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We present a systematic study of cosmological solutions in the Lovelock theory of gravitation, in-

cluding maximally symmetric space-tines, Robertson-Walker universes, and product manifolds of
symmetric subspaces.

I. INTRODUCTION

In 1917 Vermeil, ' then Acyl and Cartan showed that
Einstein's gravitational tensor (together with a "cosmo-
logical" term) was, in any dimension, the only symmetric
and conserved tensor depending only on the metric and
its first and second derivatives, with a linear dependence
on the latter. In 1971 Lovelock ' dropped the condition
of linear dependence on the second derivatives of the
metric and obtained the most general tensor satisfying
the other conditions. He also found the Lagrangian,
which generalizes that of Einstein and Hilbert, from
which that tensor derives via Euler variation with respect
to the metric. Important features of this "Lovelock La-
grangian" (see below for an explicit expression) are that it
is nonlinear in the Riemann tensor and differs from the
Einstein tensor only if space-time has more than four di-
mensions. Therefore it yields a most natural generaliza-
tion of general relativity in higher-dimensional space-
times.

The fact that space-time may have more than four di-
mensions is a recurrent idea in unified field theories since
the original proposal by Kaluza and Klein (see, e.g. ,
Ref. 8 for a review of the Kaluza-Klein program); it may
even be compulsory in string theory. As for modifying
the Einstein-Hilbert Lagrangian by the inclusion of terms
that are nonlinear in the curvature, it is an idea that dates
back to Weyl and Eddington' and was exploited in view
of renormalizing the quantized theory of linearized gen-
eral relativity (see, e.g., Ref. 11 for a review). The con-
venience, or even necessity, of considering such nonlinear
terms is also apparent in quantum field theory in curved
space, where they are required to renormalize the
energy-momentum tensor of the quantized matter
fields' —even in the semiclassical approach where gravi-
ty is not quantized. Their presence seems also necessary
in string theory, where they appear from the requirement
of conformal invariance on the world sheet of the string
on a curved background.

The Lovelock Lagrangian differs however from a gen-
eric nonlinear correction to the Einstein-Hilbert La-
grangian not only in that its Euler variation —the
Lovelock tensor —reduces to Einstein's in four-
dimensional space-times, but also in that that tensor, by

construction, contains derivatives of the metric of order
no higher than the second. At the classical level, to
which we shall confine ourselves, the main consequence
of this property is to avoid singular perturbations: that
is, introducing, by increasing the order of differentiation
of the field equations, new classes of solutions which do
not necessarily approach the unperturbed, Einsteinian
solutions when the nonlinear perturbation in the
Riemann tensor tends to zero. Hence the Lovelock ten-
sor is of little use in achieving goals that ultimately rely
on the possibility of singular perturbations such as the re-
normalization of the graviton propagator' ' or the type
of inflation first discussed by Starobinksi' (see also, e.g.,
Refs. 16 and 17). However, the same property guarantees
that the quantization of the linearized Lovelock theory is
free of ghosts and it was argued that, for this reason, the
Lovelock Lagrangian would appear in the low-energy
limit of superstring theory. '

Gravity theories based on the Lovelock field equations
have been fairly extensively studied in the last few years
(this renewal started with the work of Madore and
Miiller-Hoissen; see Ref. 24 for a review). Cosmological
models in particular have been a focus of interest as
the very early Universe appears to be a privileged arena
where unified theories and observation may meet.
Despite the wealth of references quoted the subject is far
from being exhausted, especially when considering the
variety of possible couplings (inspired or not by su-
pergravity or superstring theories) to other matter fields.

This paper intends to bridge a number of gaps in the
literature. It presents a systematic approach to the
cosmological solutions of the pure Lovelock field equa-
tions (the presence of other matter fields, should the oc-
casion arise, will be dealt with in terms of some cosmic
fiuid). It will encompass some previously obtained re-
sults and present new ones which could serve as a
basis for further studies.

This paper, which is intended to be self-contained, is
organized as follows. In Sec. II we introduce the nota-
tions that we shall use and define the Lovelock Lagrang-
ian and tensor. Section III briefly deals with the simple
case of maximally symmetric space-times and casts the
solution in the context of chaotic inflation. In Sec. IV we
treat the Robertson-Walker-type cosmologies and we

3696



41 LOVELOCK GRAVITATIONAL FIELD EQUATIONS IN COSMOLOGY 3697

show in this specific case how the nonlinearity in the
second-order derivatives of the metric, which is specific
to the Lovelock theory, may induce causality violation
problems, and in what sense. Finally we turn, in Sec. V,
to space-times that are the product of an "external"
Robertson-Walker space-time and an "internal" maxi-
mally symmetric compact space. These models where
some dimensions become unobservable should provide
potentially more realistic cosmologies. Our analysis,
however, will not be exhaustive. We shall conclude with
some remarks for further work.

G( & ) AB
=R AB 2gABR (2.6)

is the D-dimensional Einstein tensor. The explicit expres-
sions for G(2)AB and G(3)» can be found in the work of
Muller-Hoissen. In a D-dimensional space-time,
D ~2%, all tensors G( )„B with p ~X vanish identically

(the vanishing of G(z „B in D =4 dimensions is known as
as the Bach identity ). Hence in D =9 or 10 dimensions,
for instance, the Lovelock tensor can have five terms, up
to the quartic term G(4) AB.

Using general relativity as a guideline the field equa-
tions will be postulated to be

II. NOTATIONS AND DEFINITIONS SmGD
GAB TAB

C4
(2.7)

We shall use in this paper most of the notation of Ref.
32: space-time dimension D = 1+d +n', signature
( —,+, . . . , +); A, B, . . . =0, 1, . . . , D; a,P, . . .
—0, 1, . . . , d, a, b, . . . —d+1, . . . , D; A )8 p ~ ~ ~

=1,2, . . . , D; a,p, . . . =1,2, . . . , d; g is the determinant
of the metric gAB', g" its inverse;R—:+B,I', R„—=R „, R =g R„A A . . . C AB

H=g" VA VB.
Consider now the Lovelock gravitational Lagrangian '

Lg.

8mGD
2(p —1)L= g aAP L().

