
PHYSICAL REVIEW D VOLUME 41, NUMBER 2

Aspects of the Zel'dovich-Snnyaev mechanism

15 JANUARY 1990

Jeremy Bernstein
Department ofPhysics, Stevens Institute of Technology, Hoboken, ¹wJersey 07030

and Department ofPhysics, The Rockefeller University, ¹wYork, New York 10021-5399

Scott Dodelson
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 14 August 1989)

In this paper we treat aspects of the Compton distortion of the cosmic background radiation
(CBR)—what is known as the Zel'dovich-Sunyaev mechanism —which do not appear to have been

fully explored in the literature. These include a novel solution to the so-called Kompaneets equa-

tion, a treatment of the simultaneous heating and cooling of free electrons, a discussion of electron-

proton "recombination, " and a demonstration of the ingredients necessary for efficient energy
transfer. These matters are illustrated in a scenario in which the excess CBR energy observed by
Matsumoto et al. is supplied by a radiatively decaying heavy lepton, so we also provide a careful

analytic treatment of the photon spectrum produced by a heavy particle decaying in the early
Universe.

I. INTRODUCTION

Interest in the so-called Zel'dovich-Sunyaev mecha-
nisrn, which exploits inverse Compton scattering of ener-
getic electrons by the relatively cool cosmic background
radiation (CBR) to produce distortions in the CBR, has
been rekindled by observations of what may be such dis-
tortions. These observations are of two kinds: on the one
hand, electrons in the hot intergalactic gas circulating
within dense clusters of galaxies can inverse Compton
scatter from the universally present CBR. In 1972,
Sunyaev and Zel'dovich noted that if the distorted CBR
at low frequency, the Rayleigh-Jeans regime, were ob-
served, its effective temperature would be lowered as com-
pared to the CBR in other parts of the sky. If a radio
telescope is swept across such a galactic cluster, the
Rayleigh-Jeans temperature of the CBR will vary as a
function of angle, with the maximum drop in tempera-
ture occurring when the telescope is pointed at the center
of the cluster. This effect has apparently been seen. The
maximum temperature distortions are of the order of

Tp —2.7 K —2.3X 10 eV

T, =7.7 keV,

n =3X10 /cm

(1.2)

On the other hand, the relevant early-Universe regime
for our work will be around the epoch of electron-proton
recombination: i.e.,

heats the electrons in the primeval electron-proton plas-
ma. These electrons then, by inverse Compton scatter-
ing, produce distortions in the CBR. Photons are scat-
tered to higher frequencies. Before equilibrium can be re-
stored the Universe cools, lowering the reaction rates.

Before launching into the forrnal discussion of the
Kompaneets equation, which determines the Zel'dovich-
Sunyaev distortions, we close this introduction with a
characterization of the regimes in which this analysis is
to be done. On the one hand, the intergalactic gas is
characterized by two temperatures —the CBR ternpera-
ture today Tp and the electron temperature T,—and by
the free electron number density n, :

ATp-——10 K . T= —,
' eV; (1.3)

It has been noted that the observation of these distortions
proves that the CBR is an extra galactic phenomenon, if
such proof is needed, and that these observations, in con-
junction with other information about these clusters, pro-
vide a novel way of measuring the Hubble parameter Hp
(Ref. 4).

On the other hand, a recent measurement using a
rocket-borne telescope has found significant distortions in
the high-frequency, Wein, end of the spectrum. Within
the limitations of this experiment these distortions appear
to be isotropic, as they must be if they are to be
identified with the CBR. One possible explanation of
these results is that some early Universe phenomenon

much earlier and any distortions will be erased by inelas-
tic scattering processes such as

y+e~e+y+y;
much later and the Compton reaction rate will be too
small to allow for significant distortions. The electron
temperature will need to be considerably larger than the
CBR temperature in order to produce significant distor-
tions; however, the exact value is model dependent. We
can estimate the electron density at the epoch of recom-
bination by assuming that whatever mechanism excites
the electrons keeps most of them ionized. We shall show
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n —n —ng =YJns r (1.4}

Here n is the proton number density, nz the baryon den-

sity, g the baryon-to-photon ratio, and n the photon
density. If we take g= 10 then

—' eV398 3
eV

cm 2.3X10 eV

3

(1.5}

that this is the case for the decaying-particle scenario.
Thus, by charge conservation, neglecting helium and oth-
er light elements,

II. GENERAL CONSIDERATIONS

All of the work in this subject begins from the so-called
Kompaneets equation. This is the equation that deter-
mines the distortion in the photon occupation-number
distribution per polarization, f (k, t), due to Compton
scattering of photons by electrons. We write the equation
(in natural units in which fi=c =ks= 1) and then de-
scribe its origin. Thus,

~'

———k f(k t)
a R a
Bt R Bk

where again we have taken the present CBR temperature
to be 2.7 K=2.3X10 eV. Thus

a, a
k T, f(k, t)

m, k2 Bk

n, =10 /cm (1.6) +[1+f (k, t)]f (k, t)
To analyze the electron-photon interactions, we will

make use of the Boltzmann equations. In order for these
transport equations to be valid, the thermal energy of the
particles must be greater than their potential energy:

T &&—=an 1/3
e e

P
(1.7)

where r is the mean distance between particles. We
readily verify that this condition is satisfied in our re-
gimes by many orders of magnitude. A more sophisticat-
ed condition can be derived in terms of the Debye length
and it leads to the same result.

o z= =0.665X10 cm
Sea
3m

(2.2)

m, is the mass of the electron, n, the free electron num-

ber density, and T, the electron temperature. The most
straightforward way to derive this equation is to start
from the Boltzmann equation

(2.1)

The notation is as follows: R (t) is the Robertson-Walker
scale factor, so that R /R is the Hubble expansion rate,
o z is the Thomson cross section,

d k'
f(k t)=Ct(k)+ f, —

, f p f p ', IM~'(2~)'5'(k+p —k —p )R ak k (2 ) Zk' (2 ) 2E(p) (2 ) 2E(p')

X [f (k', t)g, (p', t)[1+f (k, t)]
—f (k, t)g, (p, t)[l+f (k', t)] I . (2.3)

2k=m, 1+
me m e

(2.4)

Here ~M~ is the matrix element for electron Compton
scattering and g, (p, t) is the electron occupation-number
distribution per spin degree of freedom. The collision
term Ct(k) represents processes such as photon-proton
Compton scattering and inelastic processes such as
bremsstrahlung which we can neglect in the regimes of
interest. The second term on the left arises from the
influence of the cosmic gravitational field and leads to the
redshift. This term is irrelevant in the case of intergalac-
tic clusters; however, we will see that both cases can ulti-
mately be treated by the same method.

One then assumes (a) the electrons are nonrelativistic
and (b) the photons themselves have energies much less
than the electron mass. The energy transfer in any one
collision is then constrained by the kinematics to be
small. The initial center-of-mass energy squared is given
by

st =[E(p)+k] —(p+k)

This must be equal to the final center-of-mass energy
squared so that

me

p.k

m e

k' p' k'

m e

(2.5)

or

k —k'=O(pk/m, ) «k . (2.6)

So the fractional energy transfer is small and one can ex-
pand the 5 function on the right-hand side of the
Boltzmann equation in powers of the small energy
transfers. In both cases we wi11 be treating the distribu-
tions as isotropic: (i) in the early Universe everything is
homogeneous and isotropic and (ii) the intergalactic
medium where electron-photon scatterings take place is
assumed isotropic. Because of the isotropy of the f's and
g's the angular averages in the matrix element can be per-
formed. (A departure from isotropy would lead to addi-
tional terms in the Boltzmann equation. '

) This series of
steps leads to Eq. (2.1). Two general remarks are in order
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about this equation. If we integrate both sides of the
equation over all momenta k, we have

d k

af af at af ak
af I-, at I, at I-, ak, at

at ak, R R
(2.12}

dk nor 1 a
(2~)3 m, k~ ak

k T, f (k, t) +[I +f (k, t)]f(k, t)

where the last line here is the left-hand side of (2.11). The
right-hand side of (2.11) is unaffected by this substitution.
Therefore, rewriting k as k, we may write Eq. (2.11} in
the form

=0 (2.7}

1fo= ek/T+a

satisfies the equation

(2.8)

a R a———k f0=0
Bt R Bk

(2.9)

provided that (i) T(t)=const jR (t) and (ii) the chemical
potential a is a constant. The distribution fo obeys the
identity

(2.10)

If we use this identity on the right-hand side of Eq. (2.1)
and set T equal to T, this side of the equation vanishes
also and we have a consistent equilibrium solution.

