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Rare decays B = J(.ll and B =K'll
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Using a recently developed relativistic constituent quark model based on the light-front formal-

ism, we evaluate the rare decays B~Kll and B~K Il. The branching ratios vary between 10
and 10 for m, between 100 and 200 GeV. We also give the K and K energy distributions.

I. INTRODUCTION

Rare decays of B mesons are an important way to
study some higher-order effects of the standard model,
and many studies have been devoted to them. ' In par-
ticular the decays busy and b~sll are interesting.
They are expected to occur at a rate accessible to coming
B-meson facilities and exhibit new signals of the mecha-
nisms behind the effective neutral Savor changes. Their
sensitivity to the top-quark mass makes rare decays an at-
tractive test of the three-generation standard model.

The quark-level transitions b usy, b ~sll give rise to
decays such as B~E'y, B~Ell, B~E'll. Their rates
involve hadronic matrix elements whose calculation is
difficult. Encouraged by the success of the quark model
calculations by Jaus and the availability of QCD correc-
tions to b ~sll (Grinstein, Wise, and Savage, and
Grigjanis, O'Donnell, Sutherland, and Navelet ) we con-
sider the decays B~ Ell and B~E'll in this paper.
These decays have been evaluated most recently by Desh-
pande and Trampetic using the (relativistic) quark-model
calculations of Bauer, Stech, and Wirbel and the incom-
plete QCD calculations then available. In Ref. 6 the de-
cay B~Ell is calculated in the nonrelativistic quark
model. ' Our evaluation yields smaller rates than those
of Ref. 8. This is also evident from Refs. 6 and 7 and has
also been noted elsewhere. " We also give the q distribu-
tions for the decays, where q is the invariant mass of the
two leptons. We have not considered 8~E'y since for
this process our results would agree with those obtained
using Ref. 9 (see Refs. 2 and 3).

In the next section we present the quark model used
and the calculations of the necessary matrix elements;
Sec. III details the calculation of the decay distributions
and rates. A brief discussion of the results is given in Sec.
IV.

charge form factor of the pion. The advantage of this ap-
proach is that the quark-antiquark wave functions of the
constituent quark model, which have been derived in the
analysis of the meson spectrum, can serve as an input to
determine in a consistent relativistic treatment internal
properties of bound states, such as form factors.

The light-front formalism which we shall use here is
specified by the kinematic subgroup which is the symme-
try group of the light-front x+—:x +x =0. Light-front
vectors will be denoted by letters with arrows
P=(P+, Pi) where, with n=(0, 0, 1),

P+=P +P, P~=P —(P n)n . (2.1)

It is crucial for the description of bound states of a quark
and an antiquark to establish the appropriate variables
for the internal motion of the constituents, whose mo-
menta we shall denote by k, and k2.

The total light-front momentum P=k&+k2 is con-
served and the momenta of the constituents are usually
represented in the following way:

k,+ =gP+, k+ =(1 g)P+, —

kii=gPj+pj, k2j =(1—g)Pi —
pj.

(2.2)

+m +mM=M+0 M = + (2.3)

Since P =P+P —P&=M, the "Hamiltonian" P is re-
lated to the mass operator M for the bound state:

M +P~H=
p+

The dynamical structure of the front form can be exhibit-
ed, if the mass operator is expressed in terms of internal
variables and the interaction operator lK

II. CALCULATION OF HADRONIC MATRIX
ELEMENTS IN THE CONSTITUENT QUARK MODEL

It has been demonstrated in Ref. 5 that the form fac-
tors, which are commonly used to parametrize hadronic
matrix elements, can be calculated in simple constituent
quark models. The method used in Ref. 5 is based upon
the light-front formalism originally due to Dirac' and
used, for example, in Ref. 13 for the calculation of the

m) —m22 2

pi =(g—
—,
' )Mo—

0
(2.4)