C 0«p «D/2
(2.1)

GD is Newton s constant in a D-dimensional space-time, c
is the speed of light, p EN, A, is a length scale (e.g., the
Planck length), aP are real dimensionless parameters
which, for want of a metatheory or observations which
could determine them, we shall leave unspecified; and

where T„B is a phenomenological stress-energy tensor.
In purely geometrical theories, T„B is zero. Should the
occasion arise we shall impose it to represent a cosmic
fluid:

TAB P~ A ~B ~AB (2.8)

Let us first consider D-dimensional maximally sym-
metric space-times, such that

K
ABCD p (g ACgBD g ADgBC ) & (3.1)

where u „ is the velocity of the fluid element
(u „u "=—1),p its energy density, and SAB its stress ten-
sor. The field equations (2.7) and (2.8) must then be sup-
plemented by an equation of state (see below for specific
examples).

III. MAXIMALLY SYMMETRIC SPACE-TIMES

2P R ( 2 . . . R 2P ( 2P

2P Jl J2p 1 2 2p —I 2p
(2.2)

~ ~ ~

where 5 ' . . . " is the Kronecker symbol of order 2p and
J& '''J2p

R BcD is the D-dimensional Riernann tensor. L(o) =1;
L(&) =R is the Einstein-Hilbert Lagrangian;

R "'D—4R R "'+R'
(2) ABCD AB (2.3)

GAB= g a A G(
0«p (D/2

with

(2.4)

1 ~A~, ~2pR Jl J2 R J2p 1 J2p

2p+ & J 1 J2p '1'2 '2p —1'2p
'

(2.5)

In particular, G(o)AB = —
—,'gAB and

is the Lanczos Lagrangian ' which reduces in D =4 to
the Gauss-Bonnet combination; L(3) was first obtained
by Muller-Hossen; L(4) can be found in Ref. 49 and
corrects a previously published expression. More gen-
erally, for D=2N, and if the manifold is compact with
positive-definite metric, g' L(~) is the generator of the
characteristic Euler class.

The Euler variation of (
—g)' L with respect to the

metric gAB is the Lovelock tensor ' GAB:

K
L(p)

D t

(D —2p )!
(3.2)

1 a (D —1)!
(P)AB 2 g2 (D 2p 1))gAB

so that the vacuum ( T„B=0) field equations (2.7) become

with

0«p & D/2
P ~P=O (3.3)

{D—1)!
(D —2p —1)!

0! (3.4)

[Matter can be added to the model and is compatible
with the prescribed geometry (3.1) if it is a perfect fluid

TAB (P+P )u A uB +Pg AB (3.5)

with equation of state p = —p, where p is the pressure.
Hence the addition of matter only amounts to changing
the bare cosmological constant ao into ao=ao —16m.Gn A. p /c .]

where ~ is a real number and A. is the characteristic
length of the theory (e.g., the Planck length). The
Lovelock Lagrangians and tensors (2.1) and (2.2) and (2.4)
and (2.5) then reduce to
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ds = dt +a (t)d—a (4.1)

where der describes a (D —1)-dimensional space of con-
stant curvature. The nonvanishing components of the
Riemann tensor are

Equation (3.3) is of degree [(D —1)/2] in a (where [r]
denotes the integer part of r) O. nly in D =4 is the unique
root ~= —ao/6a& guaranteed to be real and one then re-
covers the standard (anti —)de Sitter universe. In higher
dimensions the condition of reality of at least one root
imposes constraints on the a 's when D is even. (When
the equation is of very high degree and the parameters a
are normally distributed, the probability that it has a real
root can in fact be calculated. ' ' ) In any case if (3.3) has
several roots the theory does not provide any criterion for
choosing one rather than the other. Giving up the idea
of maximal symmetry but keeping that of constant curva-
ture one can envision a solution, akin to some inflationary
scenarios (see, e.g. , Ref. 53), consisting of patches cover-
ing space-time, each of constant curvature, the value of
which is given by one of the solutions of (3.3). However,
contrary to what happens in inflationary scenarios, this
picture of a "bubbly" universe does not arise from say ao
effectively varying (from —1 to —10 '

) from patch to
patch because of some phase transition process; it arises
from the possible multiplicity of the real roots of (3.3),
with the a 's being given and constant. Just as in
inflationary models, though, the distribution of patches is
not determined by the field equations and what con-
straints to impose on the geometry of the domain walls is
unclear.

IV. ROBERTSON-WALKER SPACE-TIMES

Let us now consider the case, touched upon in Ref. 28,
of a D-dimensional Robertson-Walker space-time with
line element

with P given by (3.4).
In the presence of a perfect fluid described by the

stress-energy tensor (3.5) together with the equation of
state

&=PDP ~ (4.5)

—2p] A =0, (4.6b}

where P—:16nGDX p. /c [N..B. The p appearing in
(4.6b} represents integers, not the pressure. ]

A. The vacuum solutions

In the vacuum case the field equation (4.6a), P=O, is an
algebraic equation of degree [(D —1)/2] for A, which
therefore must be equal to one of its roots ~: A =~. The
equation is then identical to (3.3) so that the same com-
ments, in particular about the reality of ~, can be carried
over. Now from A =~ and if 6+0 it follows that
A, ii/a = A so that (4.6b) reduces to (4.6a); hence the oth-
er field equations 6—„B=0 are identically satisfied. For
generic values of the a 's, the empty Robertson-Walker
universes of the Lovelock theory are then necessarily lo-
cally isometric to maximally symmetric (de Sitter) space-
times. "Einstein static" universes (a=0) can also be
solutions of the vacuum field equations, but at the cost of
fine-tuning, say, the bare cosmological constant ao in or-
der that

pD being a constant, the field equations (2.7) then read

P Ai'=p . (4.6a)
0(p &D/2

~ ~

P, A & '2p-z' —+ [(D —1)(p,,+ I )
0(p (D/2

R —— = —g—a/aAOBO AB
(4.2)

0&p &D/2
P At'=0

R -—-=
ABCD g2 AC BD AD BC

with

and

O~p (D/2
P (D —2p —1)A~=0 (4.7)

A, '(k+t't )
(4.3)

where an overdot denotes differentiation with respect to t,
and k characterizes the curvature of the spatial sections
and can take the values 1, 0, or —1 upon appropriate re-
scaling of the coordinates.