We are interested in nonequilibrium solutions of (2.1),
but the departures from fo will not be large. Hence we
will use the identity (2.10) to simplify (2.1) and write the
approximate equation

a R a n or(T, —T) 1 a———k f(k t}=
R ak '

m, k' ak

assuming that f (k, t) vanishes rapidly enough as k goes
to infinity. This equation expresses the fact that the elas-
tic electron-photon collisions conserve the number of
photons.

The second remark concerns the equilibrium limit of
Eq. (2.1). The Bose-Einstein distribution

a n or(T, —T) 1 af(—k, t)= k4 f (k, t)
at m, k~ ak

(2.13)

The R /R term has scaled out of this equation so that its
solution is applicable to both the intergalactic and the
recombination-era distortions.

To solve Eq. (2.13), we follow Zel'dovich and Sunyaev'
and introduce the dimensionless variable y by the relation

n, o r(T, —T)
dt .

me
(2.14)

In the cosmological example we determine y at any time t
by integrating (2.14) from some arbitrary initial time
which we can call zero: that is,

, n, o r(T, T}—
y(t)=

0
dt' .

me
(2.15)

a a (x,y)
ay x ax axf (x,y)= x (2.16)

where we have introduced the dimensionless variable

Later in the paper we shall study the physics of y(t).
Here we shall simply take it as a parameter that charac-
terizes the solution to Eq. (2.13). In the galactic gas ex-
ample the integration over time is replaced by an integra-
tion along a given line of sight through the galactic clus-
ter. The time of expansion is replaced by the distance
traversed through the medium. Thus, in both cases, Eq.
{2.13) can be written

X=
TQ

(2.17)

X k f (k, t) . (2.11)

Some discussion of the meaning of the temperature T is
in order. T is roughly the temperature of the CBR, but
since the spectrum is not exactly blackbody, it is more ac-
curate to simply say that T is a parameter which charac-
terizes the photon distribution. In the applications we
will make, f differs from fo by only a few percent.
Hence, we can use Eq. (2.10) identifying T with the CBR
temperature. In any event T, &&T and small errors in
treating the nonlinear terms in Eq. {2.11} will not sub-
stantially affect the final results.

We can simplify the left-hand side of Eq. (2.11) by
making the substitution k =kR. Then,

f (x,y) =exp x f (x,0) .3 ~ 4 (2.18)

In our applications we can take

f (x,0)= 1

e"—1
(2.19)

since in the absence of distortions (y =0), the cosmic
photon spectrum is pure blackbody.

Here TQ is roughly the temperature of the CBR today,
keeping in mind that the photon distribution is to be fit
with two free parameters: To and y. Equation (2.16) has
the formal solution
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f (x,y) =f (x,O)+ x' f (x,O)
()x (}x

(2.20)

If x y ( 1 we can expand the exponential in (2.18) (Ref.
11}:that is,

solve Eq. (2.16) exactly. Several solutions have been
presented in the literature. ' We wish to present a novel
solution worked out by one of us (J.B.) in collaboration
with Brown. ' To this end, we call D the differential
operator:

To reduce (2.20} to a more useful form we can employ the
differential identity

D=x a
Bx

(2.30)

1 (} 4 (} 1

x (}x ()x e"—1
X

Thus, ' forx y &1,

xe" X

(e"—1) tanh(x/2)

We can write

f(x,y)=e ' +' 'f(x 0)

(2.21) We notice that

f d
—(s+v«D)

(2.31)

(2.32)

f (x,y)=
e 1

1+ xye" x
4

tanh(x /2)
(2 22) Thus

T(x}y

To in[1+f (x,y) '] (2.23)

When one compares to experiment it is often useful to use
f(x,y) to compute the so-called "effective blackbody
temperature. " This is a frequency-dependent tempera-
ture T(x) defined so that

yD — —s —2D "(/ y s

&m

Therefore,

e'yDf (x,y) = —f ds e ' «'f (x,o)
v'7r

dse ' e' y' f(x,o) .1 (N 2

~rr

(2.33)

(2.34)

Note that for f (x, o) given by Eq. (2.19), the blackbody,

T(x)o =1.
0

(2.24)

Hence Eq. (2.23) is a useful way of characterizing depar-
tures from the blackbody spectrum. For the approximate
f (x,y) given by Eq. (2.22),

We may now use the well-known operator identity, ' with
A, a number,

ehDf (x)e AD f(e—Ax) (2.35)

The e factor goes to 1 since the derivative has noth-
ing to act on. Hence,

T(x)
=1+y —4

To tanh(x /2)
(2.25)

f(,y)= — dse ' f(e ' «+ «x, o), (2.36),2

v'rr

where, to be explicit about the notation,

We shall shortly explore the limits on the validity of this
expression. However, it is surely valid as X~O, the
Rayleigh-Jeans limit. In this limit

f (e -"~y +"x O) = 1

exp(xe ' «+ «) —1

T(x) ~1—2y
TQ

so that

hT
2y

TQ

(2.26)

(2.27)

It is clear that for y =0, Eq. (2.36) reduces to the Planck
distribution. Before exploiting this solution it is instruc-
tive to relate it to others in the literature. ' To relate Eq.
(2.36) to the correct version of the expression given in
Zel'dovich and Novikov' we make the substitution

—2s&'y +3y

This is the effect apparently observed in the galactic clus-
ters. Indeed if we use the value of 4T/To given by Eq.
(I.l) we see that it corresponds to a y of about 5 X 10
This y for the cluster is usually written in the form

in Eq. (2.36). This leads at once to

(x,y) = 1 ~ dz [3y +ln(x/z)]
exp

v'4~y o z 4y

y= (2.28) Xf (z, o) . (2.37)

where ~ is the optical depth

7 =f rt O'Tdl (2.29)

This expression should replace Eq. (8.7.3) in Zel'dovich
and Novikov. ' To derive the expression of Chan and
Jones' make the substitution

and the integral is taken along the line of sight. If we use
Eq. (1.1) we find an optical depth r of about 0.003.

When the condition x y & 1 is not satisfied we must

Tpz=x
T

in Eq. (2.37). Thus
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f (x,y)= f exp 4y — [1n(T/To)+5y]
1 ~dT 1 2

4~y o To 4y
p(y =0)=0.28

eV

cm
(2.48)

Xf (xTO/T, O), (2.38)
The new data points indicate an excess over p(0) of
about Ap=3X10 eV/cm . Thus,

A short calculation then shows that

P„(y)=e'"+'"" ' P„(0) .

We see that, for n =2,

P&(y) =P2(0) .

(2.40)

(2.41)

This is the statement that the elastic Compton scatterings
preserve the number of photons. For n =3 we have the
statement

which is given in Chan and Jones.
Any of these expressions can be used for numerical

work. However, Eq. (2.36) is especially well suited to
compute the moments of the distribution f (x,y). Hence
consider'

P„(y)= f dx x "f(x,y)
0

00 a)
dx xn ds e

—s f(e 2'+»+3 x 0)
0 ~Fr

(2.39)

(2.49)

Solving for y we have y =0.025 which means that our ap-
proximations, specifically the use of the identity (2.10) on
the right-hand side of the Boltzmann equation, are self-
consistent.

Below we present two curves for T(x) (Figs. 1 and 2).
The purpose of the first curve is pedagogical. It is to
show that using the approximate form given by Eq. (2.25)
is seriously wrong for x —10, the submillimeter regime.
This form should not be used to fit T(x)». The second
curve is our best fit to T(x)» using Eq. (2.36). We find

that the best fit is given by y =0.021, To=2.81 K. It
must be emphasized that this fit involves only the
Zel dovich-Sunyaev mechanism and ignores inelastic pro-
cesses such as bremsstrahlung which could modify the
curve for x (1. In any event, finding a y and a To that
fits the data does not solve the real physics problem:
namely, to find a plausible mechanism for generating
such y's. In the following sections we explore the in-
gredients that must go into such a mechanism.

P, (y)=e «P, (0) . (2.42)

This is the well-known' connection between the modified
energy density p(y) and the blackbody density p(0). To
make this more explicit, suppose that p(0) is defined in
terms of the temperature To. that is,

III. ELECTRON TEMPERATURE

We have seen that the parameter y determines the
shape of the cosmic-background spectrum. To calculate

p(0) =o To .

Thus,

p(y }=e»cr To .

