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%e examine negative-energy fluxes produced by mirrors moving in two-dimensional charged-
black-hole backgrounds. If there exist no constraints on such fluxes, then one might be able to
manipulate them to achieve a violation of cosmic censorship by shooting a negative-energy flux into
an extreme Q =M or near-extreme Reissner-Nordstrom black hole. However, if the magnitude of
the change in the mass of the hole ~b,M~, resulting from the absorption of this flux, is small com-

pared to the normal quantum uncertainty in the mass expected from the uncertainty principle
AEb T ~ 1, then such changes should not be macroscopically observable. %'e argue that, given cer-
tain (physically reasonable) restrictions on the trajectory of the mirror, this indeed seems to be the
case. More specifically, we show that

~
8 M~ and 6T, the "efFective lifetime" of any naked singularity

thus produced, are limited by an inequality of the form ~bM~hT ( l. We then conclude that the

negative-energy fluxes produced by two-dimensional moving mirrors do not lead to a classically ob-

servable violation of cosmic censorship.

I. INTRODUCTION

In classical gravity theory, one usually assumes that
some energy condition such as the weak-energy condition
(positive energy density) is obeyed by matter. ' These con-
ditions, which are obeyed by known forms of classical
matter, are necessary in order to prove singularity
theorems. Some restriction on the matter stress tensor
must also hold if the cosmic-censorship hypothesis is
correct. However, it is well known that quantized
matter fields can violate classical energy conditions by
having a locally negative energy density. Even free fields
in Aat spacetime have quantum states in which there is a
negative energy density or a flux of negative energy. The
fluxes generated by moving mirrors in two-dimensional
spacetimes illustrate this effect. If there is no constraint
at all on the matter stress tensor, then it seems to be pos-
sible to violate not only cosmic censorship but also the
second law of thermodynamics and causality.

Fortunately, quantum field theory does seem to impose
some restrictions on negative energy densities and Auxes.
For example, in flat two-dimensional spacetime,
negative-energy fluxes appear to satisfy an inequality of
the form ~F~H~ 1, where ~F~ is the magnitude of a
negative-energy Aux and v. is the characteristic time dur-
ing which the Aux is negative. Moving mirrors in this
spacetime produce negative-energy Auxes which obey the
inequality as seen by inertial observers. Such an inequali-
ty prevents gross macroscopic violations of the second
law. Davies has shown that for a mirror in Aat space-
time moving with an acceleration bounded away from
zero for an infinite time, the total integrated Aux is nega-
tive. However, such trajectories have null asymptotes
and therefore unphysical characteristics. If the null
asymptote is in the past, then the mirror was already ac-

celerating at t = —~. If it is in the future, then (in two
dimensions) the mirror must necessarily collide with any
inertial observer trying to measure the flux. '

In this paper, we wish to investigate the possibility of
violating cosmic censorship using the negative-energy
fluxes produced by moving mirrors on a Reissner-
Nordstrom background. If one can shine sufFicient nega-
tive energy at a charged black hole, then it seems to be
possible to decrease its mass enough to convert it into a
Reissner-Nordstrom naked singularity. We will examine
this possibility in the context of a two-dimensional model
where, unlike in four dimensions, the radiation produced
by the moving mirror "can be exactly computed.

The outline of the paper is as follows. In Sec. II we re-
view the necessary formalism of moving mirrors in two-
dimensional curved spacetime. This formalism is used in
Sec. III to prove the positivity of the integrated Aux from
a moving mirror, given certain physically reasonable re-
strictions on its trajectory. This positivity forces any
violation of cosmic censorship to be limited in time. In
Sec. IV we analyze the extent to which cosmic censorship
can be violated and postulate a criterion for when this
violation is classically observable. Our results are sum-
marized and discussed in Sec. V.

II. MOVING MIRRORS IN
CURVED SPACE (REVIEW)

Here we briefly review the aspects of the formalism

developed by Ottewill and Takagi' (OT), Walker, ' and

Davies, which will be useful for our purposes. The
method of evaluating the renormalized vacuum expecta-
tion value of the stress-energy tensor T„dueto a confor-

mally invariant field in an arbitrary two-dimensional
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spacetime has been given by Davies, Fulling, and Un-
ruh. '4

We examine a mirror of negligible mass moving in the
region outside the horizon of a two-dimensional black-
hole spacetime (either Schwarzschild or Reissner-
Nordstrom). The regions to the left and right of the mir-
ror are depicted in Fig. 1. The line element is given by

ds~= —C(u, v)du du .