From the form of the Lovelock tensor (2.4) and (2.5) in
this metric up to cubic order ' one infers the general
expression to be

A. Goo
=— g P A ~,1

(4.4a)
0~p &D/2

1 gAB
A, G—= ——

2 2(D —1)
~ ~

P, » ' 2p&' —+(D —2p —1)A
O(p &D/2

(4.4b)

B. The spatially flat (k =0) solutions

In that case, setting

x =A.a/a (4.&)

we have, from (4.3), A =x and A. d /a =xA, +x, so that
the field equations (4.6) reduce to a quadrature

O~p & D/2

pxi', (4.9)

y~p x2(p —1)

A,a dx gp x2i'
(4.10}

where a—=2/[(D —1)(pD+1}]. Using (4.9), Eq. (4.10)
reads

have one (or several) common root(s) A =x. [The condi-
tions (4.7) are in fact equivalent to y ( A ) =0 and
dy/dA =0.]
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1 dt 1 dp/dx
A,GK dx 2x p

which yields the first integral

ap =const .

(4.11)

(4.12)

y Il

1

2
dX

aA, pc+ pix
(4.13)

and yields the standard results (ao and to are integration
constants):
(a) P =0,

a(t) =a,(t —t, ), p=A, 'p, a'(t —t, ) ';
(b) Pp/Pi&0,

a

(4.14a)

a(t) =ac cos

p=pp ' cos

p, A,a

p, A,a

—2 (4.14b)

(c) Po/P, &0,
' 1/2

0

A,aa(t) =ac cosh
pi

1/2—po t —to
p=Po cosh

1 A,a

'a

—2 (4.14c)

The solutions (a) and (b) correspond to universes starting
from a singularity at t =t0 which either expand forever
or recollapse. The case (c) is to be rejected if, as demand-
ed by local physics, p is to be positive (i.e., po) 0} and
gravity attractive (pi )0).

In the next simplest case, that of the quadratic (or
Lanczos) theory, (4.10) reads

It must be noted however that (4.10) is a consequence of
(4.6b) under the condition that the coefficient of a in that
equation, that is, the numerator of (4.10) or, equivalently,
x 'dp/dx, does not vanish. As for the denominator of
(4.10},which is simply p, we shall impose it to be always
positive, although such a requirement is fairly
arbitrary —in this context where all local physics is ig-
nored.

In the particularly simple case of Einstein theory in D
dimensions (4.10) reads

FIG. 1. Setting x 2~ =
—,'( —y, +'1/ y~~

—4yo), we have (I) D & 0
for all x, N&0 for all x, (II) D &0 for all x &x+, N&0 for
all x, (III) D&0 for all x &x+, N&0 for all x & yi/'2
(x+ & —yl/2), (IV) D&0 for all x &x+. and all x (x
N&0 for all x & —y&/2, (V) D&0 for all x, N&0 for all
x'& —y, y2.

D =y o+ y, x +x =p /p2

(see Fig. 1}.
In region I, with pz &0 so that p is positive, the solu-

tion is essentially the same as in Einstein theory with a
positive cosmological constant [cf. Eq. (4.14b)]: the
Universe starts from a singularity, expands to a max-
imum, and then recollapses. In regions II and III
(yp & 0) when pz & 0, the energy density is positive if
x & x+, so again the solution starts from a singularity,
but then in general approaches a de Sitter-type solution:

(ta)- eaopx( xt+lk) as t~+ ~; when x+ =0, that is
Pc=0 the exPansion aPProaches a Power law: a(t)-ant'.
In region II, when p2 & 0, p & 0 if x &x +, so the solution
here is regular: it bounces at the origin and asymptotical-
ly tends to de Sitter behavior (unless pc=0, in which case
the expansion follows a power law). Just as in Einstein
theory, however [see Eq. (4.14c)], this solution may have
to be rejected when one restricts the p~'s to yield a posi-
tive effective gravitational coupling constant in four di-

p, +2p2x
4

dx
pc+ p, x +p2x

(4.15)

This integral can be explicitly calculated. More enlight-
ening however is a qualitative analysis. The parameter
Plane (yo, y, ), with yp=Po/P2 and y, =P, /P2, sPlits into
five regions according to the signs of the numerator and
the denominator of (4.15):

and

N=y, +2x2= 1 dp
2Pzx dx

FIG. 2. An example of a pathological behavior of the scale
factor of the Robertson-Walker cosmological models in the
Lovelock theory, corresponding to yo Po/Pp and y, =P, /P, ly-

ing in region V of Fig. 1, P2 & 0.
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mensions (see, e.g., Ref. 32 for examples of such a re-
quirernent).

More interesting, however, for our purpose of illustrat-
ing some of the specific properties of the Lovelock theory
as compared to Einstein's are the regions IV and V of
Fig. 1, for all P2, and region III when Pz&0, where the
solutions are pathological. An example (corresponding
to yo and y, in region V, and P2 &0) is depicted in Fig. 2.
It describes a universe which comes into being at some
t =tI, but differs from a standard big-bang model in two
essential respects: t=tI is not a curvature singularity
[p(tt ) is finite] and the solution is multivalued, so that the
solution can either follow the lower branch and end up
into a curvature singularity at t = —

tO or follow the
upper branch and end up into nothingness at t=tF,
without any divergence in the curvature invariants sig-
naling the approach of that event. The origin of these
pathologies lies in that the numerator of (4.15), that is,
the coefficient of a of the field equation (4.6b) which
determines the evolution of the scale factor, vanishes at
t = tI, tF. Hence starting from some initial data, at t =0,
for example, {4.15) for a(t) cannot predict its evolution
beyond t =tF.

This occasional failure of the field equations to predict
the time evolution of the geometry, of which the case
treated above is a particularly simple example, can ulti-
mately be traced back to the fact that the Lovelock field
equations, contrary to Einstein s, are nonlinear in the
second-order derivatives of the metric. In this respect
they are to be contrasted with the field equations derived
from a generic, nonlinear in the curvature, Lagrangian
which, just as the Einstein-Hilbert Lagrangian, yields
equations that are linear in the higher-order derivatives
of the metric (fourth in the generic case). Other examples
of pathologies arising from this property of the Lovelock
theory have been given in Refs. 28(b) and 35. The closely
connected problem of the wave propagation in this
theory has been examined in Refs. S7 and SS, as well as
the resulting difficulties in setting up the Hamiltonian for-
malism. As for the Cauchy problem of the theory and
the equation of the characteristic surfaces, they have been
studied in Refs. 60 and 49.

