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A modification of the traditional formulation of Kaluza-Klein theory is proposed in which the
internal structure is described by a noncommutative geometry based on a semisimple algebra. The
classical theory of Yang-Mills fields and of Dirac fermions is developed in the resulting geometry.
The generalized connection is written down which should describe the unification of the Yang-Mills
fields with gravity, but the gravitational sector is not described in detail. As an example the mass
and charge spectrum of the Yang-Mills-Dirac theory are given for a specific internal structure.

I. INTRODUCTION

R'XF

R4

where F is a manifold. We have therefore the embedding
of associated algebras

0 C C@C(F) . (1.2)

The question of whether or not what appears to be a
point at normal macroscopic length scales remains so at
all length scales has been debated for many years. One of
the first negative answers was given by Kaluza and Klein
in their attempt to introduce extra dimensions in order to
unify the gravitational field with electromagnetism. They
suggested that at sufficiently small scales what appears as
a point will in fact be seen as a circle. Later it was pro-
posed that this internal manifold could be taken as a
compact Lie group or even as a general compact mani-
fold. The great disadvantage of these extra dimensions is
that they introduce divergences in the quantum theory
and an infinite spectrum of new particles. In fact the
structure is strongly redundant and most of it has to be
discarded. No use can be made at present of an infinite
spectrum of particles. An associated problem is that of
localization. We cannot, and indeed do not wish to have
to, address the question of the exact position of a particle
in the extra dimensions. We shall take this as motivation
for describing the internal structure using a geometry in
which the notion of a point does not exist in general. As
particular examples of such a geometry we shaH choose
only internal structures which give rise to a finite spec-
trum of particles.

In other words we develop here the point of view that
what one should do is modify the original idea of Kaluza
and Klein by replacing a point in space-time by an inter-
nal structure which is not a manifold nor even a topologi-
cal space. We reca11 the definition of the manifold on
which Kaluza-Klein theory is usually based. Locally
there is a projection

Here C (F) designates an algebra of complex-valued func-
tions on F. We have set C(R ) =C and we have supposed
that the algebra of a product manifold can be identified
with the product of the algebras of the individual factors.
Kaluza-Klein theory in the usual sense can be described
equally well by referring to (1.1) or to (1.2). The internal
structure is described by the manifold F or by the algebra
of functions C (F).

We can modify Kaluza-Klein theory by replacing C (F)
by an associative algebra M which is not necessarily an
algebra of functions. We can then no longer refer to the
diagram (1.1) as there is no internal manifold F. Diagram
(1.2) is replaced by an embedding

O~C «A,
where A is of the form

(1.3)

We shaH choose as algebra M a finite direct sum of ma-
trix algebras. This choice has the two advantages which
we have mentioned. There is no valid notion of a point in
the associated geometry and since the algebra of deriva-
tions is of finite dimension, the associated particle spec-
trum is finite.

In Sec. II we give a brief introduction to the geometry
of matrices and in Sec. III the Kaluza-Klein construction
is modified to include an internal structure described by
this geometry. In the rest of this paper we shall abandon
the gravitational sector and consider the Maxwell-Dirac
equations in the geometry defined by A. In Sec. IV
gauge bosons are discussed and the different vacuua im-
plied in general by the geometry are given. In Sec. V a
modification of the Dirac equation is proposed. In Sec.
VI the simplest model is discussed in some detail. The
extensions to semisimple models are given in Sec. VII.

II. A NONCOMMUTATIVE GEOMETRY

The basic structure of the differential geometry of a
manifold can be also expressed in terms of an algebra of
functions defined on the manifold. Local coordinates are
replaced by generators of the algebra; vector fields are re-
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placed by derivations. Once this is realized, it is natural
to generalize ordinary geometry to noncommutative
geometry by replacing the algebra by an abstract associa-
tive algebra A which is not necessarily commutative.
One of the main differences is the loss of the idea of a
point. So there is no 1onger a well-defined notion of local-
ization. It is this feature of noncommutative geometry
which makes it particularly well suited to describe the
interna1 structure of a Kaluza-Klein theory. We refer to
Ref. 1 for a general introduction to the subject and for
references to the previous literature.

Also, independent of any consideration of gravity and
the problem of its unification with other fields, an obvious
thing to try to do is to develop a noncommutative version
of classical field theory simply by replacing the objects in
the commutative case which are used to describe the
theory by the corresponding noncommutative objects. In
a series of papers this has been done for the geometry
described by an algebra of the form (1.3) where M is the
algebra M„of n X n complex matrices. The essential part
of this paper is to extend some of these results to the
semisimple case of l copies of M„:

For simplicity we choose l = 1 and suppress the index
in parentheses except in the last section. We recall the
notation of Ref. 5. Let A.„for 1 a + n —1, be a basis of
the Lie algebra of the special unitary group in n dimen-
sions, chosen so that the structure constants C'b, are
real. The Killing metric is given by g,&= —Tr(A, ,A, b).
We shall raise and lower indices with this metric. The set
A,, is a set of generators of the matrix algebra M„. It is
not a minimal set but it is convenient because of the fact
that the derivations

e, =a 'ad(A, , ) (2.1)

form a basis over the complex numbers for the deriva-
tions of M„. They satisfy the commutation relations

[e„e&]=mC',&e, . (2.2)

The mass scale m is defined to be the inverse of the length
scale a.