The mirror's world line is defined by

U =p(u),

(2.1)

(2.2)

where u and u are retarded and advanced null coordi-
nates, respectively, given by

u =t —r*,
u =t+r' (2.3)

with

r'= C 'dr . (2.4}

left right

Black hole
Mirror

We consider a conformally coupled scalar Seld P which is
assumed to obey either Dirichlet or Neumann boundary
conditions (i.e., /=0 or n "V„/=0) on the mirror.

The quantum state of the field in which we are interest-
ed may be defined as follows: Suppose that the black hole
was formed by collapse in the distant past while the mir-
ror was static. Our state is the no-particle state before
the collapse and before the mirror begins to move. This
means that it is a vacuum state with respect to the u

modes (those ~e '"") which are to the right of the mir-
ror. It is also a vacuum state with respect to the U modes
to the left of the mirror which enter the collapsing body
and pass through the center before the horizon forms.
Thus in the absence of the mirror, it would be the Unruh
vacuum for the black hole; in the absence of the black
hole, it would be the in-vacuum state for a mirror trajec-
tory. In fact, the efFects of the Hawking radiation from
the black hole and of the intrinsic radiation by the mirror
add incoherently (a consequence of the thermal nature of
the Hawking radiation}, as was shown by Walker. ' Thus
the total stress tensor of a quantum field may be ex-
pressed as the sum of a Hawking radiation term (includ-
ing re6ection from the mirror) and an intrinsic mirror ra-
diation term. [See Eqs. (2.28) and (2.29) below. ]

Define u" and n" to be the unit tangent and (outward)

normal vectors of the world line, Eq. (2.2), respectively.
If we transform to a coordinate system in which the mir-
ror is stationary, given by the coordinates

u=—p(u), U—=U,

then our line element, Eq. (2.1), becomes

ds = —C(u, u)du dU,

C—:C/p', p'—:dp(u)/du .

(2.5)

(2.6)

Equations (2.1), (2.2), (2.5), and (2.6) describe the region
to the right of the mirror. The region to the left of the
mirror is described by the same equations with u and u

reversed. Note, however, that the definitions of u and u

given by Eq. (2.3) are the same on both sides of the mir-
ror, as is the direction of increasing r*. In the coordi-
nates of Eq. (2.5), the vectors u", n" take the simple forms

u"=(u" u")=C ' (1 1)

n"=(n",n")=C '~2(1, —1) .

(2.7)

(2.8}

—1 da
12m dv

' (2.10)

where a—:a "n„,a" is the two-acceleration of the mirror's
world line, and v is the proper time of the mirror. In our
(i.e., OT's) formalism, the spatial component of n"
changes sign to the left of the mirror, while the sign of
the spatial component of a" is left unchanged. As a re-
sult, the comoving flux to the left of the mirror is given
by

1 da
cL 12% dV

(2.11)

The energy flux F„seenby a static observer at rest at
radial position r, is given by

(2.12)

where u," and n,' are the tangent and normal vectors, re-

spectively, to this observer's world line. They are given
by Eqs. (2.7) and (2.8) with the barred quantities replaced
by unbarred quantities on the right-hand side. The quan-
tity C, represents the value of the conformal factor at the
static observer's location. Note that the sign of the spa-
tial component of n, is always the same irrespective of
the direction of the flux, i.e., the spatial component of n,
is always assumed to point in the direction of increasing r
(to the right). We assume that the static observer always
remains on the same side of the mirror, i.e., that the mir-
ror does not cross his position.