This thorough analysis of the spatially flat Robertson-
Walker universes in the Lanczos (quadratic) theory gives
the pattern of the various possible types of behavior in
the generic case. We first note [see Eqs. (4.9) and (4.10)]
that when P & 0, with q the degree of the numerator and
denominator of (4.10), the solution necessarily exhibits a
curvature singularity. Indeed the asymptotic region
x ~+ ~ is then allowed since there p&0. From (4.10)
one has

whether it goes to zero at x =x+, in which case the
model approaches a de Sitter stage (or a power-law ex-
pansion if Po=0). If P & 0 the asymptotic region x ~ oo

is forbidden, and the nonpathological solutions are singu-
larity free: they bounce and tend asymptotically to
de Sitter or power-law stages.

z(A)= g P At'(tr —2p)
0~@(D/2

(4.17a)

with tr =(D —1)(pD+ I), it is easily seen that the static
solutions are the zeros of z( A ),

z(A )=0, (4.17b)

and that the corresponding density is

(4.18)

Equations (4.17a) and (4.17b) may or may not have real
solutions, depending on the values taken by the P~'s, pD,
and D. If it has, then the corresponding p, given by
(4.18), may or may not be positive. If it is, one may in-

quire about the linear stability of the solution. Setting
a =a(1+eoe""') and linearizing the field equation (4.6b)
one finds

2A dz
(4.19)

Plotting the curve z ( A ) we see that generically if the zero
A = 3k corresponds to a stable (unstable) solution, its
neighbors A = Ak, and A = Ai, +, are unstable (stable).

If all the parameters of the theory (the )33~'s) are of or-
der unity, the solutions of (4.17a) and (4.17b) and co are
also of the same order. For one solution, say A = A, to
be very small compared to the others, A —10, so
that a —10 A. be of cosmological size, it is sufficient that
Po-10 '

while the others remain of order unity. That
solution is then approximately the Einstein static
universe: 3„,= AF, p =pF, co =cuE, with2 = 2

xPo

f3, (ir 2)—

C. The static solutions and their linear stability

The Lovelock Robertson-Walker static universes gen-
eralize in the present context the Einstein static universe.
They are the solutions of the field equations (4.6a) and
(4.6b) such that a =a =0, a(t)=a, 3 = 3 =k k/a . In-
troducing the polynomial

1 dt q asx ~~
8x

(4.16)

0
PF

so that a ~(t —tt) r and p~(t —ti) r as t~tt, and p
diverges. The subsequent evolution of the nonpathologi-
cal solutions [i.e., those cases where the numerator of
(4.10) never vanishes] depends on whether the denomina-
tor is positive for all x, in which case, by time symmetry,
the model will recollapse to a big-crunch singularity, or

2 0 10--2N
COg (4.20)

We then recover Eddington's result that this cosmologi-
cal solution, for all pD & (D —3)/(D —1), is—unstable in
a cosmological time scale if pz is to be positive (which
implies P„&0) and gravity attractive (Pi & 0, that is,
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k =+ 1 and co@ (0). As for the other static, "Planckian"
[a =O(A, )], solutions, they evolve on a Planck time scale

D. The phase-space diagram of the k = + 1 solutions:
a qualitative analysis

The previous stabiLity analysis suffices to obtain the
qualitative features of the general solution of the
Robertson-Walker field equations (4.6a) and (4.6b) by
means of phase-space diagrams. Figure 3 is an example
of such a diagram where Eq. (4.17) for the static case is
assumed to have three real positive solutions; this implies
that the Lovelock theory under consideration includes
terms up to cubic order at least. It is further assumed
that Po is of order 10 and negative, P, & 0 and k = + 1,
so that the cosmological solution a =a, of order 10 k,
is approximately the Einstein static solution, and is un-
stable on a cosmological time scale 10 A..

The curves labeled 1 and 2 in Fig. 3 describe universes
which start from an initial singularity, expand to a max-
imum of Planckian size and recollapse. The curve 3
represents a universe which oscillates about a Planckian
mean value. The curve 4 is a model which starts from a
singularity and, for generic initial values, blows up in a
Planckian time scale. Therefore, for a solution to evolve
from a big bang to a universe of cosmological size with
scale factor of order a (curve 4'), it must belong to the
family 4 and the initial velocity ao must be carefully fine-
tuned to avoid blowing up in a Planckian time scale.

We know from the analysis of the k =0 case (Sec. IV B)
that the coefficient of a in the field equation (4.6b) may
vanish in some cases. This phenomenon would corre-
spond to the existence, in the phase-space diagram, of
curves which intersect. Such curves are shown in Fig. 3
with discontinuous lines; the dashed one corresponds to a
universe qualitatively exhibiting the evolution of Fig. 2.

V. PRODUCT SPACES

dt +a—d(t)dad+a„(t)dO„, (5.1)

where d o.
d and d o.„, respectively, describe a d-

dimensional maximally symmetric space {not necessarily
compact) and an n-dimensional compact space of con-
stant curvature. The nonvanishing components of the
Riemann tensor are

R O~=—
Ad

Qd
gap' aprb g2 gapgpb ga5gpy

ad

RaObo

~ ~

a„
gab»~

Qn

x~xd
R

bP g bg (5.2)

abed 2 gccgbd gadgbc ) ~

where xd =A,ad /ad, 3d =~ kd /ad+xd, x„=k.a„ /a„,
A„=k k„/a„+x„, kd takes the values +1, 0, or —1 but
k„ is restricted to the values + 1 or 0 if V„ is to be com-
pact. It is then a matter of a straightforward calculation
to obtain the Lovelock tensor (2.5) for the metric (5.1).
We shall write it as

Goo= 2F,

ad a„
Gap= ,gaP gd+ —gd+ hd )

ad an
(5.3)

Let us finally consider the case when the manifold is a
product of an "external" (d + 1)-dimensional Robertson-
Walker space-time and an n-dimensional compact "inter-
nal" space of constant curvature: VD=VId'+, IXV'„'.
When d =3 and the size of the internal space is small
enough such a geometry is a potentially realistic candi-
date for describing today's Universe. In an appropriate
coordinate system the line element can be written as

8s = Gft +g pox Qx +gab 8x Gfx

ad an
G,b

= —
—,'g, b f„+ h„+ g„

ad
" a„

The explicit expressions of F,fd, gd, hd, f„,g„,h„are
given in Appendix A up to cubic order and agree with
the result of Muller-Hoissen.