(2.43)

(2.44}

3.2

3, 1--

2p

lim f (x,y)=
x~0 x

so that

(2.45)

In principle, if the observed spectrum is described by Eq.
(2.36) we can go to the limit where x goes to zero to mea-

sure the Rayleigh-Jeans temperature TRJ. From Eq.
(2.38) we see that

Ol

3.8"

U
Ol

QJ 2.9--

2.8

T(x)» TR~
lim
x~0 Tp Tp

2p (2.46}

That is, the effective blackbody temperature in the
Rayleigh-Jeans regime is frequency independent. Hence
if we express p(y) in terms of T„~,we find 2.6

8 12

p(y }=e o TR» . (2.47) ErT

We shall end this section by giving our best fits to the
data in terms of a plot of T(x)». Before doing this we
want to indicate that the data support an interpretation
in terms of a Zel'dovich-Sunyaev mechanism with y (&1.
To this end we note that with a base temperature Tp
given by 2.74 K,

FIG. 1. Effective temperature arising from the Zel'dovich-
Sunyaev mechanism with y =0.02 and Tp =2.81. The solid line
is the exact solution, Eq. {2.36) and the dashed line is the ap-
proximate solution (2.25). The x axis is the frequency of the
photons, normalized to Tp so that, for example, the new submil-
limeter points are at x =4.4, 7.2, and 10.6 (frequencies v=259,
423, and 624 GHz).
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3.2

3. 1-

3.9

The collision term C, (p, t) depends upon the photon dis-
tribution. Under the same set of assumptions that were
used to derive the Kompaneets equation, C, (p, t) can be
simplified and expressed in terms of the moments of the
photon distribution. Specifically, defining

g 2.9

2.8
8

QJ 27 and

d k
p,(r):2—J,kf, (k, r)

(2n. )'
(3.4)

2.6

2.5

d kT (t) f k2f'(k t)[1+fr(k t)] (3 5)
2pr (2m )

it can be shown' that

2. 4-

2 ~ 3

2.2
] r199 ir19

2prcT r (j m,
C,r(p, t) = p g, (p, t)+ Tr g, (p, t)

3m~p dp p ~p

(3.6)

EiT

FIG. 2. The Zel'dovich-Sunyaev best fit to 21 data points (in
Ref. 18) from recent measurements. Here TO=2. 81 K and

y =0.021; the y for the 21 data points is 44.

y, we need to know the temperature difference between
electrons and photons, T, —T, at all times. In this sec-
tion, we will write down and solve the evolution equation
which governs the electron temperature.

Free electrons interact with other free electrons and
with free protons via Coulomb scattering; they also in-
verse Compton scatter from photons. The full evolution
equation contains collision terms representing each of
these interactions:

8 R 8———p g, (p, t)=C, (p, t)+C„(p, t)+C,p(p, t),

(3.1)

where g, (p, t) is the electron number distribution per spin
degree of freedom. In the limit of small velocities, the
rate for Coulomb scattering is very large. The only solu-
tions to (3.1) therefore are those distributions which make
the Coulomb collision terms vanish: the electrons and
protons are both constrained to have Maxwellian distri-
butions at a common temperature T, . If we now rnulti-

ply (3.1) by the kinetic energy (p /2m, ) and integrate
over all momenta, since the Coulomb collision terms van-
ish with Maxwellian distributions, we are left with

d3 2

R ( ,'n, T,R )=2J——C,(p, t) . (3.2)
dt (2~)3 ' '

2m,

The factor of 2 on the right-hand side of (3.2) reflects the
two spins in n, As long a.s most electrons are free (an is-
sue we will return to later), n, =ns, the baryon-number
density. Since baryon number is strictly conserved, n~,
and therefore n„ falls off strictly as R . Therefore,

Note that p~ and T~ are defined for any photon distribu-
tion. If the photons happen to be in equilibrium with a
temperature T, then it is straightforward to check that
T~ as defined is equal to T. Now we integrate the right-
hand side of Eq. (3.3) by parts and write the evolution
equation for the electron temperature as

~ R 4 Py&rT+2 T=—— (T —T ).e R ' 3 mme
(3.7)

(3.8)

where t; is some early time and the Compton time is
defined as

1 4 py~r
3 Ple

There are two limits to consider: (i) the Compton time
vc ))(R /R) ', so there is very little energy transfer be-
tween the electrons and the photons; in this limit the first
term on the right side of Eq. (3.8) dominates and we re-
trieve the familiar result that the electron temperature
falls off as R; (ii) if rc «(R/R) ' then the photons
can transfer some of their energy to the electrons. In-
tegrating by parts, we find

(3.9)

Again we emphasize that, although Eq. (3.7) resembles
the equation for electron cooling that is often used, it is
more general as it determines the electron temperature
for electrons in contact with any photon distribution, not
just an equilibrium one.

As an example, let us consider the standard picture of
the early Universe, wherein the only photons are those in
equilibrium at a temperature T. Then the solution to Eq.
(3.7) is

'2
R(t, )

T, (t) = T, (t, )exp . —IR (r) &; ic(t')
'2

+ 1
~ dt' R(t') Pt dt"

d3 2R-' " (T R')= f "
C, (pr)

dt ' 3n, (2~) ' 2m,
(3.3) R~(r)T, (r)=R (r)T(r) ~c [R (r)T(r)] . — —(3.10)
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The second term on the right here is smaller than the first
by a factor of order R /R~& and the additional ones we
have not written are smaller still, so we find

RT =T if ~ —«1.
R

(3.11)

When the ambient temperature is above 4 X 10 eV, this
condition is satisfied. Hence throughout this epoch, free
electrons have the same temperature as the blackbody
photons unless some additional energy source is available
to heat them. This means that in the standard picture of
the early Universe, with such sources absent, the elec-
trons and photons have the same temperature and there-
fore y =0.

The Zel'dovich-Sunyaev mechanism is a two-step pro-
cess in which a source of energetic photons energizes free
electrons which, in turn, Compton scatter from the CBR
photons. Hence we may break up the photon distribu-
tion into two parts:

f (k)=fcB„(k)+fH(k), (3.12}

d kTy= J 3 k'[fcBR(k)+fH«)l
2p, (2n)'

X [1+fcBR(k)+fH(k)] . (3.13)

Since the total photon energy density pz is the sum of the
energy in the two distributions: pz=pcBR+PH, we can
write

where fcBR(k) is the blackbody distribution with temper-
ature T and fH(k) is the distribution of heated photons.
The arguments that lead to the equilibration of the pho-
ton and electron temperatures apply here if we under-
stand that the photon temperature" T~ is given by Eq.
(3.5} where we use the sum of the two photon distribu-
tions to evaluate the integral. Thus,

d3kT~= I 3k IfCBR(k)[1+fcBR(k)]+fH(k)[1+fH(k)]+2fcBR(k)fH(k
PCBR PH ( 2~ }

1

+ (pcBR T+pH TH +I) .
PCBR PH

(3.14)

Here I is the interference term

d kI= f 3k fCBR(k}fH(k) .
(2m )

(3.14a)

Thus y is proportional to the efficiency ' e of converting
energy from the hot to the cold photons and to the avail-
able excess energy pH. The efficiency e is defined to be

We will see that this interference term is much smaller
than the other terms in equation (3.14) so we shall neglect
it. Since

T =Te y

we can write, neglecting I,

n, o r(TH —T)
E'=

R
Pl 'R

ne~ z'

R
TH

Pl 'R

PCBR

PCBR+PH

(3.17)

Te T Tg T PH
(TH —T) .

PCBR+PH
(3.15)

~ dT pHy= E .
0 T pCBR

(3.16)

Equation (3.15) is exactly what we need to compute y: an
expression for the temperature difference between elec-
trons and CBR photons. We note that if the additional
photons all have energies less than T, so that TH (T,
then the electron temperature is not raised above the
blackbody photon temperature. Therefore, dumping
many low-energy photons into the Universe will not
create the sort of distortions needed, to account for obser-
vations.

It is convenient to switch from time to temperature
variables. To this end we use the approximate entropy
conservation condition, RT=const. Photon production
in neutrino decays causes only a small amount of entropy
production. Hence, we now have an expression for y
solely in terms of the photon distributions

where n„TH, R /R, pcBR, and pH are functions of T. To
get the approximate equality in Eq. (3.17), we assume
that the energy density of the hot photons is less than the
background energy density and that the hot photons are
much more energetic than those in the background.

Before going on to discuss the hot photon spectrum,
we mention that the efficiency decreases as time goes on.
The electron number density falls off as R, while the
Hubble rate drops (at most) as R . Therefore, to get a
given value of y from electron heating at late times re-
quires more energy (relative to the background energy)
than at early times.

IV. RECOMBINATION

In order to calculate y, we need to know the free elec-
tron number density n, . This is a trivial problem at high
temperatures (T )Ep=13.6 eV'), since there are enough
high-energy photons around to ensure that the electron-
proton plasma is fully ionized. The problem becomes
more difficult as the temperature drops and fewer pho-
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tons with energy greater than E'p exist. In the problem we
are analyzing there is a new wrinkle: there are additional
photons besides those in equilibrium at a temperature T.
Therefore, in this section we will analyze the "recombina-
tion" problem for an arbitrary photon distribution.