From Eqs. (2.2), (2.3), and (2.6) it follows that

The energy flux seen by an observer comoving with the
mirror is given by

F, =——T„,u "n "=
( T„„—T„,)C

Unruh and %aid" have shown that the comoving flux
(to the right of the mirror) is given by

FIG. 1. "Left" and "right" in relation to the mirror and
black hole.

p'(u}= 1+V
1 —V

' (2.13)
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where

V=dr" Idt . (2.14)

(1—V')'" d
12m(1+ V)' «(1—V')' ' (2.24)

The quantity p'(u) represents a Doppler shift which is a
"redshift" [p'(u) & 1] when V&0 and a "blueshift"
[p'(u) ) 1] when V )0. The stress tensor t„„definedby

r„„=D„[p'(u)], r„„=r„,=0, (2.15}

(2.16)

(to the right of the mirror) is exactly the same as the
stress tensor due to a mirror moving along the world line
of Eq. (2.2) in flat spacetime with Minkowskian null coor-
dinates (u, v). This will be demonstrated below. We will
henceforth refer to t„„asthe "intrinsic mirror radia-
tion. " The intrinsic radiation to the left of the mirror is
described by Eq. (2.15) with u and u reversed, where

dp (u) 1 —V
(2.17)

T(&)—T(8)— C3/2(
C 1/2)1

tlQ UU 48

with

(2.18)

to the left of the mirror.
Lastly, we define T„',' to be the stress tensor in the

Boulware vacuum, whose components are given by

Remarkably, C drops out. The analogous formula for the
region to the right of the mirror can be obtained by inter-
changing u and U on the left-hand side and letting
V~ —V on the right-hand side. The physical interpreta-
tion of Eq. (2.24) is that the intrinsic flux radiated by a
mirror in any curved spacetime (i.e., not counting any
reflected Hawking or thermal radiation), when expressed
in terms of V =dr" Idt, is the same as in flat spacetime.
This result and its physical implications were first ob-
tained by Walker' for the region to the right of the mir-
ror, using a slightly diff'erent method.

Davies has shown that for a mirror moving in flat
spacetime, the total (intrinsic) energy flux radiated to ei-
ther side of the mirror is always positive for trajectories
where the mirror is either asymptotically static or asymp-
totically moving with constant velocity. Since the intrin-
sic energy flux in curved spacetime depends on the trajec-
tory in the same way as in flat spacetime as shown by Eq.
(2.24), Davies' discussion is transferable to curved space-
time as well. His argument (here given for the left side of
the mirror) is as follows.

In the region to the left of the mirror,
T

1 3 p" 1 p"'
12m 4 p' 2 p'

(C' ')"=-'C ' '[2CC"—(C')']
4 (2.19) t =t =0

QQ QU

(2.25)

and

C'=dCldr . (2.20)

where we have used Eqs. (2.15}—(2.17}. The integrated
(left-moving) intrinsic flux, I, seen by a static observer to
the left of the mirror is given by

(We will not need the component T„'„'.) Equations
(2.18)—(2.20) hold on both sides of the mirror.

Using an argument of OT, it can be shown that, to the
left of the mirror,

UpI= — dtC' F =+C ' d tuS S S UU

1

(2.26)

(2.21)

where the left-hand side is evaluated at r =r„the loca-
tion of a static observer near the horizon, and the right-
hand side is evaluated at the location of the mirror, both
along the same u=const line. The result, Eq. (2.21), can
be derived from the fact that t„„is a conserved traceless
tensor, which implies that the value of tU, along any fixed
v=const lire remains constant. Using Eqs. (2.11) and
(2.18), we can rewrite Eq. (2.21) as

1

48m
4''( u)

da

+ I [p'(v)] —1IC (C' )" (2.22)

—(V V —V—3VV )
tUU

=
12m(1 —V) (1+V)

which can be written as

(2.23}

It will be useful to have Eq. (2.22) expressed in terms of V
and C. A very tedious calculation then reveals that

1 p"
24m p'

U2 p"
U, 48m' U& P'

'2

du C-'"

(2.27)

For trajectories where the mirror is either asymptotically
static or asymptotically moving with constant velocity
(i.e., V:—dr 'Idt equals zero or a constant at both u, and
u2), the first (boundary) term in Eq. (2.27) will vanish
since, from Eq. (2.17), p'(v) is constant if V is constant.
Consequently, these trajectories radiate net positive in-
trinsic energy.