There are two particular cases where they can easily be
generalized to any order. These are (a) when the spaces
Vd' and V'„" are static (ad=const, a„=const, kd =+1,
k„=+1)and (b) when they are both flat (kd =k„=0 and
V'„" compactified on a torus). See Appendix A, Eqs.
(A4) —(A6), respectively.

Knowing the explicit expression for the Lovelock ten-
sor as a function of ad and a„we can write the field equa-
tions (2.7) as

p
—F

FIG. 3. A qualitative picture of the phase space of a closed
Robertson-Walker space-time. The diagram is compressed
along the horizontal axis to allow its representation, but a is
many orders of magnitude larger than az. For explanations see
Sec. IV D in the main text.

ad an
gd+ hd = (fd+VdF»—

ad a„

ad a„
h„+ g„= (f„+p„F), —

ad Q~

(5.4)
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8~GD
4 T p=P, dPg p,c

SmGD

4 Tab PnPgab .
C

(5.5)

The constants pd and p„characterize the equations of
state of the cosmic Quid in the external and internal
spaces, respectively. One would expect them to be

when the components of the stress tensor are taken to be

8mGD

4 Too P ~

c

difFerent when the scales of both subspaces difFer substan-
tially, since "long"-wavelength fields would be excluded
from a Planck-size internal space.

A. Maximally symmetric external space-time with no matter

When the external space-time is imposed to be de Sitter
(that is, xd =const and kd =0), the computation of the
Lovelock tensor (5.3) at a point where d„=O shows that
the vacuum field equations [Eqs. (5.4) with

pd =p,„=p=0]are satisfied if (1) ti„=O and (2) the Hub-
ble constant xd and the curvature A„=1/a„of the inter-
nal space are solutions of the coupled algebraic equations:

P dtLt ~ x "P-"A'=01

(d —2p+2k)! (n 2k)!—
(d + 1)! (n —1)! 2(p

(Dq2
p

k 0 (d+1 —2p+2k)! (n —1 —2k)!

(5.6)

The first condition, a„=O, shows that when the external manifold is de Sitter space-time and T„z=0 the internal space
is necessarily static. When the dimension of the external space is taken to be d =3, Eq. (5.6) simplifies to

6xd

12xd4

n!

0« DI2 (n +2 2p )!

n —1!
0+p &D/2 n+3 —2p !

o-p Di2 '(n —2p)'

o& Dn
P (n+1 —2P)!

(5.7a)

0 &p &D/2

which in the case n =4, for example, reads

6xd(a, +24a2A„+72aiA„)+ao+12a, A„

+24a2A 2=0,

24xq(a2+18aiA„)+12xd(a, +12a2A„)

(5.8a)

n~a ' AP=0,
0 p D

A =0
0& D)i (n 1 2p )

(5.9)

These conditions have already been obtained by many au-
thors (see, e.g., Refs. 21 —27 and 32). The first equation
(5.9) gives the radius of the internal manifold as a func-
tion of its dimension n and the parameters ap; the second
is a condition on one of the a, ao, say, which is deter-
mined as a function of the others. When n =4, for exam-
ple, the conditions (5.9) are A „=—ao/6a, and
ao= 3a ( /2a2.

+ao+6a, A„=O . (5.8b)

The existence and number of solutions of (5.6)—(5.8) de-
pend on the values taken by the various parameters (the
a 's, d, and n) and must be examined case by case.

If all the a are of order unity the external manifold
can be Minkowski space-time (xd =0) if

The linear stability of this candidate ground state for
an effective quantum field theory in four-dimensional
Minkowski space-time was analyzed in a number of pa-
pers2 ' ' ' (the analysis of Ref. 61 being the most com-
plete) and will not be repeated here.

Concentrating on the example (5.8) we shall only re-
mark that when ao is fine-tuned so that xd =x„=O is a

solution of (5.8) (that is, a0=3a, /2a2 and
A „"' = —a i /4az) then there exists another solution
which is symmetrical to that one: A„' '=0,
xz ' = —ai/4az. As for the remaining three solutions
they are such that A„=xd and of order unity. The ques-
tion as to whether these manifolds, where both the exter-
nal and internal spaces are of Planckian size, can serve as
an initial (nonsingular) state for the Universe which, be-
cause of some instability, would evolve toward the
present state (5.9), requires a numerical integration of the
field equations (5.4} that will not be presented here.

Another way for the external manifold to be Min-
kowski space-time, or at least to tend to it, is that the
coeScient atD&2, ~

of the leading term in the Lovelock
tensor [a3 if D=8, see Eq. (5.8}] be infinitely large as
compared to the others: atD&2, ~-10, ap —1, X
In such theories (the values D =8, d =3, n =4 can serve
again as an example} it is easy to see that the solutions
scale as follows: one ad futurum solution such that
A„—1, xd —10;one ad initium solution A„—10
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xd —1 obtained (when d =3, n =4) by an interchange of
xd and A„; and up to three "big-bang" solutions
A„=xd —10,which have the interesting property
of being highly curved but not to the point that quantum
gravity corrections must be taken into account. The sta-
bility analysis of these ground states (in the spirit of Ref.
61) has not been done, as far as we know, but should be
straightforward (although painstaking) and will not be
undertaken here. Nor shall we study the possibility of
dynamical evolution from one of these ground states to
another. We shall only remark that if the sign of the
determinant

Det =gdg„—h„hd (5.10)

of the system (5.4) is positive, say, in the vicinity of the
"cosmological" solutions and negative near the "Plancki-
an" or "intermediate" ones then no dynamical evolution
from one solution to another is possible since the system
(5.4) exhibits a breakdown of predictability when the
determinant goes through zero.

8. On the static solutions and their linear stability

When the coefficient a~D&2 &~
of the term of highest

degree in the Lovelock tensor is —10, with X large
I

Yd fd +pd F——=0, Y„=f„+p„F=0, (5.11)

where the functions fd, F, and f„are given in Appendix
A [Eq. (A4)]. In the following we shall restrict ourselves
to the case d =3 of a four-dimensional external space-
time [Eq. (A5) of Appendix A]. For the sake of an exam-
ple, when d =3 and n =4, Eq. (5.11) reads

(N-60, to be more specific), and the others are of order
1 then the Lovelock field equations (5.4) admit a static
solution (a„=ad=0) such that the curvature of the
external manifold is much smaller than that of the inter-
nal space ( Ad —10, A„—1). In Ref. 34 it was shown
that this solution can be linearly stable against perturba-
tions of the radii of the two subspaces if the a belong to
an appropriate range, in contrast with Einstein's static
solutions to the field equations of the four-dimensional
general relativity, which was shown by Eddington' to be
always unstable. We shall present in this section a more
thorough, although not exhaustive, analysis of these stat-
ic solutions.