The evolution equation which determines the abun-
dance of hydrogen atoms is

3/2
2~ —p /2m T

g, (p) = e
me T

(iv} Each of the cross sections is well known:
3

64m. 2 &0
+Hr eP . ++0

I3&3

(4.7)

R (nHR )
t

dp dp
3 ge I 3 gP I +eP~HyU

(2m) (2m )

d'k d3k'
4—f,f,(k}f,gH(k')&Hr P(2n. ) (2n )

(4.1)

where nH is the hydrogen number density and the distri-
bution functions g, (P), gp(P'), fr(k), and gH(k') are for
free electrons, free protons, photons, and hydrogen
atoms, respectively. The factors of 4 here arise since the
hydrogen atom has four spin states. Strictly speaking,
there should be a [I+f (k)] factor in the term represent-
ing hydrogen production above. This factor can be set to
one here though, since f (k} is always much less than
one in the regions of interest.

The cross sections are independent of the momenta of
the free protons and the hydrogen atoms, so the k' and p'
integrals can be evaluated leading to a right-hand side

3
6'p—:at —g(k),
k

(4.8)

k
+eP~Hy +Hy eP

eo+p /2m,
+Hy ~eP

'2

(4.9)

where the second equality holds by conservation of ener-
gy. Since the electron velocity v is p lm„we find

where ao is the Bohr radius and g (k) is the gaunt factor,
not to be confused, by virtue of its lack of subscript, with
any of the distribution functions. The gaunt factor is a
slowly varying function of order unity which contains
some of the energy dependence in the cross section.
Here we have defined the ionization cross section o.l', it is
7.9X10 ' cm . To get the inverse cross section, we use
detailed balance

, g, (P»}(~,P H, v)
d p

(2m )

d k
H f 3 f&(k}VH& eP

(2m )
(4.2)

2
p &0 1

(prep HTV ) =arg eO+
2me Pme 1+

2' e E'0

(4.10)

n —np —ng nH (4.3)

Within an order of magnitude, the baryon-number densi-
ty is known today to be about n~ =10 n . If we define
the ratio r as

ng

then Eq. (4.3) says that

n, =np=ns(l —r) .

(ii) Total baryon number is conserved, so

n~R =const .3

(4.4)

(4.5)

(4.6)

(iii) Electrons at temperature T, and number density n,
have the Maxwellian distribution function

We are considering only transitions between the ground
state of hydrogen and the continuum, since capture to
other states is slower, and even if such captures occur the
excited states quickly decay to the ground state.

To reduce this equation further, we use the following
pieces of information.

(i) If we neglect the small fraction of helium atoms,
the number of free electrons is equal to the number of
free protons. The sum of either of these with the number
of hydrogen atoms is just the baryon number of the
Universe:

The first fact we use is (ii). Armed with the definition
of the hydrogen ratio, Eq. (4.4), we use (ii) to write the
left-hand side of Eq. (4.1) as nsdr/dt. Then using (i) and
(iii), we get

dr
dt

=n (1—r)

' 3/22'
me Te

d p p /2m T
X 3e ' '(o',p Hrv)

(2n }

d k—r f f (k}o'H p
(2n )

(4.11)

Performing the angular integrations and inserting the ex-
pressions for the cross sections (iv) leaves

2
naos(1 —r)'

'

eo

dt ~~m /2T3&& m,

—p /2m T

X
„dp pg (eo+p /2m, )e

20 1+p /2m, ep

r 3

f fr(k)g(k) . (4.12)

This equation can be written more compactly if we make
two further definitions. Define the average gaunt factor
as
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EO+ Te+
0 1+Tx leo

and define

(4.13)
often much lower when there are additional photons in
the early Universe.

3

n = I f (k)g(k) .
2+2 '0

Finally we have

(4.14)

dr na
y&r (1 r) —r.—(4.15)

+r QnT, /2m

We cannot solve Eq. (4.15) without knowing the time
dependence of S~, T„and g. However, we can make the
qualitative statement that as long as the ionization rate
N~or is greater than the expansion rate, the system is
near equilibrium so that the terms in brackets cancel each
other, thereby determining r via

BB Eog RT— (1—r)2 if rt err) —.
+r Q~T, /2m, '" (4.16)

2eOT, tT
N — g (4.17)

To close this section, we use Eq. (4.16) to analyze
recombination in the standard cosmological model,
where the only photons are those with temperature T.
Then for T (eo, the f (k) which determines ifr is simply
e . If we change variables in the integral equation
(4.14) to x = (eo k)/T, —then —recalling that in the stan-
dard model the electron temperature T, is equal to T—
we find that Sz can be simply expressed in terms of g:

V. DECAY PHOTON SPECTRUM

VH VL VL VL (5.1)

vH~vL+ ~ (5.1a)

where X is a weakly interacting particle and with all the
light species effectively massless. There is also a small
branching ratio 8 into photons

The most interesting feature of the microwave distor-
tions is the new physics they may teach us. In the stan-
dard cosmology there is no other source of photons that
might heat up the electrons. The search for this source
inevitably leads to new physics. Here we will quantita-
tively examine one proposal: massive radiatively decay-
ing neutrinos. The neutrino is perhaps the most natural
candidate for providing the extra energy. First, it exists.
Second, standard cosmology predicts that there are about
as many neutrinos in the Universe as there are photons.
If neutrinos have mass —still an open question
experimentally —and if they decay at least partially into
photons, they will indeed deposit a large amount of ener-

gy into the electron-photon plasma of the early Universe.
The scenario, initially proposed by Fukugita for ex-

ample, then is the following: one species of neutrino, vH,
has mass m „and decays with a lifetime ~ into

We assume that the Universe is fiat and matter dominat-
ed now so that R/R =(R/R)0(T/To) . Then

' 1/2
1 eV

T
I ~r =5 X 10

R
R

(4.18)

so that the two rates are equal when T =0.28 eV; hence
Eq. (4.16) holds above this temperature. Substituting for
r in Eq. (4.16}then leads to

' 3/2
eo/T 2'

nH n npe
meT

(4.19)

ng
nH-— ——n, =np at T=0.34 eV (4.20}

in the standard model. We will see that the recombina-
tion temperature, as might be defined by Eq. (4.20), is

This is the familiar Saha equation. The significance of
Eq. (4.16) is now clearer: it is the generalized Saha equa-
tion which can be applied to any photon distribution, not
just the standard blackbody. Further, the condition
n~o. r & R /R tells us when the generalized Saha equation
is valid. We can use the Saha equation to determine the
temperature at which the number of free protons is equal
to the number of bound hydrogen atoms. Using
nz =10 n~ leads to

va vL'V (5.2)

If the neutrinos decay at rest, the photon has energy
m„/2 when produced and then loses energy due to the
cosmological redshift. Our task in this section is to cal-
culate the spectrum of photons produced. We will
make two approximations to simplify the calculations.
First, we will assume that the heavy neutrino is at rest
when it decays. The momentum of a neutrino with a
mass smaller than the decoupling temperature (-1 MeV)
is roughly equal to the neutrino temperature T . But
within a factor of 2 the neutrino temperature is equal to
the cosmic temperature T. Therefore, if the temperature
at the time of decay, T(r}, is much smaller than m„, then
the heavy neutrino velocities will be of order
p/m„- T(r)/m; they will be small. We want the decay
photons to heat the electrons, so m„/2, the energy of a
decay photon, must be greater than the typical thermal
energies —T(r). We therefore expect this first approxi-
mation to be valid. The second approximation we wi11
make here is to neglect the way the decay photon spec-
trum is distorted by interactions with electrons. In the
next section, however, these interactions will be con-
sidered.

The starting point is the Boltzmann equation for the
distribution of decay photons. Recalling Eq. (3.12), we
call this distribution function fH(k, t). The Boltzmann
equation is
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———k fH(k, t)
8 R 8

Ok

We know that F(q) constrains q to be of order T, so if
m )&T, we have the following simplifications:

5[E(q)—lq
—kl —k]~—,'5(k —m „/2),

2E(q)2lq —kl ~4m„k .