For the case of a mirror moving in an arbitrary two-
dimensional black-hole spacetirne, there will in general be
Hawking radiation to the left of the mirror. Such radia-
tion will be reflected, and Doppler shifted depending on
the mirror's velocity, as discussed by Walker. ' His re-

from Eqs. (2.12) and (2.25). The minus sign on the left-
hand side arises because we are interested in the sign of
the left-moving flux. Using Eq. (2.25) and integrating by
parts, we can rewrite Eq. (2.26) as

I=C '" 'du rS
U

UU

1
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suit, adapted here for the region to the left of the mirror,
1s

7TTBH
2

T„,=[p'(u) ] +T„'„'+t„„, (2.28)

mT2
y (B)+

QQ QQ (2.29)

7TTBH
2

t[p'(v) ] —1) +t,„C,' . (2.30)

We note in passing that since T„'~'=T„'~'[from Eq.
(2.18)], the static vacuum polarization does not contrib-
ute to the net flux, Eq. (2.30), seen by a static observer. '

III. A CONSTRAINT ON INTEGRATED
FLUXES FROM MOVING MIRRORS

Our main purpose in this paper is to determine wheth-
er the negative-energy fluxes from moving mirrors can be
manipulated in such a way so as to achieve a violation of
cosmic censorship. Therefore, let us now consider a
nonextreme (Q &M) Reissner-Nordstrom black hole in
the presence of a mirror. Since the hole is nonextreme,
there will be Hawking radiation in the region to the left
of the mirror which will be reflected from the mirror and
back into the black hole. This radiation will be Doppler
redshifted (blueshifted) upon reflection if the mirror is
moving away from (toward) the black hole.

The conformal factor for this spacetime is

2M Q
r

with Q (M, (3.1)

where M, Q are the mass and charge of the black hole, re-
spectively. We treat the charge Q of the hole as con-
stant. ' The Hawking temperature of such a black hole
is given by

(M2 Q2)1/2
~BH

2'fj'r +

where

(3.2)

where TBH represents the Hawking temperature of the
black hole. The first term in Eq. (2.28) represents Hawk-
ing radiation which has been reflected from the left side
of the mirror back into the black hole after being
Doppler shifted. The second term represents the left-
moving component of the static vacuum polarization.
The last term represents the intrinsic radiation emitted to
the left of the mirror. The sum of these three contribu-
tions make up the radiation flowing away from the mir-
ror to the left. Note that in this two-dimensional treat-
ment the mirror prevents the Hawking radiation from
reaching infinity and also blocks off any radiation which
might be present on the right side of the mirror from
reaching the left side.

From Eqs. (2.12},(2.28), and (2.29), the net left-moving
flux seen by a static observer stationed near the horizon
atr =r, is

F = F

~ =M+(M2-Q2) ~~2 (3.3)

+ f t»du (3.4)

From here on, we will always assume that any change
hM in the mass of the black hole is small compared with
the original mass M, i.e.,

AM«M . (3.5)

The condition, Eq. (3.5), is assumed in order that we may
efFectively ignore the back reaction of the change in the
black-hole mass on the spacetime geometry.

We now would like to compare Eq. (3.4) with the in-

tegrated negative-energy flux, seen by the same observer,
due to the Hawking radiation process when the black
hole is simply radiating into empty space with no mirror
present. In that case (see, for example, Hiscock' ),

(E, )„d=—f dt C,'i2(F, )„d

C
—in " M

48m.r+
(3.6)

The time interval t2 —t, is always assumed to be in the
range where the semiclassical description of black-hole
evaporation is valid.

Examining the first term in Eq. (3.4), which represents
the contribution from the reflected Hawking radiation,
we see that the maximum negative value of the integrand
occurs when p'(u) =0, which corresponds to V~ 1 (recall
that V~ (1 for timelike trajectories). This would corre-
spond to the limit of a mirror moving away from the
black hole at the speed of light. Since the maximum pos-
sible negative value of I[p'(u)] —1I is —1, then the first
term in Eq. (3.4) is always (E, }„d.This implies that
the "redshift term" alone can never allow us to decrease
the mass of the black hole at a greater rate than the nor-
mal Hawking evaporation rate (at least in two dimen-
sions).

The second term in Eq. (3.4) represents the contribu-
tion due to the "intrinsic" mirror radiation. Let us as-
sume that the trajectory of the mirror is such that the
mirror is either asymptotically static or asymptotically
moving with constant velocity (V=dr'/dt=const) in
the past and future. This is a physically reasonable re-
striction since otherwise the mirror will either be ac-
celerating in the arbitrarily far past/future or the mirror
will eventually fall into the black hole. The latter possi-
bility involves two drawbacks: (a) the mirror is unrecov-
erable and (b) the finite (although small) rest mass of the
mirror can no longer be ignored, as we have been impli-
citly doing up to now.