Let x" be coordinates of IR . Then the set (x",A, ') is a
set of generators of the algebra A. We define the exterior
derivative of an element of A as usual. For example, if f
is an element of M„, then df is defined by the formula

(2.3)

As before, we shall choose C to be the algebra of smooth
complex-valued functions on R and as before the extra
factor M is the origin of the extra structure which a point
acquires. The elements of the algebra A are what replace
the functions on R . In particular the nearest object
which we have to a coordinate is an element of this alge-
bra. This means that the position of a particle, for exam-
ple, no longer has a well-defined meaning. Since we cer-
tainly wish this to be so at macroscopic scales, we must
require that to each M„" there be associated a length
scale ~" which is not much greater than a typical Comp-
ton wavelength. In other words, the fuzziness which the
internal structures gives a point in space-time cannot be
much greater than the quantum uncertainty in the posi-
tion of a particle. There is no reason to suppose that the
scales a'" are of the same order of magnitude but it would
be natural to suppose that at least one of them is of the
Planck scale. The Lorentz group acts on A. This means
in particular that directions are well defined. Our space-
time then looks like a crystal which has a homogeneous
distribution of dislocations but no disclinations. We can
pursue this solid-state analogy and think of the ordinary
Minkowski coordinates as macroscopic order parameters
obtained by course graining over scales less than the ~".
They break down and must be replaced by elements of
the algebra A when one considers phenomena on these
scales.

The Lie algebra D ( C ) of vector fields on the manifoldI can be identified with the algebra of derivations of C,
that is, with the algebra of linear maps of C into itself
which satisfy the Leibnitz rule. This algebra is the most
important mathematical object which one uses when one
studies classica1 fields on R and their dynamics. To
study these fields then in the noncommutative case we
must consider the derivations D(A ) of the algebra A.

8'(eb ) 5b—
It is related to the d A,

' by the equations

dna mCa gb8c 8a &g gadgb
bc s b

(2.4)

(2.5)

and it satisfies the same structure equations as the com-
ponents of the Maurer-Cartan form on the special unitary
group SU(n):

d e'= —
—,'mC', O'O' .bc (2.6)

The product on the right-hand side of this formula is the
product in Q(M„). Although this product is not in gen-
eral antisymmetric, because of the relation (2.4) we have

gbga gagb

Also the 6' commute with the elements of M„and
Q'(M„) can be identified with the tensor product of M„
and the dual of the vector space of derivations. The
subalgebra Q*(M„) of Q(M„) generated by the 8' is an

This means in particular that

d A, '( e„)=m [A,&, A,']=m C,i,
'A, ' .

We define the set of one-forms Q'(A ) to be the set of all
elements of the form f dg or dg f, with f and g in A sub-
ject to the relations d(fg)=(df)g+f dg. We similarly
define Q'(M„) and Q'(C ), the definition of the latter be-

ing of course the usual one. The n-forms Q"(A ) and the
generalization Q(A ) of the algebra of differential forms
are defined, for example, in Refs. 8 and 3.

The set of d A,
' forms a system of generators of Q'(M„)

as a left or right module, but it is not a convenient one.
For example, A, 'dk, ~/dA, A,'. However because of the
particular structure of M„ there is another system of gen-
erators completely characterized by the equation
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Q'(A ) =QHS Qv, (2.7}

where we define

QH=M„SQ'(C), QV=CQ'(M„) .

The horizontal part QH has basis 8 and the vertical part
Q v has basis O'. We shall decompose the exterior deriva-
tive into horizontal and vertical parts also:

exterior algebra. Formula (2.6} means that it is a
differential subalgebra. Since we shall only use Q*(M„)
in what follows we shall write the product as a wedge
product:

0'0 =O'A0" .

Choose a basis 8idx" of Q'(C ) over C and let e be the
Pfaffian derivations dual to 8 . Set i =(a, a ),
1 ~i ~4+n 1,—and introduce 8'=(8, 8'} as generators
of Q'(A ) as a left or right A module and e; = (e~, e, ) as a
basis of D(A ) over C. We can write Q'(A ) as a direct
sum

an arbitrary basis A,
' but they are all tensorial in charac-

ter with respect to a change of basis

(g&)~GL(n2 1) (2.13)

In particular the covariant derivative (2.12}transforms as
it should. The unusual fact here is that the connection
transforms also as a tensor and each of the terms on the
right-hand side of (2.12) is tensorial in character separate-
ly. This is related to the fact that on the factor M„of our
algebra there is no notion of a point and no analog of lo-
cal variation. Each 0' corresponds to an arbitrary global-
ly defined moving frame in the commutative case and the
transformations of 0' correspond to the set of all local
transformations. We speak of a linear connection even
though the corresponding moving frames do not vary.
The change of basis (2.13) is the equivalent in M„of a
coordinate transformation in C. We can suppose that a
basis has been chosen so that the Killing metric g,b is
equal to the Euclidean metric 5,b.