These lead to

(5.5)

CD(k, t) = 5(k —m„/2) 2f 3 F(q, t)
~k (2n )

(5.6)

with the identification of the radiative lifetime as

'T
'T

16am„

lMl'
(5.7)

The term in large parentheses in Eq. (5.6) is the heavy
neutrino number density, with the factor of 2 accounting
for antineutrinos. Ordinarily we could just replace this
with n„=(3/11}nr. Here, because of decays there is an
additional exponential factor, so we write

2 F qt =n„ted

(2n )

with the understanding that n„represents the familar
neutrino number density in the absence of decays. Since
RT is a constant, if we assume that the Universe is radia-
tion dominated, T falls off as t '; therefore,
n„=n„(r)(rlt) ~ The Boltzm. ann equation becomes

———k fH(k, t}8 R
Bt R Bk

Bn (r)H
~k'

3/2

e '~'5(k —m „/2) . (5.8)

To solve this partial differential equation we cannot
make the simple substitution used to solve Eq. (2.11}—
the fundamental difference being that the right-hand side
here is not invariant under such a substitution. There-
fore, we employ a more general method which will be

=CD(k, t)

1 dp 1 d q F(q, t) 4

2k (2m. ) 2p (2~) 2E (q)

x 5'(q —p —k) IMI',

where F(q, t} is the distribution of massive neutrinos and
M is the amplitude for decay into (vt, y}. lMl is a rela-
tivistic invariant; as such it depends on the only invariant
that can be formed from the three momenta,
(p +k) =q =m „. Therefore, it is a constant and may be
taken outside the integrals. After performing the p in-
tegration, we find the decay term to be

rrlMl d q F(q, t) 5(E(q) —
lq

—kl —k)
(2~}' 2E(q) 2lq —kl

(5.4)

useful in solving the more intricate equation we en-
counter in Sec. VI. Consider a family of curves in the
(k, t) plane, each satisfying k =(m„/2)(tilt)' with each
curve distinguished by a different value of tI. We can
parametrize each curve with the variable A, =—t —ti.
Along each curve fH is a function of A, only and the par-
tial differential equation (5.8) becomes an ordinary
differential equation

dfH Bn„(r)n.
dA, r(m /2)3 tt+A,

L

3/2

e ' 5(A, )2(tt+A, ) .

(5.9)

What boundary condition is needed here? Note that
A, &0 corresponds to k )m„/2. We know though that
there are no photons with k )m„l2. So we choose as
the boundary condition

f H(A, =O —e) =0, (5.9a}

where e is some small positive number. We now in-
tegrate Eq. (5.9) from A, '=0—e up to A, '=A. . With the
delta function, the integral is trivial, and the boundary
condition allows us to set fH=O at the lower limit. So
we have

Bn„(r)2m.
fH(&)=

r(m, /2)

' 3/2

e ' ttB(A). (5.10)

The step function comes in here because if I, is negative
the interval of integration does not go through A, '=0 and
therefore the integral over the right-hand side of Eq. (5.9)
vanishes. To turn fH back into a function of t and k, we
replace tt by t [k l(m, l2)] . Then

Bn „(r)2m.
H(k, t)=

k (m, /2)

1/2
t k

exp
m /2

'2

m„xe —k
2

(5.11)

where the step function rejects the fact that no photons
are produced with energy greater than m„/2. One can of
course verify that Eq. (5.11) is the solution to Eq. (5.8) by
direct substitution. In Appendix B we review the above
derivation in the framework of a matter-dominated
universe and compare our expression with others in the
literature. Now we extend the work of this section to in-
clude the environment into which the photons are inject-
ed.

VI. PHOTON SPECTRUM
WITH COMPTON SCATTERING

In the previous section, we computed the spectrum of
photons emanating from massive decaying particles as-
suming that the photons do not scatter off of the back-
ground electrons. Here we include the effect of scatter-
ing. Again the starting point is the Boltzmann equation,
but now we can write down the equation immediately
based on the work of the previous sections:
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m, (R /R)(r)
kc=

n, (r)cr r
(6.4)

n„e '~'5(k —m /2)
& k

m, k2 Bk

+fH(k, t)[1+fH(k, t)]

(6 1)

where we evaluate 8 /R and n, at cosmic time t =v so
that k& is a constant. Roughly, photons produced with
k &kz scatter down, while those with lower energies
travel freely. The previous section, in which we assumed
that the decay photon spectrum is not affected by col-
lisions with electrons, is then valid only when
m „/2 «kc. Here we treat the general case.

It is convenient then to rewrite Eq. (6.3} in terms of
two dimensionless variables

' 1/2
The first term on the right is the source term derived in
Sec. V; the second term is the Compton-scattering term
whose derivation was sketched in Sec. II. We stress that
this expression is valid only in the nonrelativistic limit,
k (m„so we will restrict ourselves to that regime, i.e.,
to neutrinos with mass less than the electron mass.

The Compton-scattering term depends on the electron
temperature, so Eq. (6.1) should be solved in conjunction
with the equation for T„Eq. (3.7}. However, we expect
the first term in the large parentheses on the right-hand
side to be of order (T, /k)fH So if w. e restrict ourselves
to photons with energy k » T„ then the second term in
these large parentheses, fH(1+fH), is larger than the
first by a factor of order (k/T, ). In fact, this high-energy
regime (k »T, ) is exactly the one we are interested in;
for, we want the spectrum of decay photons and these
typically have energies much greater than the electron
temperature. The fact that the electron temperature
dependence drops out corresponds to the physical fact
that the electrons are essentially at rest compared with
the hot photons produced; their thermal energy is ir-
relevant. There is one more approximation we can make
to simplify Eq. (6.1). We will see that fH(k, t) is typically
much less than 1 for decay photons. Therefore, we let

k R(t) t8= kc' R(r) r (6.5)

where the last equality holds in a radiation-dominated
universe. The "timelike" variable P starts off at 0 and be-
comes large at late times. Since the number densities
n, {t},n, (t) fall off as R (apart from the exponential de-

cay factor for n, ), Eq. (6.3) becomes

—(8/+8 ) fH($, 8)

=C( m„ /2k c)e ~ 5{8 (m„/2—kc))+48fH($, 8),
(6.6)

where the constant C is

2n Bn„(r}
(m „/2)

(6.7)

4o 1

I+(m„/4kcgo)[1 —(Po/$) ]
(6.8)(6.2) m, /2k'fH(k, t)[1+fH(k, t)]~fH(k, t) .

To solve this equation, we take the same approach as
in Sec. V. Consider a family of curves in the ($, 8) plane,
each of which starts at a different point [po, 8o=(m„/
2kc)]. Each curve satisfies the equation

With these approximations, the Boltzmann equation be-
comes

8 R netJr 2 8—k+ k fH(k, t}
Bt R m, Bk

Again we parametrize each curve with A, defined as

(6.9)

B m 4n, o'&
n e '~'5(k —m„/2)+ kfH(k, t) .

& k Ng~

(6.3)

Before plunging ahead and solving this equation, let us
consider the underlying physics. A photon is produced
with energy m„/2. It scatters off the background elec-
trons at a rate n, o.z-. Since the scattering is in the nonre-
lativistic regime, in each collision a photon loses only a
fraction (k/m, ) of its energy, so that the rate at which a
photon loses energy is n, crz-k/m, . This is to be com-
pared with the expansion rate R/R; if the energy-loss
rate is larger than the expansion rate, then we expect the
photons to transfer an appreciable amount of its energy
to the electrons. Therefore, we can define a critical ener-

gy

dfH(A, )

dk
(m „/2kc }(1—poiL)

1+(m„/2kc)A(1 —{()oA/2)
'2

=C( m „/2k& )exp

(m„/2kc)(1 —/ok, )x5 1+( m „/2k' )A (1—/ok, /2)

(6.10)

There are two features of this equation which make its
solution tractable. First, the "damping" coeScient in

so that A, & 0 corresponds to values of k such that
fH(k, t)=0 always. Along any of these curves, the par-
tial differential equation (6.6) becomes an ordinary
differential equation
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front of fH on the left is integrable, so that the left-hand be 0. This together with the boundary condition,
side is simply fat{A,'=0—e)=0 [corresponding to fH(k &m„/2}=0],

leaves
[1+(m„/2kc )A(1 —POX/2)]

fH(A, )

[1+( rn „/2kc )A(1 —
, POX, /2) ]

p2 [1+(m„l2kc )X(1—QQ/2)]
(m„/2k')+$0

Xe((m„/2kc) —8) . (6.11)

The second simplifying feature is the presence of the del-
ta function in the decay term. If we integrate from
A, '=0—e up to A, '=A. , the delta function constrains A,

' to
I

'4

fH($, 8)=e((m„/2k') 8)C—

We want fz($, 8), so we must substitute for I, via Eq.
(6.9); this gives fH($, $0}. To get fH($, 8), we invert Eq.
(6.8) to get $0 in terms of P and 8. The result is

[ 1+[1+{m „/2k& )2(2/+8)/($28)]'~2) 4

(m„/2k&)+(2k&/m„)[8$ /(2/+8)][ 1+[1+(m„/2kc) (2/+8)/(P 8)]'

82 4

Xexp — (2k&/m„) [1+[1+(m„/2kc)2(2/+8}/(P 8)]'~ j(2/+8}2
(6.12}

There are three interesting limits of Eq. (6.12}. First, we recover the solution of Sec. V by letting n, ~0 (or
equivalently kz »m„/2). In terms of (k, t),

lim fH(k, t)=C
i&2 exp[ —(t/r)(2k/m„)2]e(m„/2 —k)

(2k&/m, ) ~ 2k(t/r) ~

lim ftt(k, t) =C
c

in agreement with Eq. (5.11). Second, we can take the limit of very efficient scattering, k& «m„/2:
3

kc
e '~'e(m„/2 —k) for t =0(r) .