It follows from Eqs. (2.30) and (3.2) that the integrated
left-moving flux during some time interval tz —ti, seen by
a stationary observer near the horizon, is

dtc ~F
, L S S

1

=C, '~ f I[p'(u)] —1I 4 dv
1 48mr+
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If we con5ne our attention to these types of trajec-
tories, then from our argument following Eq. (2.27) we
know that the second term in Eq. (3.4) is positive:

C, ' t,„dU)0.
vl

(3.7)

A consequence of Eq. (3.7), which will prove to be of cru-
cial use the next section, is the fact that for these types of
trajectories, any initial intrinsic negative-energy Aux must
always be more than compensated for by a subsequent in-
trinsic positive-energy flux.

In summary, for mirror trajectories in which the mir-
ror is asymptotically either static or moving with con-
stant velocity in the past and future,

(3.8)

FIG. 3. A spacetime in which the singularity forms on the
left as a result of gravitational collapse.

In physical terms this means that, for the trajectories
speci6ed, the integrated energy flux due to a moving mir-
ror (including reflected Hawking radiation), as seen by a
stationary observer near the horizon, will never be more
negative than the ingoing negative-energy flux that would
occur due to ordinary Hawking evaporation of the black
hole into empty space. The latter is a process which does
not produce an extreme (Q =M) Reissner-Nordstrom
black hole in a finite amount of time (see Davies' ). Note
that Eq. (3.8) is also true for a Schwarzschild black hole,
since this is just the special case when Q=O.

Since our result, Eq. (3.8), is a restriction only on in-
tegrated negative-energy fluxes, it does not by itself
necessarily preclude the formation of a naked singularity
in this process. However, it does imply that any naked
singularity so formed would be exposed only for a limited
time and would eventually be "reclothed" by an event
horizon. In keeping with the original spirit of Penrose's
terminology, we refer to this possibility as "cosmic flash-
ing. "

IV. TRANSIENT COSMIC-CENSORSHIP
VIOLATION: COSMIC FLASHING

collapse, the spacetime is of the form of those illustrated
in Figs. 2 and 3. Figure 2 shows a black-hole spacetime
in which the r =0 singularity forms on the right; the left-
hand singularity does not exist. Hiscock has argued
that this is likely to be the generic case. In this space-
time, no violation of cosmic censorship is possible, and
injecting negative energy into the black hole cannot pro-
duce a violation. That is, no amount of negative energy
can cause a null ray leaving the singularity to reach 2+.
However, it is not clear that Fig. 2 represents the only
possible collapse-to-charged-black-hole spacetime. De
Felice and Maeda ' have argued that with certain initial
conditions the spacetime will be of the form of Fig. 3,
with the singularity forming on the left. In this case, neg-
ative energy injected after the collapse could produce a
violation of cosmic censorship if it allows any null ray to
connect the singularity to J"+. The case in which a viola-
tion of cosmic censorship would be easiest to produce
with negative energy is the eternal extreme (Q =M)
Reissner-Nordstrom spacetime, the Penrose diagram for
which is shown in Fig. 4. Here the future horizon H+ is,

%e wish to investigate the possibility of a violation of
cosmic censorship in a Reissner-Nordstrom spacetime. If
a charged black hole were to be formed by gravitational

r= 0

FIG. 2. A spacetime in which the singularity forms on the
right as a result of gravitational collapse. The shaded region is
the collapsing star.

FIG. 4. The spacetime of an eternal, extreme (Q =M)
Reissner-Nordstrom black hole. Here H is the future event
horizon, and I is future timelike infinity. The 45' line above
I+ is a Cauchy horizon; the spacetime may be extended beyond
this line, although this is not shown in the figure.
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on one hand, the limit of all future-directed null rays
which leave the singularity and is, on the other, the limit
of all null rays which reach 2+. Thus an infinitesimal
perturbation of the spacetime could allow a null ray to
connect the singularity with 2+. We can regard this
spacetime as the limit of the more realistic Q (M black-
hole spacetimes formed by gravitational collapse —the
limit in which the cosmic-censorship hypothesis becomes
most vulnerable.