One can also consider the automorphisms of M„, given
by

d —dH+dy
A, '~A, "=g 'A, 'g, g EGL(n} . (2.14)

The generators 8' of Q'(M„} can be considered as a
sort of moving frame. If we compare Eq. (2.6) with the
first structure equations for this frame,

d0'+co'b A 0b=6',

To simplify we mention only the infinitesimal transforma-
tions

A, '~A, "=A,'—[f,A, '], g=l+f .

we see that if we require the torsion form 6' to vanish
then the internal structure is like a curved space with a
linear connection given by

We see that

8"=8' Lx8', —X=ad(f),
and in general, for any n-form a,

(2.15)

ct) b= —
—,mC b, 0 . (2.8)

I.xa

ga l mCa 0bA0c
be (2.9)

We have in this case a covariant derivative D, which is
equal to e, in the absence of gauge couplings but we have

[D.,Db] mC bD, . (2.10)

In the rest of this paper we shall choose the solution (2.8),
to avoid having an extra torsion form. If a is a one-form
a=a, 0' then we have by definition, in the absence of tor-
sion,

We have then a covariant derivative D, which differs
from e, . Alternatively we could require that the connec-
tion co'b vanish. We would have then a torsion form
given by

III. METRICS AND CONNECTIONS

We shall introduce the quadratic form, of signature
n +1, givenby

ds =g;,8'8j=i) &8 86 +g,b8'8 (3.1)

The g &
is the Minkowski metric. We shall refer to this

quadratic form as a metric although it contains two terms
of a slightly different nature. To within a rescaling the
g,b are the components of the unique metric gv for M„
with respect to which all the derivations e, are Killing
derivations. Let X=X'e, be an arbitrary derivation. It
is easy to see that

da=D ab0 A 0 (2.11) Lxgv=0

with

D ab =e ab —mC ba (2.12)

Notice that this covariant derivative commutes with itself
when acting on elements of the algebra although the ordi-
nary derivative does not. That is, for f in A,

D(,Db)f =0 .

The equations we have given above are with respect to

0= —m A,,0', (3.2)

which from (2.5) and (2.6) satisfies the zero-curvature
condition

d0+0 =0 (3.3)

and that conversely any metric for M„which satisfies this
equation must be a real multiple of gv.

From the generators 0' we can construct a one-form 0
in Ov
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We shall see below that 61 is gauge invariant. It satisfies
with respect to the algebraic exterior derivative dz simi-
lar conditions to those which the Maurer-Cartan form
satisfies with respect to ordinary exterior derivation on
the group SU(n). We have a map of the trace-free ele-
ments of M„onto the derivations of M„given by
fr=ad(f). The one-form 8 can be defined, without
any reference to the 8', as the inverse map: 8(X)= f.—
Using it, the vertical component of the metric can be
given by the equation

gv(X, Y)= —~ Tr[8(X)8( Y)],

N =g cog+g dg

We define

9'=g 'gg+g 'dvg, A'=g 'Ag+g 'dHg,

and so P transforms under the adjoint action of 'M:

(3.6}

(3.7)

this is the group Vl(n) of smooth functions on R with
values in the unitary group U(n). We shall choose it to be
the group of local gauge transformations.

A gauge transformation defines a mapping of Q'(A )

into itself of the form

where X, Y are derivations of M„. Set X=ad(f). Then
using (3.3) we find

LX8=i(X)d8+di(X)8= (df+—[8,f ])=0 .
It can be readily seen that in fact 8 is invariant,

(3.g)

So the one-form 8 is invariant under all the derivations of
M„. To within multiplication by a complex number it is
the only such one-form.

In the commutative case a connection co on the trivial
principal U(1) bundle equipped with the associated
canonical flat connection is an anti-Hermitian one-form,
which can be split as the sum of a horizontal part, a one-
form on the base manifold, and a vertical part, the
Maurer-Cartan form da on U(1):

co= A+da . (3.4)

The gauge potential A is an element of Q'(C) and using
it we can construct a covariant derivative on an associat-
ed vector bundle. The notion of a vector bundle can be
generalized to the noncommutative case as an A module
which in its simplest form, a free module of rank 1, can
be identified with A itself. This is in fact the natural gen-
eralization to the algebra we are considering of a trivial
U(1) bundle since M„has replaced C in our models. So
the U(n) gauge symmetry we shall use below comes not
from the rank of the vector bundle, which we shall al-
ways choose to be equal to 1, but rather from the factor
M„ in our algebra A. The noncommutative generaliza-
tion of A is an anti-Hermitian element of Q (A ), which
we saw in the previous section in turn can be split as the
sum of two parts, called also horizontal and vertical. We
shall here designate by co such an element of Q'(A } since
we wish to reserve the letter A and the name gauge po-
tential for the horizontal part in this latter sense. We
write then

Q =dc@+a), F=dH A + A

They satisfy the relation

Q=F+DHp+(Dvp p} . — (3.9)

and so the transformed potential co' is again of the form
(3.5).

The generalization of the globally defined maps of a
manifold onto itself is the set of automorphisms of the
algebra A. This consists of automorphisms of C and of
the automorphisms (2.14) of M„. Gauge transformations
can be identified then with a subset of generalized coordi-
nate transformations. The relation between A,

' and e, is
similar to that which exists between the coordinate x"
and the partial derivative 8„. The difference lies in the
fact that e, is a linear expression in A, When e, acts on
an element f of A it yields the components of a one-
form. In the expression (3.2} for 8, A,, transforms as the
derivative of a scalar but because of (3.3} there is no f
such that 8=df.