(6.13)

(6.14)

The limit, Eq. (6.14), only holds if t}) (or t/r) is not too large. This limit is initially disturbing, since it appears that the
(1/k ) dependence will make the energy density and the number density diverge. Recall, though, that in going from
Eq. (6.1) to Eq. (6.3) we assumed that k & T„so Eq. (6.14) holds only for photons in this energy regime. The diver-
gences, then, reflect qualitatively the fact that most of the photons produced have scattered down. It is fortunate that
to calculate y, we need only find

d k
pttTH= ,' f —kfH(k) (6.15)

(2m }'

and, with the distribution equation (6.14), this converges. Since this integral goes simply as fdk, the largest contribu-
tion comes from the highest-energy photons (k -rn„/2) even though there are many more photons at any given time
that have already scattered down. Equivalently, the decay photons affect the electron temperature most significantly in
the short time before they lose all their energy due to Compton scattering.

Finally, we will be interested in finding the spectrum of photons produced in decays that remain today. Thus, we
want the P —+ 00 limit of Eq. (6.12}:

lim fH(k, t)=e(m„/2 —k)C
f ~ ao

4
1++1+m 2 /[2kkc( t I~) '

]
2

X exp{ —(k /m „) ( t /r) {1++1+m /[2kk&(t /r) ' ][ )

X((m /2k&)+[k(tie)'~ /m„](1++1+m„/[2kk&(t/~)' ]j) (6.16)

In Sec. VIII we will compare this spectrum with the ob-
served ultraviolet spectrum and come away with bounds
on the parameters ~, 8, and m„. But here we will use Eq.
(6.16) and the results of Sec. IV to demonstrate one of the
most striking features of any scenario that explains the

distortions in the CBR based on radiatively decaying neu-
trinos; namely, that recombination is delayed until very
low temperatures. To establish this we will use Eq. (6.16)
in the limit that m /kz & 1. To see that this is the ap-
propriate limit we compute m„/k& assuming the Hubble
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parameter h =
—,'. We find

m m„ n,= 100
kc 1 MeV 10 n

T(r)
10 TQ

(6.17}

3

lim fH(k, t) =e(m„/2 —k)
t/t, m„lkc» i 32 k k c( t/ r)

Xexp —(k/2kc )( t /r)' (6.18)

With this expression for the photon spectrum, we can
compute the effective number density of photons able to
ionize atoms, 8', as defined by Eq. (4.14). At late times
(ep/2kc)(t/r)' is very large, so we can evaluate By by
integrating by parts and keeping only the surface term.
This gives

3/2

n r t 2kc
(t/r)'", (6.19)

L

n„(r)g(ep)exp

where g (Ep), the gaunt factor evaluated at its end point, is
0.79. We must use this 8' to determine down to what
temperature the equilibrium condition used in Eq. (4.16)
obtains. We find that

' 1/2

which, as will be shown in the next section, is greater
than one in the parameter range of interest. Thus the
photon spectrum becomes

Eq. (6.21), the critical temperature T, is very sensitive to
T(r). For realistic lifetimes, the recombination tempera-
ture is just above Tp, so the electrons and photons have
formed atoms, but only very recently. For our purposes,
it is correct to assume that the plasma is fully ionized in
the regime of interest.

2mzBn (r)
—(kd'l(m„l2il'

nv

(m „/2)2k
e(m „/2 —k)

Bn (r)m„
[1—e ~(1+/ )], (7.1)

where we have used the timelike variable P=(t/r)'~ .
To calculate y, we rewrite Eq. (3.16) in terms of P, using
the efficiency as given in Eq. (3.17):

VII. THEy PARAMETER

A11 the elements are now in place for a calculation of y.
We will calculate y in the two regimes: (i) freely stream-
ing photons (m, /2 & kc) and (ii) heavily scattered decay
photons (m„/2 & kc).

(i) m„/2&kc.
Here the distribution, Eq. (5.11), holds so

PHTH= 2'f,k
d k

(2m )

=6X10'
R
R

B
10-'

tp E'p

exp — (t /r)'~
2kc

ti(today) dP

m, (R /R )(r) PcBR
(7.2)

(6.20)

Following the prescription of Sec. IV, we now set this ra-
tio equal to 1 to determine the regime of applicability of
the generalized Saha equation. We find the critical tem-
perature, above which the Saha equation can be applied,
to be

The quantity in large parentheses is by definition equal to
1/kc, where kc is the critical energy introduced in Sec.
VI. The CBR energy density pcB„ falls off as p, so in-

serting Eq. (7.1}into this expression for y leads to

Bn,(r)m„/2 m„/2

pcBR( r } kc 4

n
'2

T =(}4T
10 n 10 Tp

(6.21) 1 + 2

So for a large range of neutrino lifetimes r, the general-
ized Saha equation derived in Sec. IV can be applied. If
we define the recombination temperature to be that at
which the number of free electrons is equal to the number
of bound electrons (r =

—,
' ), then Eq. (4.16) becomes

nB(r) 6p
exPl(ep/2kc)(tR /r)'~ ],2 Bn, r 2yrT, (tR )m,3~2

(6.22}

Bn „(r)m „/2
pcBR(r}

m„/2

c
(7.3)

The term in the first set of large parentheses is essentially
the available fractional excess energy. When the photons
produced by decays do not lose much energy by scatter-
ing off the background electrons, not all of this energy
gets converted to the CBR. In fact, y is reduced here by
a factor of m /2kc. Using the expression for n, y can
also be written as

where t& is the recombination time. Solving we find

T(ttt )=1.1T, , (6.23)

45@3} m„m„/2y= B for (m„/2kc) &1 .
88m T r) kc

(7.3a)

where we have suppressed the very small dependence on
B and T(r} We will see in Sec. . VII that adequate values
of y can be obtained only if the decay temperature T(r) is
a bit higher than 10 Tp. Equation (6.23) is changed very
slightly at these higher temperatures, but, as seen from

(ii) m„/2& kc.
Here we use the distribution, Eq. (6.14), to calculate

Bn„(r)m„kc
PH ~H=

4 (7.4)



41 ASPECTS OF THE ZEL'DOVICH-SUNYAEV MECHANISM 367

and then y follows:

Bn„(r)m„/2

PcBR( +)

45$(3) — m vv'n. B for (m„/2kc) & 1 .
88m T(r} (7.5)

Note the difference between Eqs. (7.3) and (7.5). In each
case y is proportional to the fractional excess energy.
When the photons produced by decays do not lose much
energy by scattering off the background electrons
(m„/2 & kc), the efficiency of converting this excess ener-

gy into the background is small, so y is reduced by a fac-
tor of (m „/2kc ). When the photons do scatter down

(m, /2 & kc), though, the excess energy is efficiently
transferred to the background, and there is no such
reduction. A key feature of efficient energy transfer can
be gleaned from Eq. (7.5). The y parameter is completely
independent of the electron number density and the cross
section in the limit of efBcient transfer. As long as

leave the false impression that a value of y =0.02 is easy
to come by, we present here two constraints on radiative-
ly decaying neutrinos. These significantly narrow the al-
lowed values of m„, ~, and B; nevertheless, a small region
remains from which y =0.02 can be achieved.

The first constraint is that the energy density due to
the decay products of the heavy neutrino should not
exceed the critical energy density. The condition with

p& =0.15pc and Hp=50 kmsec ' Mpc ' is '

mv T(g)
100 keV 1. 1 eV

(8.1)

The second constraint comes from ultraviolet astrono-
my. If a neutrino decayed radiatively as outlined in the
previous few sections, the photons from decays should be
detectable today. We must calculate the expected inten-
sity and compare this with observations. We will focus

0
on the constraint coming from a wavelength A, U =2200 A
(kU =5.63 eV). Experimentally the diffuse background at
this wavelength satisfies

m, g
n, (r)o r ) —(~)

m, /2 8 (7.6)
4 photons

cm secsr
(8.2)

the excess energy in the CBR is independent of n, cr &-.