For the Q =M black hole, there is no Hawking radia-
tion, so we need only be concerned with the intrinsic mir-
ror radiation given by Eq. (2.24). As discussed in the
preceding section, the net radiation emitted by a mirror
for which dr'/dt~const as t~kae must be non-
negative. Thus any appearance of a naked singularity
must be limited in time ("cosmic fiashing"). A mirror
trajectory which generates negative energy followed at a
later time by compensating positive energy will produce
cosmic flashing. Thus if the spacetime is treated as being
strictly classical, cosmic censorship fails: An observer at
g+ receives signals from the singularity.

However, the serious implications of this conclusion
demand that we examine it more closely. In particular,
the spacetime is in reality subject to quantum metric fluc-
tuations which may render the violation of cosmic cen-
sorship unobservable. A full treatment of the effects of
metric fluctuations would require a quantum theory of
gravity. Nonetheless, we can postulate a reasonable cri-
terion for the observability of the singularity: Let ~b,M~

be the magnitude of the decrease in mass of the
Reissner-Nordstrom spacetime due to the absorption of
negative energy, and let b T be the time scale over which
this decrease in mass persists. Then we expect

I~MI~»1 (4.1)

should be a necessary condition that the cosmic-
censorship violation be observable. We will refer to Eq.

r=0

r=M

(4.1) as the "classical observability requirement. " The
physical content of this requirement is that if an observer
at 2+ makes an observation on a time scale 6T, quantum
fluctuations on this time scale could obscure the effect of
any change, bM, in the mass of the black hole unless
~aM~ &1/av'.

The limit in which this classical observability require-
ment will be easiest to satisfy will be when the negative-
and positive-energy pulses are separated in time as much
as possible. The extreme limit is the case of a 5-function
pulse of negative energy, followed a time hT later by a
compensating pulse of positive energy. The spacetime in
which this occurs is illustrated in Fig. 5. Here an ex-
treme Q =M black-hole metric is converted into a Q & M
naked singularity metric by the negative-energy pulse
v =v, and is subsequently converted back to a Q =M
metric by the positive-energy pulses at v =v2. Between
retarded times u& and u2, outgoing null rays from the
singularity reach S+; this is the period of cosmic fiashing.

What an observer at S+ would actually see during this
period cannot be predicted, as there is no theory that pre-
dicts what the singularity will emit. A possible ansatz is
to suppose that the singularity behaves as a constant-
luminosity source. Then the observer at S+ will see a
pulse of the form of that illustrated in Fig. 6. That is,
this observer sees a source which turns on instantaneous-
ly at u =u„'the output of this source appears to be a
constant for a time hv = v2

—
v&, and then begins to de-

cay, decreasing as 1/u. The details of the derivation of
this result are given in the Appendix. The characteristic
time scale over which the source decays is determined by
the parameters of the Reissner-Nordstrom metrics on ei-
ther side of the boundary and is hence of order M. Thus
the time scale AT over which cosmic flashing occurs is at
least of order M. However, to increase 4T as much as
possible, we should arrange to have Av &&M, in which
case 5T=hv.

We now wish to investigate whether the classical ob-
servability requirement, Eq. (4.1), can be satisfied if the
pulses of energy are generated by a moving mirror. First
let

V

( 1 y2)3/2 (4.2)

Note that in flat spacetime 0'=a =a"n„.As long as the
mirror is moving on a trajectory for which 0' is constant,

Ch, V

FIG. 5. A spacetime which exhibits cosmic flashing, the tran-
sient receipt of null rays at 7 from the singularity at r=O. A
negative-energy pulse at advanced time U =u, converts a Q =M
Reissner-Nordstrom metric into a Q )M metric; a positive-
energy pulse at u =v& reconverts it. Between retarded time
u =ul, and u =u2, outgoing null rays from the singularity
reach 2+. The future horizon I+ is the u =u2 line.