When ad and a„, the radii of the external and internal
spaces, respectively, are imposed to be time independent,
the field equations (5.4) reduce to

1+pd ao+12a, A„+24a2A„
2(1+3Pg) ai+24a2A„+72a3A„

2pn 3(1+pd ) (ao+12a, A„+24azA„)(a, +12a2A„)
(ao+12a, A„+24a2A„)=ao+6a, A„—

1+3pd 1+3pd a, +24azA„+72a3A„

(5.12a)

(5.12b)

When p,„AO (the case p„=O yields unstable solutions as
shown in Ref. 34, and will not be considered any further)
the equation for A„, (5.12b), is of degree n (4 in the exam-

ple considered) and has therefore up to n real solutions,
to each of which corresponds a value for Ad, through Eq.
(5.12a).

We shall now consider two different types of theories.
(I) The coefficient a(D&2, )=a(„zz+,) is of order 10

while all others are of order 1 (this is the case considered
in Ref. 34).

As one can see from its structure, the equation for A„
[see Eq. (5.12b), for example] has then n /2 "cosmological
solutions" ( A„—1 with corresponding Ad of order
10 ) which cause the coefficient of a(„zz+, )

to vanish.
The other n /2 "big-bang" solutions are of order 10
(and not 10 ) and very close to each other (in the case
n =4, for example [see Eq. (5.12b)] these two solutions
are of order 10 but their difference is of order 10 );
as for the corresponding Ad, they are of order 1.

(II) pz= —1+ii, with a.-10 and all the other pa-
rameters of order 1. As we are dealing with product
manifolds this condition does not reduce to merely renor-
malizing the "bare cosmological constant" ao. Then the
equation for A„has n solutions all of order 1. It turns
out that n /2 of them are the zeros of the denominator of
the equation for Ad [see e.g., Eqs. (5.12a) and (5.12b)].
This means that the corresponding solutions for Ad are

of order 10 while the other n/2 are of order 1. These
results are summarized in Fig. 4.

The analysis of the linear stability of the static solu-
tions (5.11) [or (5.12) when d = 3, n =4] is greatly
simplified by the fact that the field equations (5.4) do not

A„

~ ~ today~ a
A„ today

~ ~
~ ~

Big Bang

~ ~
~ ~

Big Bang
~ y
~ ~

1 Ag 10—2% 1 Ag

Case I Case II

FIG. 4. Schematic representation of the orders of magnitude
of the static solutions of the Lovelock field equations when
space-time is imposed to be the product R XS, XS„,S3 and S„
being spaces of constant curvature of 3 and n dimensions, re-
spectively (n =8 in the figure). Case I corresponds to theories
such that the coe%cient of the leading term in the Lovelock ten-
sor (o;& when n =8) is very large (of order 10, X-60) with
respect to all the other parameters of the theory. Case II corre-
sponds to theories where all a~ are of order unity but where the
equation of state for the (nonbaryonic) fiuid has an index
pd= —1+v, a-10
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E'dgd +E q hd =2
BYd BYd

Added+

A„e„
BA, BA„

(5.14)

BY„BY„
edh„+e'„g„=2 Added+ A„e„BA„BA„

where Yd and Y„are given by Eq. (5.11) and the quanti-
ties fd, hd, etc. , are given in Appendix A [Eqs. (A4) and

(A5)]. Setting ed =Eode'"', 'e„=eo„e' ', the linear stabili-

ty of the static solutions is determined by the sign of the
roots of the equation for co:

BY BY„BY BY„
0=4Ad A„ BA„BA„BA„BA

BY„BY BY„
+2co gd A„+g„Ad —hd Ad"BA„" BA, BA„

BYd—h„A„+Detco
"BA„

where Det is given by Eq. (5.10).
Let us explore a few simple cases and start with ordi-

nary Einstein theory (all a~ zero but for ao and a, ). Then
there exists one static solution:

ap 1+pd 1Ad=-
a& d —1 D —3+dpd+npn

(5.16)

In order for the external space-time to be vastly less
curved that the internal space (Ad-10, A„—1) it
must be filled with a cosmic fluid with equation of state
pd= —1+K, K 10 . The linear perturbations away
from this static solution (5.16) are characterized by two
eigenfrequencies, solutions of (5.14}, that in this particu-
larly simple case read

ao (d —1)(1+p„)
CO =CO P a) D —2

(5.17)

co —co — 22 — 2
H

ap K

a, (d —1)(n 2 np„}——
,

The static solution is then linearly stable against pertur-
bations of Planck frequency (aP = co~ & 0) if ao/a& & 0 (as-
suming 1+p„&0). This implies [cf. Eq. (5.16}] that
A„&0 which is compatible with the requirement that the
internal space be closed. This static solution can also be

contain any linear term in xd—=ad/ad or x„. At the

linear approximation therefore we have, when

ad=a&(1+ ed), a„=a„(1+e„),

F-F—2 Added+ Ae„BF — BF (5.13)BA„BA„
and similar expressions for the other quantities fd, hd,
etc. , appearing in (5.4). The field equations hence read,
when linearized about the static solution,

stable against perturbations that evolve on cosmological
time scales (coH )0} if kd &0 in which case the external
space is closed. Finally the energy density of the solution

2ap

D —3+dpd+np„
(5.18)

is positive if ap & 0 which implies a& & 0, that is, attractive
gravity. However, before concluding that Einstein could
have saved his static model from the accusation of insta-
bility of Eddington, had he more firmly believed in the
extra dimensions proposed by Kaluza, one should study,
in the spirit of Refs. 61 —64, the stability of this ground
state against general perturbations of the metric and
matter fields of which those considered here are a very
special subclass. Such an analysis, however, is beyond
the scope of this paper and is left to further work.