We still have two loose ends to tie up. First, in deriv-
ing the equation for the decay photon spectrum (6.3), we
assumed that fH is much less than 1. It is straightfor-
ward to check that with the parameters needed to get a
realistic value of y, this condition is indeed satisfied.
Second, the validity of our expression for y depends upon
an assumption we made in deriving the electron tempera-
ture. There, we neglected the interference term, Eq.
(3.14), with respect to the other terms driving T, . In Ap-
pendix C we show that, for realistic values of B, m „,and
~, the interference term is indeed small compared to the
other terms driving T, .

The Aux of photons is related to the distribution function
we have been using by

n

dQdk

2=kU kUf(kU)
(2n )

(8.3)

Requiring that the photon Aux from neutrino decay be
less than the background then gives a constraint on the
distribution function:

f (kU) & 9.3 X 10 (8.4)
VIII. CONSTRAINTS ON RADIATIVELY

DECAYING NEUTRINOS

It is not our purpose here to examine all the con-
straints on unstable neutrinos. However, so as not to

I

In Sec. VI we derived an expression (6.16) for f (k) today,
that is at Tp=2. 81 K. We can use this to express the
constraint, Eq. (8.4}, as a constraint on m„, r, and B.
Specifically we require

T(7.) 1++1+m,TO/[2kUkC T(~}]
B

172 2

kUT(~)
(m„/2kc)+ I 1++1+m Tol[2kUkcT(r)]I

Nl Tp

X exp
kUT(~)

I 1++1+m„TO/[2kUkCT(~)] J &8.9X10, (8.5)
m Tp

where we have used the fact that in a radiation-
dominated universe (to/r)'~ = T(r)/To.

In Fig. 3 we plot this constraint, Eq. (8.5), in
[m„,T(r)] space. The dashed line here is what the con-
straint would look like in the absence of Compton
scattering; that is, if we had used Eq. (6.13) to implement
the constraint, Eq. (8.4). To see why the inclusion of

Compton scattering changes the constraint, consider a
free streaming photon with energy kU today. If it was
produced at a cosmic time tz, then its energy at the time
of production was just k =kU[T(tt, )/To]. All the pho-
tons we are interested in were produced with an energy
k=m /2, so if they really did travel freely after they
were produced, we can determine tI, :
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FIG. 3. Ultraviolet constraint (hatched region ruled out)
coming from kU =5.63 eV in the [m „,Tcs„(~)]plane, where m „
is the decaying neutrino mass and TcB&(~) is the cosmic tem-
perature at the time of decay. The radiative branching ratio is
set to 3X10 '. The dotted line separates the regions where
Compton scattering is unimportant ("inefficient energy
transfer") and where it is relevant ("efficient energy transfer").
The dashed line is what the constraint becomes in the absence
of Compton scattering. X marks the point ,'m ==80 keV
TcsR(~) =2.8 eV] discussed in the text.

IX. CONCLUSION

Ob rvations are beginning to detect small spectral dis-serv
R/.tortions in the cosmic-background radiation (CB

Since there seems to be a possibility that these distortions

12
1.6 x 18

1 MeU

Lifet ime (sec )
18

1.6 X 18
&

1.6 X 18

there should have been enough neutrinos around at tp to
swamp our UV detectors today. Indeed, the dashed line
in Fig. 3 indicates that, in the absence of Compton
scattering, this parameter set is ruled out. However,
Compton scattering causes the photons produced at tp to
scatter down and lose energy: a photon that would other-
wise have had k =kU today has lost energy and has
k «kU. So the only photons today with k =kU are
those produced at t &)tp, by which time almost all of the
neu rinostrinos have decayed. Therefore, Fig. 3 shows that due
to Compton scattering, this parameter set is allowe .
The conclusion is that accounting for Compton scatter-
ing is crucial in deriving the correct constraints from
present observations.

The hatched regions in Fig. 4 are those forbidden by
energy-density considerations [Eq. (8.1)] and ultraviolet
observations [Eq. (8.5)]. The solid curve corresponds to
values of m„and T(r) for which y =0.02. Here we have
set the branching ratio 8 =3 X 10 . Note that there are
no parameter values in the inefficient" region that give

=0.02 and satisfy the constraints. If the energy
transfer is efficient, though, there is an allowed region.

m/2 =k [UT ( rp ) /T ]o

or, using radiation domination,

tp 7 T(r)
1 eV

50 keV
m

2

(8.6)
188 k el:

Let us take some examples. First, consider T~T~= ]'0 eV
'

hand the neutrino mass m =2.9 keV. The time at whic
photons with energy kU today were produced is
rp=r[( —,', )(—")] or 3r By this tim. e most of the neutri-2.9

nos have already decayed; however the remaining frac-
tion (-e -0.05) is still large enough to oversaturate
the UV constraint, as shown in Fig. 3. If, however, the
neutrino mass is slightly smaller, say m =1 keV, then
only those photons produced very late would have energy
kU today; all the others will have redshifted down.
Therefore, tp =25~ and essentially no neutrinos
(-e —10 ") are left by this time. Indeed, Fig. 3
shows that the ultraviolet constraints do not rule out
T(~)= —,', eV and m„= 1 keV.

We now turn to the efficient energy transfer" regime.
Consider T(r) =2.8 eV and m„=40 keV. Now Eq. (8.6)
yields t = 12', so that there are too few (e

—12 10
—

5)

neutrinos around to produce an observable UV bac-
p

k-
ground. Therefore, these values are allowed. Finally,
consider the same T(~) but a slightly larger mass m „=80
keV. If the photons traveled freely, then tp=3~ and

18 LeV

1 LeU
1i18 eU 1 eV

Te mp e r a t ur e
19 eU

FIG. 4. The parameter y is 0.02 along the solid curve. The
hatched regions are ruled out by ultraviolet observations and
the energy density constraint. The branching ratio has again
been set to 3 X 10 '. Note that an acceptable y comes only from
the "efficient energy transfer" region of parameter space. Neu-
trinos with masses above 1 MeV must be analyzed relativistical-
l; temperatures above 10 eV require the treatment to includey; e
inelastic processes. Our work is limited, therefore, to tempera-
tures and masses beneath these values. The time-temperature
relationship is derived using radiation domination and setting
the Hubble rate today to Ho =50 km sec ' Mpc
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were caused by hot electrons inverse Compton scattering
off the background photons, we feel it is worthwhile to
reexamine this mechanism. The treatment given here has
yielded the following new results: (i) a novel solution for
the distorted spectrum that depends on the Zel'dovich-
Sunyaev y parameter; (ii) an expression for the electron
temperature when the electrons are simultaneously
cooled by the background photons and heated by another
source of photons; (iii) a recipe for computing the ioniza-
tion fraction, the number of free electrons; (iv) a demon-
stration that any excess energy, in the form of photons,
emitted into the Universe at a cosmic time ~ is eSciently
converted to the CBR if the energy of the quanta satisfy

m, (R /R)(~)
E&kc=— (9.1)

n, (r)tr T

Throughout the last several sections, we have illustrat-
ed the last point by working within the framework of the
radiatively decaying neutrino scenario, which, although
feasible, is far from compelling. Thus, the most interest-
ing question provoked by the distortions remains
unanswered: what new particle physics is responsible for
the excess energy observed in the cosmic background ra-
diation?
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APPENDIX A

Because the method used in solving Eqs. (5.8) and (6.6)
may be unfamiliar, we would like to illustrate it in detail
in a simple example. Consider

where the last equality follows by virtue of Eq. (A3).
Then, it follows that

dR dR dt R
dk dt dk k

(A5)

Thus Eq. (A2) holds along any trajectory in the (R, k)
plane with

and

const
R (t)

(A6)

tp

Thus we can write Eq. (A2) as

(A7)

df const
dA, R(t(A. )) ' (AS}

so that

f(A, )=f(A, =O)+ J dA'g, , , A,'+to
o RtA, ' (A9)

Hence

f (k, t)=f(kR (t)/R (to), to)+ f dt'g, k, t'
&p R t'

(A 10)

(We would like to thank G. Feinberg for discussions on
this equation. )

APPENDIX B

R (t)=R(~){t/~)" . (B1)

In Sec. V we derived an expression for the photon
phase-space density arising from neutrino decays. Much
work has been done on this subject and we would like to
use this appendix to make some further points and con-
nect our work with that of previous authors. To that
end, we return to Eq. (5.8), which determines the phase-
space density. Only now, we do not assume a radiation-
dominated universe; rather we let

———k f (k, t)=g(k, t),a R a
dt R Bk

(A 1)

A radiation-dominated universe corresponds to n =
—,
'

while a matter-dominated universe has n =—', . Equation
(5.8) becomes

where g(k, t) is a given function of the indicated argu-
ments. The equation would be readily solvable if only we
could introduce a parameter A(k, t) such that

R g Bn (r)H———k fH(k, t)= e
—tie

at R ak '
~(m /2)

d 8 R 8
dA,

'
Ot R Bk

f{A(k,t))= ———k f(k, t} .