FIG. 6. The luminosity pro61e of the pulse that reaches 2+,
assuming a constant output from the singularity. The pulse
turns on at u =u l, is constant for a time hu =

U&
—

U 1, and then
begins to decay inversely with time.
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no radiation is emitted, as may be seen from Eq. (2.24).
However, if a changes discontinuously, then a 5-function
pulse of energy is emitted. If the change corresponds to
an increase in a (increasing acceleration away from the
black hole), then the pulse emitted toward the black hole
is positive; a decrease in a emits a negative-energy pulse
toward the black hole. A trajectory on which a is con-
stant is a hyperbola in the (t, r*) coordinates; this may be
seen by recalling that in fiat spacetime, constant accelera-
tion trajectories are hyperbolae. A trajectory which pro-
duces a negative 5-function pulse, followed later by a pos-
itive pulse, is shown in Fig. 7. Here the mirror is taken
to be at rest at r'=ra, far from the horizon, where C=1,
for t(0. At time t=0, it starts accelerating toward the
black hole with N constant, and continues to do so for a
finite time, after which it suddenly stops accelerating at a
point outside r =M. Just after t=0, the mirror is still

nearly at rest ( V«1), although later it may move rela-

tivistically. [I.e., suppose that we give the mirror a kick
over a finite but short time interval b t, . During this in-

terval, while the mirror is far from the black hole, we can
let V=const=a, so d'=aht& and the change in velocity
is b, V =a(b, t, ) /2=ifbt, /2. For bt, ~O with if con-

stant, b, V~O. ] Thus, from Eqs. (2.24) and (4.2), the
magnitude of the negative-energy pulse emitted at t=0,
as measured at infinity, is

[sz/= (4.3)
1277

'

Let the advanced time interval between the negative- and
positive-energy pulses be hv. From Fig. 7, we can see

d line

that

1
hv &—

a
(4.4)

If ET=tv, then

[aE[aT &
12~

(4.5)

Consequently, the classical observability criterion, Eq.
(4.1), is not satisfied.

The trajectory in Fig. 7 assumes that the mirror was at
rest far from the black hole for t&0. If the mirror was
initially moving at a constant velocity, our conclusions
will be unchanged. This may be seen by noting that the
above discussion is formally identical to the case of a mir-
ror in fiat spacetime (where a =a and r =r'). The prod-
uct EEht in flat spacetime is a Lorentz-invariant quanti-
ty which may be expressed as p"Ax„,where p" is the
energy-momentum four-vector of the pulse of radiation
and hx„ is a four-vector which has only a time com-
ponent ht in a Lorentz frame in which the mirror is ini-
tially at rest. Because this quantity is Lorentz invariant,
it will be unchanged for a mirror which was initially
moving at constant velocity. This can be physically inter-
preted as a cancellation between a Doppler-shift factor in
bE and a time dilation factor in b, t. Finally, the formal
equivalence of mirrors in flat spacetime to those in a
Reissner-Nordstrom background, from Eq. (2.24), allows
us to conclude that if the mirror in the latter case was ini-
tially moving with respect to the (t, r" ) coordinates with
V =dr '/dt=const, then Eq. (4.5) still applies.

We also have an upper bound on iR if/(12m) «M,
where M =Q, This bound comes from the requirement
hM «M, Eq. (3.5), so that we may safely ignore back re-
action. Note too that, other than the assumption that the
mirror initially started far from the black hole, our con-
clusion, Eq. (4.6), does not depend on exactly where the
mirror started.

However, because DE=EM, the change in the black-
hole mass,

(4.6)

V. SUMMARY AND DISCUSSION

r
0

mirror's world line

FIG. 7. The world line of a mirror which generates the
pulses of negative and positive energy in Fig. 5. The mirror is at
rest at r*=ro for t (0. It then accelerates with if=const for a
finite time, and subsequently moves at a constant velocity.
Negative- and positive-energy pulses are emitted at u = ul and
v =v2, respectively.

We have seen that negative-energy fluxes, such as those
produced by moving mirrors, have the possible ability to
violate cosmic censorship. We have focused our atten-
tion on the case of an extreme, Q =M, eternal Reissner-
Nordstrom black hole as the case in which a naked singu-
larity would be easiest to produce. Negative energy due
to quantum coherence effects is not produced in isolation,
but tends to be accompanied by compensating positive
energy. This was demonstrated explicitly in Sec. III for a
wide class of mirror trajectories on the Reissner-
Nordstrom background. Consequently, any violation of
cosmic censorship must be limited in time. This interval
when signals may travel from the singularity to 2 we
have termed "cosmic flashing. " We have postulated a
"classical observability requirement, " Eq. (4.1), which
should be satisfied in order that the "cosmic flash" not be
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lost in the background noise of quantum fluctuations. It
was shown that this requirement is not satisfied.