The fact that 8 is invariant under a gauge transforma-
tion means in particular that it cannot be made to vanish
by a choice of gauge. We have then a potential with van-
ishing curvature but which is not gauge equivalent to
zero. If M„were an algebra of functions over a compact
manifold, the existence of such a one-form would be due
to the nontrivial topology of the manifold.

We define the curvature two-form 0 and the field
strength F as usual:

co= A+8+/, (3.5)
We have defined here the covariant exterior derivative

where A is an element of QH and P is an element of QI..
The field P is the Higgs-boson field. We have noted that
8 is in many respect like a Maurer-Cartan form. Formu-
la (3.5) with /=0 and formula (3.4) are formally similar
but the meaning of the words horizontal and vertical in
the two cases is not the same. We have then a bundle
over a space which itself resembles a bundle. This
double-bundle structure, which is what gives rise to a
quartic Higgs-boson potential as we shall see belo~, has
been investigated in previous papers. '

Let 'M be the unitary elements of A. With M=M„

Q= 'Q 8'r 8 F= 'F -8 n, d'- (3.10)

we find

Qap Fap& Qaa Daka

Q.b [P., Pb] mC'. bP,
——. — (3.11)

Dg=dg+coP+Pco

and decomposed it into horizontal and vertical parts. In
terms of components, with $=$,8' and A = A 8 and
with
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Only the group SU(n)/Z„acts nontrivially and we have
an embedding

SU(n)/Z„~SO(n2 —1) .

We shall be forced then to suppose that

a), =0, A =0, (3.12)

and that g &SR(n), the local SU(n) gauge transforma-
tions.

With the condition (3.12}the connection co can be writ-
ten out explicitly as

a)=(A'8 —m8'+P'8 9,

Consider the derivations

(3.13)

=e +a.A e„F,=e +irido eb iran eb

The Kaluza-Klein construction involves essentially
three steps, the first of which was the identification of the
internal structure. Using the one-forms 0' we can consid-
er the algebra A in certain aspects as the algebra of func-
tions over a formal manifold of dimension 4+n —1: a
product of an ordinary manifold of dimension 4 and an
algebraic structure of dimension n —1. We shall use this
analogy to construct a linear connection on Q'(A ) using
co and a linear connection on Q'(C ). Formally, the in-
variance group of the complete structure is
SO(3+n —1, 1). If we restrict the local rotations to
those which do not mix the ordinary 8 with the algebra-
ic 8', this group reduces to SO(3,1)XSO(n —1). The
group U(n) acts on the algebraic structure through the
adjoint representation

U(n) +SO—(n 1)—.

dO'+co'j h OJ=O . (3.19)

Under the condition (3.17) the solution to these equations
is given by

Q) P
—Q) P+ 2 KFg PO

=—'rrF atr8 (3.20)

co' = ——'mC' 0'+KC' A'0
b 2 bc cb a

Except for an additional term on the right-hand side of
the equation for co'b, this connection is formally the same
as the usual one which one constructs on an SU(n) bun-
dle. The extra term, we shall see below, is what remains
of the covariant derivative of the Higgs-boson fields. In a
previous paper, in which the Higgs-boson field was inter-
preted as torsion, the extra term was absorbed into a
redefinition of the vertical part of the exterior derivative.

Consider now a general SU(n} connection with a gen-
eral Higgs-boson field. The matrix my& can be con-
sidered in (3.15) as a transformation of the frame 8' away
from its value in the physical vacuum. Set

(3.21)

and define

Let co &
now be a linear connection in Q'(C), an

so(3, 1)-valued one-form satisfying the structure equations

d8 +co &h8 =0, dc@ &+co hco~p=Q p . (3.18)

We must construct an so(3+n —1, 1)-valued one-form
9 'J on Q'(A ) satisfying the first structure equation

of the algebra A. These constitute part of the covariant
derivative which we shall later apply to spinor fields.
Dual to 8; are the one-forms 8' given by

0" =y'0
ij b ij

Then the solution to (3.19) is given by

(3.22)

8 a —8a 8 a —m+a(8b &g b 8a)

We have here used the inverse gb to the matrix g:
(3.15)

—a a +IQ~ apa
P P 2 a

=—'0' 8 +—'0' .0 '
CO a

—
2 b a 2 a i (3.23)

~ayb ga (3.16)
co'b = ,'mC'b, 8—'+—,'Q,' 'b8'+—,'(Q";b Qb;—')8'. —

First we restrict our considerations to that special class
of connections for which the internal curvature vanishes:

Q,b=0 . (3.17)

This is the case which most resembles ordinary Kaluza-
Klein theory. From (3.11) either pb vanishes or pb be-
longs to the gauge orbit of m5&. We shall see below that
these values correspond to the two stable vacua of the
theory. The first gives rise to a singular set of one.-forms
O'. Consider the second value, which corresponds to the
physical vacuum. It yields a frame 0' which is formally
very similar to the usual moving frame constructed on a
principal SU(n) bundle. On the other hand if we corn-
pare with (3.13) we see that the vertical component of the
connection vanishes. It is in the other vacuum P =0 that
the connection co most resernb1es a connection in a trivial
SU(n) bundle.