Hence we must have

(A2}
X5(k —m, /2) . (B2)

We could go through the same discussion as in Sec. V; in-
stead let us use the work of Appendix A. Specifically, us-
ing Eq. (A10), we find

and

dA,

dt
(A3)

3&i
Bm n„{~)

fH(k, t)= f dt' " —, e
~(m„/2)

dk —1 dt
dk k(R/R) dk

'

X5{k (t/t')" —(m„/2)) .
(A4)

The delta function can be rewritten as

(B3)
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t "+i
5(k (t/t')" —(m„/2) )= 5(t' —t(2k/m„)"") . (84}

nt"

With the delta function the integral is trivial, and we are
left with

frt(k, t) = Bm n„(r)
n (m /2)l/nk3 —)/n

Xexp —(t/~)(2k/m„)' "8(m„/2 —k) . (85)

Often in the literature, an expression is given for the pho-
ton Aux; that is, the number of photons with energy be-
tween k and k+dk passing through a given area in a
given time. This is just the number density of such pho-
tons times their velocity c:

Equation (85) agrees with Eq. (5.11) when n =
—,
' as it

must. For a matter-dominated universe, n =—', and we

have

3Bn n„(r)
fH« t) MD=H MD

2( /2)3/2k 3/2 t

Xexp[ —(t jr)(2k/m„) / ]8(m„/2 —k) .

(86}

fH(k, t)= B—m n„(r)(~/t) "8(m„/2 k—) l
k' Bk

Xexp[ —(t jr)(2k/m„)' "] . (89)

Equation (89) is particularly useful to use to see how the
number density of decay photons builds up with time.
For

knH(t)=2 f fH(k, t)=Bn„(t)(1—e '/') .
(2n )

(810}

This expression clearly illustrates that each heavy neutri-
no has a probability (B) of producing one photon when it
decays, so that when the all heavy particles have decayed,
the hot photon number density, is simply Bn „.

Here n„(to), the neutrino number density in the absence
of decays, is 109 cm . Stecker, for example, has dis-
cussed the detection of neutrinos with lifetimes longer
than the age of the Universe, so that the exponential fac-
tor in Eq. (88) can be set to 1. Equation (88) then
reduces to Stecker's equation (4a).

Finally, we note that it is illuminating to rewrite the
general solution for fH ( k, t ) as

c dnH =c d'kfit(k, t)
2

(2n )3
(87)

APPENDIX C

so that the Aux per energy interval per steradian today
(t()) is

dnH c Bn„(t()}k'/ 3t()
C

d 0 dk MD 4n(m „/2') 2r

Xexp[ —(to/r)(2k /m, )'/']8(rn, /2 —k) .
(88)

I

In this appendix, we justify an approximation that led
to our final expression for y. Specifically, we demonstrate
that the interference term in the equation which deter-
mines the electron temperature (3.14) is much smaller
than the other two terms driving T„and therefore we
were justified in neglecting it. We need to compare the
interference term in Eq. (3.14) to one of the other terms,
say PHTH. The ratio is

I
PH TH

f 3
k (e "~ " 1) 't Cm„—/(2k(t))exp[ —(2kgjm„)2]8(m, /2 —k) I

dk 2 g/T(

d kf 3
k ICm„/(2k(I))exp[ —(2k(()/m „) ]8(rn„/2 —k) I

m„/2f dk k3(eke/T(r) 1} 'exp[ (2k(t)jm ) ]-
f "

dk k exp[ —(2kgjm„) ]
0

(Cl)

T(r) «kr «m„/2 . (C2)

We perform the top integration by breaking it up into
two regimes: k &(kl jg) and k )(kt j(t)), where kt is
some intermediate value of momentum with the property

r«f dk k (e "~ " 1) 'exp[ (2kgj—m ) ]—
0

'4
T(~) kr /T(r) 3

dp
o e&—l

In the first regime, k &(kt jg), the argument of the ex-

ponential (2k(r)/m„) &(2kt jm„) «1, so the integral
becomes

=3)g(4)
'4

(C3)
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in the limit kr » T(r }. In the second part of the integral,

T(r) T(r) (C4)

T(T)ki —kl/T(r) T(r)
4 e ' 1+0

I
(C5)

The exponential suppression shows this term to be negli-
gible with respect to the first, so

so that the background photon distribution becomes sim-

ply exp[ kP—/T(r)j, leaving

I dk k expI —(2kglm )
—[kP/T(r)]I

I

But the neutrino number density can be expressed in
terms of T:

n„(r)= —,', nz =
—,', T(r), 2 (3)

m'

so we find that

Te 8
T

=1+630I 1 —e '~'[1+(t/r)] J
10

(D5)

Thus, the ratio of the electron temperature to the CBR
temperature is

T, Bn„(r)m=1+,I 1 —e ' '[1+(rlr)]) . (D4)
16(~ /15)T(r)

I 3!$(4)[T(r)/P]
PH H (m„/2P) [1/2 —

—,'e & ( 1+/ )]
Pl

100 keV

2

1 eV
T(r)

(D6)

=12((4), «1T(r) 1

m, /2 1,-y'(1+(t
(C6)

APPENDIX D

The purpose of this appendix is to discuss the evolution
of the electron temperature T, as a function of time in
the radiatively decaying neutrino scenario. To this end
we employ the approximate expression [Eq. (3.15}]

since T « m„/2. Therefore, we are justified in taking the
electron temperature to be as given in Eq. (3.15). We
should mention that Eq. (C6) also gives an idea of when
the interference term cannot be neglected. When the ex-
tra photons injected into the Universe have energies com-
parable to the energies of the CBR photons [the
equivalent in this scenario would be m„/2- T(~) instead
of m „/2 » T(r)], then it no longer makes sense to break
up the photon distribution into two parts as we did in Eq.
(3.12).

Hence if we ignore the Compton scattering of the hot
photons, T, /T rises monotonically to its asymptotic
value as time evolves. The free electrons are simultane-
ously heated and cooled by the hot photon distribution
and the CBR photons. Since the average energy of a typ-
ical photon in each of these distributions falls off as
1/R (t) (due to the redshift), it is reasonable that the elec-
tron temperature also drops as 1/R (t) once all the
hot photons have been produced. Equivalently, T, /T
~constant as t/v gets big.

Now we consider Cornpton scattering, an effect which
drastically changes the evolution of T, /T. For PH TH, we
use Eq. (7.4):

Electron Temperature

T~ T — TQ
PH

PCBR
(D 1}

where T is the CBR temperature, pcBR is the CBR energy
density, PH is the energy density of the hot photons, and
TH is their temperature.

It is instructive to evaluate this expression first in the
approximation that the electron cooling can be ignored.
This will help us appreciate the role of the cooling. In
this approximation we can use Eq. (7.1}for pH TH. Using
the definition of ((}, this becomes

Bn„(r)m „
pHTH = " " —

t 1 —e ' '[1+(r/r)]],

(D2) 9 10

where B is the branching ratio into photons and n„(r) is
the neutrino number density at t =~ ignoring decays. To
find T, we must divide this by the CBR energy density

PCBR
—

15
T(r) (D3)

FIG. 5. The electron temperature as a function of time. Here
we have set the branching ratio 8 to 10; the neutrino mass
m =100 keU; and the decay temperature T(~)=5 eU. The
solid line is the correct expression including the scattering of de-
cay photons o8' the electrons; the dotted line shows how the
temperature would behave if scattering were neglected.
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Bn (v)m„m, (R/R)(w)
pH Ta -tl7-

4n, (r)o T
(D7)

T, Bn„(7 )m m, (R /R)(~)

4n, (~)o T(m /15 ) T

where we have used the definition of kc [Eq. (6.4)]; n, (&)

is the free electron number density at t =~ and cr z- is the
Thompson cross section. To evaluate T, /T, we use Eq.
(D3) and express the Hubble rate at ~ in terms of the
known rate today

5/2

= 1+620

1eV
T(r)

10 n

8
10

m

100 keV

(D9)

R /R (7.) = 1.06 X 10 eV
2.3 X 10 eV

'2

where we have set the Hubble constant today to 50
kmsec ' Mpc '. Then,

This expression has the satisfactory property that T, /T
begins as unity, rises to a maximum when t/v=5/2 and
then decreases, reflecting the fact that the hot photons
which were raising the electron temperature have scat-
tered down to lower energies. Figure 5 illustrates the
difference that Compton scattering of the hot photons
makes in the evolution of the electron temperature.
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