We therefore conclude that the breakdown of predicta-
bility implied by a naked singularity probably does not
occur. This conclusion depends upon the classical obser-
vability requirement, which is an uncertainty-principle-
type inequality which seems to be a reasonable estimate
of the scale of quantum metric fluctuations. However, it
would be desirable to derive this condition from a more
formal theory of quantum gravity. Our conclusions are
in the context of a two-dimensional model. It would also
be desirable to explore four-dimensional analogs of our
models. These are topics for future research.
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the incoming pulse ( v =vz ). The line elements must
agree on this boundary. Equate dsf =dsz at r =R(t')
and use the fact that dR/dt'=C, dR

&
/dt'= —C, . The

result may be expressed, after some algebra, as

dt
dt' C2

(A3)

R (t') =M +a (T' —t')+O((T' —t')'), (A4)

where the constant a is determined by M, and M2. In-
tegrating Eq. (A3) yields

where C, and C2 are now understood to be evaluated at
r =R (t'). The solution of Eq. (A3) yields the functional
relation of the two time coordinates, t(t'). For our pur-
poses, we need only find an approximate solution valid
near the point where the U =U2 line crosses r =M. Let
the time coordinate of this point be t' =T', which is finite
in the t' coordinate. Thus there must be a Taylor expan-
sion of the form

APPENDIX
C)R t' R

dt' .
R t' —M

(A5)

ds) ———C)dt' +C) dr =C(( dt' +dr—) ), (Al)

and

In this appendix we present the matching of Reissner-
Nordstrom metrics across a null line where there is an in-
coming 5-function pulse of energy. This matching leads
to the derivation of the intensity profile illustrated in Fig.
6. The spacetime of interest is that shown in Fig. 5. We
are concerned with the matching of metrics across the
line v =U2, where the naked singularity metric of mass
M, &Q (v, & v &vz) is joined to the extreme black-hole
metric of Mz =Q (v )vz). Let the line elements for these
two regions be ds, and dsz, respectively, where

If we now substitute the expansion for R (t'), Eq. (A4),
into Eq. (A5), we find, to leading order,

C, (M)M

a (T' —t')
(A6)

1 M 2

rz = Cz (r)dr-—
r —M

Thus t ~ 00 as t'~T', this is to be expected, as it takes
an infinite amount of t time for the incoming pulse to
cross r =M.

We now need to find the relationship between r z and r
near r =M; it is

dsz= Czdtz+C—z
'dr =Cz( dt +drz ) . —

Here

2M, Qz
C) =1— +

2

(A2)
From Eq. (A4),

M
Rz (t')-—

a (T' t')— (A8)

and

C2= 1—
'2

M2

An outgoing null ray has u = t —r 2
=const or

u'=t' —r
&

=const. We wish to find the relation between
the values of u and of u' for a ray which crosses the
U =U2 line near r =M, that is, the outgoing rays that es-
cape to 2+ just before the horizon forms. First express u
in terms of t':

and t' and t are the time coordinates of the two regions.
Note that the Schwarzschild-like radial coordinate r is
the same in both regions, but the tortoise coordinates
r

&

= f C& 'dr and rz = f Cz 'dr are not.
Let r =R (t') [equivalently r,' =R f (t')] be the path of

M [C,(M)+a]
u (t')=t (t') —R z (t)

a (T' —t') (A9)

using Eqs. (A6) and (A8). Similarly, u'(t')=t' r, (t'). —
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u(u')-
uo —u

(A10)

where A is a constant.
Suppose that we have a source at r =M which is emit-

ting waves of frequency to'. These waves reach J+ with a

However, u' approaches a finite constant as t'~T',
which we call u p. If we now eliminate t' and express u as
a function of u

' near u'= u p, we must have a relation of
the form

frequency co. The phase of these waves is co'u'=sou, as
the phase does not change across the U =

U2 line. Hence,

u
I

co — co as u ~u, u~~ .
u

p& (A 1 1)

Thus the observer at 2+ sees the waves redshifted asu, as illustrated in Fig. 6. This inverse power falloF of
signals from an extreme Reissner-Nordstrom black hole
was first obtained by Bicak. For nonextreme black
holes, the falloff'is exponential in time.
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