As in the normal Kaluza-Klein construction, the connec-
tion contains structure constants and terms which vanish
with the curvature.

To complete the Kaluza-Klein construction it is neces-
sary to consider the second structure equations

dQ j+co k 667 j—Q j (3.24)

and the equations of motion which follow from a suitable
action. That this be the most general invariant which
yields second-order field equations is the only condition
one can impose in the absence of any criterion of renor-
malizability. Invariance under local SO(3,1)X SU( n )

transformations permits an infinite formal sum of terms
involving arbitrary powers of the components Q p, 0 „
Q,b of Q as well as of the components p, of the Higgs-
boson field. If on the other hand one imposes a rather
formal SO(3+n —1, 1) invariance which mixes the
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space-time 8 with the algebraic 8', then the most general
invariant can be constructed using only the components
of the curvature form 0 ' . It is a finite sum,

2+NX=+ aX, , N=
i=0

n —12

(3.25}

+ ] g&a gamba +g&a g&ba
ab a aa b

+ —,'(Q"b, +rnC'b, )Q", . (3.26)

All of the terms on the right-hand side are gauge invari-
ant. In fact, under a gauge transformation, the com-
ponents pb transform only with respect to the upper in-
dex:

with arbitrary coeScients a;, of the generators of the
Euler classes in even dimensions up to and including
4+n 1(R—ef. 11). Although it has been shown' in the
usual Kaluza-Klein case with a manifold as internal
structure that a consistent classical theory with a reason-
able stable vacuum can be only based on a Lagrangian
which includes some of the higher-order terms in the
above expansion, we shall restrict our attention here to
the Einstein-Hilbert term Xi =A.

A straightforward calculation yields that to within a
divergence we have

R =R+—'0, '"g"v——'m CC'"'
4 aij 4 abc

IV. GAUGE BOSONS

The straightforward generalization of the Maxwell ac-
tion to the geometry defined by A is given by

SYM= 2
Tr 0 0'

4g 2
(4.1)

The integration is over space-time and the trace is what
replaces this integration on the factor Iof A. Together
the two define an integration in the algebra A. The con-
stant g is the Yang-Mills coupling constant. We shall set
it equal to 1. Written out explicitly in the case 1=1 the
Lagrangian becomes

CvM= ,'Tr(FapF ~—)+,'Tr(D PaD—P') V(P), —(4.2)

manifold F, then it is possible to obtain a Kaluza-Klein
theory with a finite number of modes simply by expand-
ing the elements of C (F) in terms of a basis and truncat-
ing after a finite number of terms. We have then a finite-
dimensional vector space V. It is sometimes possible to
introduce a product on this space and make it into an as-
sociative algebra. Sulcient conditions for this are given

by the Gelfand-Naimark-Segal construction' which
states that, subject to certain topological restrictions, an
algebra M can be embedded as a vector space into the
continuous functions on the set F of its pure states. The
product in M defines then a product in the image V in
8(F}.

4b 4b'= ~',4b

&.'=g '&,g=A. A,b, AESO(n2 —1),
where the Higgs-boson potential V(P) is given by

V(p) = —
—,'Tr(Q, bQ'") . (4.3)

V(p) rii 2@ g cab

where

(3.27)

and therefore yb transforms only with respect to the
lower index. The quantities Q"," defined then in (3.22)
are gauge invariants.

The second term in (3.26} is a modified version of the
gauge-boson Lagrangian which we shall use in the next
section. It includes not only (4.2) given below but also an
infinite sum of terms with insertions of Higgs-boson fields
which come from the inverse yb of pb near the physical
vacuum. The third term is an e8'ective cosmological con-
stant. The three last terms do not appear in usual
Kaluza-Klein theories. They modify in an essential way
the Higgs Lagrangian which we shall use below. For ex-
ample, the scalar potential which comes from (3.26) is
given by

It is a quartic polynomial in P with the mass scale m as
free parameter.

From (3.11) we see that V(P) vanishes for the values

$, =0, ((), =mk, (4.4)

Referring back to the expansion (3.5} of the connection
we see that the first value corresponds to co v

=8 and the
second value to co& =0. The orbit of the second value un-
der the action of the gauge group can be identified with
SU(n}. The Higgs-boson potential has therefore two ab-
solute minima, a point at the origin and a submanifold of
dimension n —1, which are separated by a potential bar-
rier. There are therefore two stable phases.

We shall consider first the symmetric phase P, =0 and
then the broken phase P, =mA, We expand the Higgs-
boson field and the gauge potential

and

~abc T( abc + bac Ccab }

C 'b. =X:C"F44'! .

This potential has a stable minimum only near /=0
where the curvature is singular. Here also higher-order
terms in the expansion (3.25) will have to be included to
stabilize the physical vacuum.

If we assume an internal structure given by a compact m =nmH (4.5)

so that we can identify the basic modes, the elementary
scalars (P„P,} and the elementary vector bosons
(A', A ). In the symmetric phase the masses of all the
Higgs-boson modes are equal and they are real since the
corresponding value of the potential is a stable minimum.
Using the expression given above for Q,b, we find that
the mass is given by
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The gauge bosons of course have a vanishing mass in the
symmetric phase.