Let us finally turn to the case next to simplest of the
Lanczos theory in D =6 dimensions (d =3, n =2) and
start with theories previously called type I, which are
such that a2-10, all other parameters being of order
unity. Solving Eqs. (5.11) and (5.14) and (5.15) in this
case we find that there exist two static solutions. A
"cosmic" static solution given by

(1+pd )a&
10

—2N

4ag(1 2p„+3pd )

( 1+3pd —2p„)ao
4p„a)

(5.19a)

corresponding to a density p'= —ao/p„. The linearized
solution near this ground state oscillates with the fre-
quencies

ao( 1 +3pd 2p& }

2a&

—(&)2 ~
10

a 1+»-
H 4

(5.19b)

The constraints are co&" &0 (stability on the Planck
scale), A„') 0 (compact internal space), p'&0. This im-

plies

p„&0, ap&0, a, &0 . (5.20)

(1+p„)a,
10

—2N

2az(1 —2p„+3pd )

(5.21)

corresponding to a density p = —2ao/(1+3pd). Since
A„—10 this solution could hardly serve as an initial
state of the universe. Moreover it appears that it can
evolve on a cosmic time scale only, as the two eigenfre-
quencies of its linear perturbations happen to be both of
order 10

And the solution is linearly stable on a cosmic time scale
if a& &0, in which case the external space is noncompact
(A„'&0). As for the other "Planckian" solution it is

given by

(1—2p„+3p~)ao —1
6a, (1+3pd }
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Consider now the type-II theories where pd= —1+a,~-10, and all the other parameters of the theory
(that is, ao, a„and a2) are of order unity. Then the
"cosmic" static solution is given by

(c)A'=—
d

(c)A'=—
n

aoa&~

4[p„a,—2aoa2(1+ p„)]

2I n a1

10
—2x

(5.22a)

—(c)2 2 A c 10
—2NNH= d J

(5.22b)

The constraints are (co'} &0, A„'&0, p'&0, as before,
and can be satisfied. Moreover with a2 belonging to an
appropriate range we can have

p&0, ao(0, a] )0, (5.23}

and stability on a cosmic time scale for compact external
spaces. As for the "Planckian" static solution,

p„a i
—2aoaz(1+}u„) ~l

12a )a2
(5.24a)

A( )

4a2

corresponding to a density p'=(2aotz2 —ai)/2a2', it oscil-
lates with frequencies which are both of order 1:

(P)
N""+N""=— 8a) Ad
Np Np

a&+4a2Ad
(P)2 (P)

(a, +4a A' ')

(5.24b)

We can therefore conclude this analysis of the static
product manifolds that solve the Lovelock field equations
thus: there are essentially two ways to impose that one of
these solutions —the "cosmic" solution —be "realistic"
(by this we mean that the internal space is of Planckian
size and the external space is almost fiat); the first is to
fine-tune one of the parameters of the Lovelock Lagrang-
ian (the "bare cosmological constant" ao, say); the other
is to impose the presence of a dilute nonbaryonic cosmic
fluid with an index fine-tuned to be p= —1+re, x very
small. Usually the first condition is adopted (see, e.g.,
Ref. 32}. However, we showed here (inasmuch as our
conclusions, pertaining to a few particular cases, can be
extended to the general case) that the second condition
might be preferable since the other static solutions seem
more satisfactory: they are such that both the external
and internal spaces are of Planckian size and oscillate on
a Planckian time scale; hence they could serve as an ini-
tial nonsingular state for the Universe. An analysis of
whether a dynamical solution could indeed evolve from
such an initial state to the "cosmic" solution requires a

corresponding to a density p'= —ao/p, „and the frequen-
cies of its linear oscillations are given by

ao(1+@„)}M„ai—2aoaz(1+Ju„) ~1
I i + 0 2( +I

numerical integration of the field equations that will not
be presented here. Also, a more thorough analysis of the
stability of the "cosmic" solution (see Refs. 61—64)
should be undertaken, to check in particular whether
gravity remains attractive at the local level.

F0 =0,
xd~d+xn~d (fd+xd~d+xnhd }

xdh„+x„g„=—(f„+xdh„+x„g„},

(5.25a)

(5.25b)

(5.25c)

where the quantities Fo(xd, x„), gd, g„,hd, h„,fd, f„are
given in the Appendix [Eq. (A6)]. In the particular case
of the Lanczos theory without a bare cosmological con-
stant (only a, and a2 nonzero) with moreover a, =a2,
these equations were studied by Ishihara. We shall not
attempt here to redo or generalize his work but only re-
mark that there are in fact two curves of interest in the
plane (xd, x„): first the curve FO=O which constraints
the solution (see Ref. 32) but also the curve

Det' '—:gd g „—hd h„ (5.26)

which divides the plane into causally disconnected re-
gions.

VI. CONCLUSIONS

We have analyzed systematically the simplest solutions
to the Lovelock field equations, with an increasingly less
symmetric and more realistic metric, which can serve as
ground states or cosmological initial states.

We have given the equations that characterize the
maximally symmetric space-time solutions, and noted
that, when maximal symmetry is abandoned in favor of
several regions with constant curvature, there arises a
scenario akin to some inflationary models.

With a higher-dimensional Robertson-Walker symme-
try we have studied three cases. In a vacuum we have
found that the solution is, in general, of de Sitter type;
only for particular values of the Lagrangian coeScients
can there also be a static Einstein solution. The nonvacu-
um spatially flat solutions show five qualitatively different
kinds of behavior. Four of these arise in Einstein theory
already: "big-bang" recollapsing universes; collapse from
infinity that stops at some minimum value of the scale
factor and bounces back to approach asymptotically a de
Sitter phase; and unlimited expansion from a singularity,
either following a power-law (Friedmann universes) or an
asymptotically exponential behavior (Lemaitre universes)
(and their corresponding time-reversal ones). It should
be noted, however, that those solutions correspond to
quite different situations than their analogs in Einstein
theory; for instance, the recollapsing universe is here spa-
tially fiat. The fifth family of solutions reveals a peculiar-
ity of the Lovelock theory. It consists of pathological
solutions which stem from the nonlinearity of the field
equations in the highest derivatives: this allows the

C. The case of Nat subspaces without matter

When the two subspaces are fiat (kd=k„=0, V"
compactified on a torus) the field equations (5.4) reduce,
in absence of matter, to
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determinant of the system to go through zero at some
points, preventing the prediction of a unique evolution
from then onward. We have finally characterized the
static solutions with Robertson-Walker symmetry and
found that, when more than one is present, consecutive
solutions have opposite stability properties against linear
perturbations. The analysis allows one to draw some
conclusions about the general behavior of the positively
curved solutions, summarized in the qualitative phase
plane portrait in Fig. 3.

