for a= -1 there is a valid
variational formulation (even though there are also con-
straints); this is the theory obtained by choosing the
canonical momentum as the generalized coordinate. (A
valid variational formulation is not needed to put the sys-
tem into canonical form, it is only necessary for quantum
mechanics.)

From Eq. (4) and from calculating the p (. for our
nonlocal oscillator [expressed as the infinite sum in the
second line of (34)], we can see that the model Lagrangian
presented above does have a valid variational formula-
tion, once the implied constraints of (35) have been taken
into account. The implied constraints tell us that holding
all even derivatives fixed on the boundaries holds x fixed,
and holding all odd derivatives fixed holds x fixed. Be-
cause the P vanish for odd n,

8S= f lz(equations of motion)+ (some function)&x |3
(D3)

once the constraints are used. It is correct and, in fact,
necessary to use the constraints to determine whether or
not the system is over determined, as they are just part of
the equations of motion (cf. the case of L,). In general,
adding an arbitrary total derivative to the Lagrangian, if
it contains higher derivatives, corresponds to a canonical
change in variable, which would destroy the variational
formulation.
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