In the broken phase, to calculate the Higgs-boson
masses we use the vertical part co, e' of the connection as
a new Higgs-boson field and we expand it in terms of the
basic field modes:

1

~a ~b~a + ~ ~a~n

The analysis here is rather messy and we give it only in
the case n =2. We decompose co,b =gb, co', into its irre-
ducible parts, a trace, a trace-free symmetric, and an an-
tisymmetric part:

We choose also A to be an A module, a right module for
convenience. The unique irreducible finite projective
module is given by

&'=Cg C" .

We can write then

The first factor describes a Dirac spinor, the second fac-
tor combined with the last factor describe isospin. With
the above decomposition, the Dirac matrices can be writ-
ten

7
~ab +~ gab++ah+ abv3

The masses are, respectively, given by

7tl =2PPl ~2 8m2 ~2 0, 7tl2 2~20 (4.6)

=
—,
' m Tr( [A, A,, ][ A, A,'] ) . (4.7)

The mass of these bosons is given therefore by the equa-
tion

mz =2nm (4.g)

We have two classical vacua separated by a potential
barrier. There is however no instanton solution which
tunnels between them since there is not even a smooth
field configuration with finite action which could take as
values co=Oat t~ —i 00 and co=8 at t~+i 00.

The potential V(P) can be identified with the (Euclide-
an} action of the vertical part co of the connection. The
trace replaces in the algebra M„ the integration over the
points of the manifold in the usual case. If we define an
instanton to be a finite-action field configuration, solution
to the Yang-Mills field equations, then we have found all
instantons. They are given by

/=0, p= —
—,'e, p= —8 . (4.9)

The first and last solutions have zero curvature and zero
action. The second has positive action but is unstable.

where m0 is the mass of the modes co, . The 3 degrees of
freedom in the a are the 3 gauge degrees of freedom.
They correspond to the modes which have been absorbed
as the longitudinal part of the now massive gauge bosons.
In the broken phase the mass of the A remains equal to
zero. The mass term for the remaining vector bosons is

where the y matrices on the right-hand side are with
respect to the first and second factors in the decomposi-
tion of &. This is a particular case of a general
dimensional-reduction formula for spinors. We refer to
Ref. 14 for a more thorough discussion. The definition of
the derivative which we shall give is similar to that which
is used on spinors defined in higher-dimensional Kaluza-
Klein-type theories. The essential difference lies in the
fact that the usual derivative in the hidden interior direc-
tions is here replaced by an abstract algebraic one.

The Dirac operator is a linear first-order operator of
the form

& =r "Dk (5.1)

By analogy we would like to write

D, g=e, g /co, ,'mc —„yby'—P—, (5.3)

but we have first to define the derivative e,f. Since & is
a right A module, for any f in A we wish to have the re-
lation

e, (gf)=(e, g)f+Pe, (f) .

We must set therefore '

e, g= —m gA,

(5.4)

(5.5}

The first two terms on the right-hand side of (5.3) simpli-
fy then and we have

where Dk is the appropriate covariant derivative which
we must now define, The space-time components are the
usual ones if we take into account the right action of the
gauge group on %:

(5.2)

V. DIRAC FERMIONS D.y= qy. ,' c—',.r y—'0—. (5.6)

With the frame 0' which was introduced above, the
geometry of the algebra A resembles in some aspects or-
dinary commutative geometry in dimension 4+n —1.
Let g;. be the Minkowski metric in this dimension and y
the associated Dirac matrices. The space % of spinors
must be a left module with respect to the Cli8'ord algebra.
It is therefore of the form

2

2

Strictly speaking, this does not define a connection on
the right A-module structure of% unless P, takes one of
its ground-state values given below. A connection on &
considered as a right M module must satisfy the relation

(5.7}

where f is an element of A. This is the covariant gen-
eralization of (5.4). A covariant derivative on the other
hand must satisfy
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O'=A (5.8)

where g is an element of the gauge group Q=8'(n) .We
have identified Q(n) as a subset of A so both of the
above relations cannot be satisfied simultaneously. With
the given definition of D;f the relation (5.7) is satisfied
only for those f which are in the center Z ofA. If g is in
ZA'M(n)=Q(1) then the relations (5.7) and (5.8) are
identical.

The covariant derivative which we have defined here
coincides with the one which is given by the connection
(3.23), to within terms linear in the curvature Q. These
extra nonminimal terms do not inhuence the conclusions
which we wish to draw here concerning the classical mass
spectrum. However, this spectrum depends in an essen-
tial way on the equilibrium value of P, a value which we
shall suppose in the next section to be given by the
minimum of the classical potential (4.3). The efFective
potential, with the inclusion of quantum corrections,
could very well have different minima. In fact we men-
tioned in Sec. III that, by analogy with usual Kaluza-
Klein theory, one could expect even a classical theory
based on the Lagrangian (3.25) to have equilibrium values
which depend on the parameters a, .

The straightforward generalization of the Dirac action
to the geometry defined by A is given by

S~=Tr

VI. THE SIMPLEST MODEL

The generalization of the Maxwell-Dirac action is
given by

S=SYM+S~ .

We shall discuss here the particle spectrum this action
implies in the case I =1, n =2. In the case n =2 we can
write % in the form

&=C4eA .

The module & is a free A module of rank 1. We showed
above that in this case there are two stable phases, a sym-
metric phase with massless gauge bosons and a broken
phase with three massive gauge bosons of mass rn „=2m.