The more realistic case studied is that of product
spaces. A maximally symmetric external space allows
only a static internal companion. We have reencountered
in this case already known conditions for the existence of
a four-dimensional Minkowski space-time with an inter-
nal static space, and presented new ones for an asymptot-
ic behavior of that kind. An analysis of the static solu-
tions has rendered specific examples of the two types of
theories in which it is possible to find an external sub-
space of "cosmological" size accompanied by an internal
one of a Planckian size. These two types of theories are
(I) those where the coefficient a of the leading order in
the Lovelock tensor is —10 (N-60), and all the others
-1 and (II) those for which the external space is filled
with some nonbaryonic cosmic Quid with equation of
state characterized by pd = —1+sr, with x'-10 and
all the other parameters of order unity. The stability
properties of the various static solutions found seem to
depend on the features peculiar to each model. Among
these solutions, the more promising candidate for a non-
singular initial state that might have given rise to our
Universe, via some kind of instability, corresponds to
case (II) and consists of two Planckian subspaces capable
of oscillating on a Planckian time scale.

The study of less symmetric and potentially more real-
istic situations is of great interest. Therefore the search

for and study of possible cosmological initial states in the
Lovelock theory has been extended to the case of Kasner
solutions, in work that will be presented in a separate pa-
per. Also, as it has been pointed out in previous sec-
tions, a numerical integration of the field equations is re-
quired to study the dynamical departure of the Universe
from static or very highly syrnrnetric solutions that might
serve as initial nonsingular states, and this work is
currently in progress.

APPENDIX A

Consider the line element

ds 2 — dr 2+g 2da2 +a 2da2 (A1)

where d a d and d 0 „describe d- and n-dimensional spaces
of constant curvature, respectively. Then the Lovelock
tensor [Eq. (2.5) in text] is

1
G p= ——g p fd+ gd+

2 ad
r

~ ~

an
hd

a„
(A2)

1 ad a„
Gb gob f + h„+ g„

ad
" a„

where the functions F,fd, gd, hd, f„,g„,h„read, up to cu-
bic order,
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F=ao+a~(d
~
Ad+2dnxdx„+n, A„)+a2[d3 Ad+412n Adxdx„+2d, n, ( Ad A„+2xdx„)+4dn2 A„x„xd+n3 A„)]

+a3[d, Ad+6d4n A„xdx„+3d3n, ( A„A„+4A„xdx„)+4d2n2(2xdx„+3Ad A„xdx„)

+3d, n3( A„A„+4A„xdx„)+6dn4A„xdx„+n5A„],

fd =ao+a][(d —1)/Ad+2(d —1)nxdx„+ n
$ A„]

+a2[(d —1 )4 Ad +4(d —1 )3n Adxdx„+ 2(d —1 )2n & Ad A„+4(d —1 )2n ~xz~x„+4(d —1 )nz A„x„xd +n3 Ag ]

+a3[(d —1)6Ad+3(d —1)4n, Ad A„+6(d —1)5n Adxdx„+12(d —1)4n, Adxdx„

+12(d —1)3n2 Ad A„xdx„+8(d —1)3nzxdx„+12(d —1)2n3 A„xdx„+6(d —1)n4A„xdx„

+3(d —1)2n3Ad A„+n~A„],
gd =2(d —1)Ia&+2a2[(d —2)3Ad+2(d 2)nxdx„+n—, A„]

+3a3[(d —2)&Ad+2(d —2)3n, Ad A„+4(d —2)4n Adxdx„

+4(d —2)3n &xdx„+4(d —2)n2 A„xdx„+n3 A„]},
hd =2n I a, +2a2[(n —1 )2A„+2(n —1)(d —1)x„xd+(d—1)2 Ad ]

+3a3[(d —1)4Ad+2(d —1)2(n —1)2Ad A„+4(d —1)3(n —1)Adxzx„

(A3)

+4(d —1)z(n —1)z(xdx„) +4(d —1)(n —1)3A„xdx„+(n—1)4A„]],
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where xd=kadlad, Ad=A, kdlad+xd, and (d k—)~=(d k—)(d —k —1) . . (d —j); the expressions for
x„,A„,f„,g„,h„,n are obtained by interchange of n and d. We note that h„=(d in )hd. The expressions (A2) and (A3)
agree with the corresponding ones of Miiller-Hoissen.

In some particular cases they can be generalized to any order. These are the following.
(a) The static case. a„—:a„,x„=O, A„=A„=k„la„, and similar conditions substituting n for d. Then

nt

fd=fd=
0&p (D/2

(d —1)! n!
(d —1 —2p+2k)! (n —2k)!

p —&,(d —2)!AdP
' " n!A„"

(A4)

hd =hd =2n
(d —1)!Adp

' " (n —1)!A„"

(d —2p+1+2k)! (n —1 —2k)!

and f„,g„,h„are obtained by interchanging n and d. When d =3 these functions become linear in Ad.

F(d =3)=6Ad
0 D/2 (n +2 —2p )! "

0 D/2 (n —2p).

fd(d =3)=2A„
0 D/2 (n +2 2p) 0 D/2 (n 2p)

f„(d=3)=6Ad
0 p & D/2 ( n + 1 —2p )!

(n —1)!a ' Ap,
(D/2

p (n —1 —2p)!

n!gd(d=3)=4 g Pap ', AP
0 p (D/2 ( n+ 2 —2p )!

(A5)

g„(d =3)=12(n —1)Ad
(n —2)!

p(p —1)a ', AP
O~p (D/2 n —p .

n —2!+2(n —1) g pa ', AP
0(p &D/2

hd(d =3)=4n Az p(p —1)ap ', AP +2n g pa„
(n —1)!

0(p&D/2 n p 0 p &D/2

h„(d=3)=—hd(d=3) .

(b) The fiat subspaces case. kd =k„=O. Then

2p

( 2p 2p —k k

fd=fd= g p X k (d 1 2 +k)t ( k)! d n

O~p &D/2 k =0

(d —2)x " nx"
C2p 2

(d —2 +k )! (n —k )!0&p&D/2 k=0 7p

p 2 (d ] )t~ 2P —2 —k (n 1 ))~ k

h=h=2 ~ ~ C2p 2

(d —2p 1+k )! ( n —1 —k )!
O 0

and f„,g„,h„are obtained by interchanging n and d. When d =3 these functions become quadratic in xd.

(A6)
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