The Dirac matrices can be identified with the seven
matrices y'=(y 1, y ger'), where the cr are the Pauli
matrices: A,'=(i/v 2)a'. The algebraic components of
the covariant derivative become

D, g= —gP, + —,'mA, ,Q .

To find the mass spectrum we must solve the eigenvalue
equation

i o'D, P =m „pf (6.1)

To this would have to be added an explicit mass term

S =m gTr I (gf),
with g a real parameter, unless a parity operation could
be defined which would force it to vanish. We shall not
consider this term here.

for g in A. Because of the simplicity of the supplementa-
ry algebraic structure this can be done completely and ex-
plicitly, as in the bosonic case.

In the symmetric phase, P, vanishes and Eq. (6.1)
reduces to

cr, Po'=(2&2 p+ ,')g—. (6.2)

There is one mode $0, proportional to the unit matrix in

M2, of mass

3mp= ~ 82'
4 2

and there are three modes P, proportional to the Pauli
matrices, of mass

5
m, =

&
—m„.

4 2

The existance of these two mass values is a reAection of
the broken U(2) symmetry.

The bosonic sector consists of four gauge bosons, of
which one is massless and can be identified with the pho-
ton. There are as well nine massive scalar Higgs bosons.
The photon is the component of A proportional to the
unit matrix in M2 so all of the fermions have charge
given by

1e= (6.3)

The bosons are all neutral. There are in all 4X4=16 fer-
mionic degrees of freedom and 2+3 X 3+9=20 bosonic
degrees of freedom in this simplest model. This is to be
compared with the infinite number of modes in usual
Kaluza-Klein theories.

VII. SEMISIMPLE EXTENSIONS

We shall now show that the formalism presented in the
previous sections can be extended in a straightforward
way to the general semisimple algebra M introduced in
Sec. II. One of the many drawbacks which characterizes
the Dirac operator of the preceding section is the lack of
zero modes. The mass spectrum, including the zero
modes, is given by the eigenvalues of the algebraic part of
the Dirac operator, that which corresponds to the opera-
tor on the internal space in the Kaluza-Klein description.
Here this operator is essentially a finite matrix and it can-
not have a nonzero index. We are thus forced to adopt
the point of view that a correct description of nature is
given by a left-right-symmetric model in which there are
an equal number of zero modes of helicity plus and
minus. Even with this allowance we shall see that, at
least for the simple A-module structure which we as-
sume, the Dirac operator has no zero modes for finite
1)1.

Consider also the algebra X) of derivations. We have

3
4v'Z

All of the eigenvalues are equal. In the broken phase
((},=mA, , and Eq. (6.1) becomes
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supposed that this algebra is the complete algebra D (A )

of derivations of A. If M is taken to be equal to M„ this
means that a basis can be chosen for 2) with e, of the
form (2.1) with A,, which lie in the fundamental represen-
tation of the Lie algebra of the special unitary group
SU(n). It is also possible to suppose that the A,, lie in an
arbitrary representation. This is equivalent to supposing
that the Lie algebra of derivations is a subalgebra of
2)(A ) for some A:

df =e,"(f)8"' fEM„" . (7.7)

de[i)a — 1 m(i)Ca g(i)bP g(i)c
be (7.8)

The algebra Q"* generated by the 8"' is a differential
subalgebra of Q*(M )). By definition the first of Eqs.
(2.5) remains valid,

Equation (2.6) follows from (2.2) and (2.4) and so it
remains valid:

2)CD(A) . (7.1) di,"'=m "O' A,
"8"'

bc (7.9)

e,"=m"'ad(A, ") 1 +i + I, 1&a&3, (7.2)

The representation determines how an element of A
behaves under derivation by an element of 2). To ensure
that the A,, generate all of M as an associative algebra we
shall suppose that the representation is irreducible. As
an example consider the three derivations of Mz acting
on M„. The n degrees of freedom in M„can be com-
pared with the n states of the hydrogen atom up to
quantum number n. So the theory we are discussing
resembles quantum mechanics on S with a truncation in
the energy at the level n.

We would like to consider the semisimple case with an
M which is the direct sum of I copies of M„. To be
specific we suppose that the derivations are those of a
direct sum of I copies of M2. We have then as bases of
the derivations the set

6I(') — m (')g( )g( )
a (7.10)

which satisfies as before the zero-curvature condition
(3.3). If we define

then it too satisfies the condition (3.3).
The connection form and the curvature are defined as

before, the main difference being in the more complicated
structure of the vertical part Qz of the latter:

but the second equation would have to be modified.
Here, in Eqs. (7.8) and (7.9), the structure functions are
those of SU(2).

From the generators 8""we can construct, for each i,
a one-form 8":

where the A,,",for each i, form the irreducible representa-
tion of dimension n of the Lie algebra of SU(2):

I
g(i) g(i)a p g(i)b

V 2. abi=1
(7.11)

[g(() g(j)] ( c g(i)gij
a& b ab c (7.3) II(i) —[y(i) y(i)] ~(i)( c y(i)

I

g:R g U(n), g F Q . (7.4)

The generalizations of the first few formulas of Sec. II
can be readily written down. The derivations satisfy the
commutation relations

(7.5)

To define the one-forms dual to e,"we fix for a moment
the index i and consider the basis e„, 1 ~ r n —1, of the
Lie algebra of all derivations of M„". The e," can be
chosen as a subset of three elements of the set of e„. We
define 0" as dual to e, according to (2.4). The 8" satisfy
Eqs. (2.5) with structure constants those of SU(n).
Choose as I9"' the three elements of the set of 8" which
satisfy the equation

g(i)a(e (g)
) ga fiij

b b (7.6)

We define the differential of an element in M„" in a way
similar to formula (2.3) but using only derivatives in the
three directions e,":

Each element of A is a polynomial in the i(,(') with
coefficients in C. If n =2 this polynomial is of degree 1.

If we choose Q, the set of unitary elements of A, as
gauge group, then Vl can be identified with the set of
smooth functions on IR with values in the product of I
copies of U(n):

Here we have expanded the Higgs field ()I),

I

y( )gi(i)a
i=1

and we have used the fact that

[(I(' (I) ]=0 '&J .

(7.12)

For each value of i, the p,"take their values in a different
copy of the Lie algebra of U(n).

The main difference with the simple situation of Sec. II
lies in the more complicated structure of the vacuum. A
vacuum configuration is defined by a connection form co

with a vanishing curvature two-form. This means that
the potential A must vanish and that the components (()(')

of the Higgs-boson field must assume constant values p,"
which satisfy the equations

(i) (i)] ~(i)Cc p(i) () 1 & i (i (7.13)

The number of solutions is in general greater than 2. For
each index value i, p,"is an n-dimensional representation
of the Lie algebra of SU(2). The number of such repre-
sentations is given by the partition function p (n), and is a
strongly increasing function of n. Only one representa-
tion is irreducible for each value of i. There are in total
then Ip (n) possible vacua.

We are now in a position to write down the Dirac
equation and to study its zero modes. With the frame
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2{2+N), 3lff=C eA', N=
2

We choose %' to be a right A module of the form

%'=C(8p, (7.14)

where P is a right M module.
To investigate the spectrum of the Dirac operator we

separate the space-time part and consider only the alge-
braic part

I

g —
) g y(j)aD(j)
j=l

where D(j) is given by

(7.15)

8")a which was introduced above, the geometry of the
algebra A resembles in some aspects ordinary commuta-
tive geometry in dimension 4+3l. Let g;. be the Min-
kowski metric in this dimension and y'' the associated
Dirac matrices. The space & of spinors must be a left
module with respect to the Clifford algebra. It is there-
fore of the form

I

1{Jtti= y i( —y(j ypj, + 3v'2 pr)(j)y j 'y j 'y j 'y)
j=1

(7.20)

So 5 splits as the sum of I terms:

I

y ~ (i)2p(i)

1

We renormalize p',",

(7.21)

(J') „,E j)b~(j )c+a
2

~abc 1

(j)— (j)y(j)((ia —~ iB

so that the X,' ' satisfy the commutation relations of the
Pauli matrices. The operator

{i) (i)a ) ~ (i)2y{i)y(i)a
a 2 a

is the Casimir operator of SU(2) and is proportional to
the identity when the representation (7.13) is irreducible.
%'e define also o', ' by

D(j )y — yp(j ) 1 ~ (j)cb y(j )y(j )cq (7.16) Then P" is given by

2NHere p is an element of the space C p and we have re-
placed the Higgs-boson field by its vacuum expectation
value. The 3l Dirac matrices y" are 2 X2 matrices
which satisfy

I
y(i)a y(i)b) 2gijg ab (7.17)

They can be constructed as N-fold tensor products of the
Pauli matrices.

We shall consider here only the simplest possibility for
the right module P:

(7.18)

We have, from (7.16),

For each i, Pa" acts on the ith copy of C" from the right.
An element of the space (1

" is therefore considered as a
row vector and 1({is a 2 X In matrix.

We are interested in the eigenvalues of the equation

(7.19)

where 8 is the operator (7.15). This is a finite matrix
equation and the solutions co yield the finite fermion mass
spectrum. This spectrum depends on the integers n and I
and on the choice of vacuum for the Higgs fields.

The spectrum of Eq. (7.19) is more conveniently inves-
tigated using the associated Laplace operator

2p(i)y 9 y+ yg(i)g(i)a ~(i)qg(i )a'
4 a ~a (7.22)

So b, as a sum of positive matrices, can have no zero
modes.

We see then that the calculations which have been car-
ried out in the case of a simple matrix algebra M„can be
extended to the more general case 1&1. However, this
generalization does not solve the problem of the absence
of zero modes for the Dirac operator.
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The first term is due to the effective curvature of the alge-
braic structure. The second term is a mass term. It de-
pends on the representation of the Higgs-boson fields and
can be positive or zero. The last term is a sort of Pauli
spin term. It can yield a contribution to the spectrum of
any sign. There is no term which resembles a kinematical
term. As we noticed above in (5.6), the ordinary deriva-
tive is absorbed in the Higgs-boson field. It is easily seen
that for each i, P'" is a positive matrix. In fact, if we
define A'" by

g (i)ay {~(i)ay yg(i)a
2

then we have

P(i) 3 + l A (i) A Ei)a & P4 p a
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