In terms of this new variable M0 is simply given by

where m, , m2 are the masses of the constituent quarks.
It is convenient to introduce a vector p=(p„pz, p3)
whose transverse part is p~ and the longitudinal com-
ponent is defined in terms ofpi and g:
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Mo=Ei+Ez (2.5)

where E, =(m, +p )'~ .
The description of the motion of the constituents in

terms of the inner momentum vector p is effectively that
of free particles„and is independent of the motion of the
system as a whole. The wave function of the bound state
must be a simultaneous eigenfunction of the mass opera-
tor (2.3), and the angular momentum operators j and j3,
and depends only on the inner momentum vector p and
the spin variables A, ,k=+ —,

' of the quarks. The rotational
invariance of the wave function for a qq state with spin J
and orbital angular momentum zero requires a spin
dependence, given by

P(p, AA, ,JJ3 ) =R (AX,JJ3 )p(p),
(2.6}

FIG. 1. One-loop Feynman diagram representing the transi-
tion of the heavy meson to the light one.

R (AX,JJ3)=g &A ~Atsr(p, m) )~A, '& &X~%~( —p, m2)~X'&

where the spin of a quark is rotated by an amount which
depends on its momentum. This Melosh rotation is
specified by'

t m +gMO io(nX—p)
& A, '~R~(p, m)

~
A, & =y~t

Q(m+gMo) +p~
(2.7)

where y„ is the usual Pauli spinor and n =(0,0, 1).
The application of the light-front formalism is more

transparent in the framework of the quasipotential
method which allows a systematic treatment of gluon ex-
change in terms of the diagrams of the perturbation
theory. We shall treat only the one-loop approximation,
and shall derive explicit expressions for matrix elements
of currents between meson states, which correspond to
the Feynman diagram of Fig. 1.

For definiteness, we consider the matrix element of a
general current, which couples to the quarks of the qq
states:

All double primed variables in Eq. (2.9) can be ex-
pressed in terms of the integration variable p' and q~, us-

ing Eqs. (2.2) —(2.4) and

k I'+ =gP'+, kI'j =kI~+ qj,
p"=pi+(1 —k)q. (2.10)

p3' =(k—
—,')Mo'—

J„=& p„lry„Lblps &V'4E, Es

,'(F+P„+F q—„), (2.11)

For the discussion of the next section, we shall need
the following hadronic matrix elements first for the tran-
sition 8~K:

&P",J"J3' ~q "r„q'~P', J'J3 &&4P'+P"+ =M„. (2.8) J„'=&pxl~~o„x'RbISs &V'4ExE~

The vertices of the Feynman diagram of Fig. 1 can be
represented in terms of the light-front wave function (2.6)
only if the correct qq structure of the vertex is main-
tained. It is a remarkable property of the light-front for-
malism that those parts of the one-loop diagram which
involve quarks created out of or annihilating into the vac-
uum can be eliminated exactly in the component M+ of
the matrix element M„, if furthermore q+=0, where
q=I'" —I". The one-loop approximation for M+ is
given exactly by1,, 1 E i'Ez/'™o

(2n. } f E',E2MO'

X g 1/ (p",A, "A.,J"J3')u(k", , A,")

X 1 +u (k', , A, ')f(p', A, 'A, ,J'J', ) .

[P„q (ms —mx )q„]—FT, (2.12)
ms +ms.

where P =ps+ps and q =ps —px. (Our convention is

o„„=(i/2)[y„,y„] )The form . factor F (q ) in Eq.
(2.11}gives no contribution to the rate of the transition
8 ~E//. (We neglect the lepton masses throughout, since
we only consider / =e,p. ) The other form factors of Eqs.
(2.11) and (2.12) can be calculated using Eq. (2.9). The
relevant matrix elements of the effective couplings of the
quarks are given by

u(k", , k")y+Lu (k, , k ) —/ps yq. ,(1—o.3)y~, , (2.13)

u(k", , A,")io+ q„Ru (k'„A, ')

(ps y~ [in(rr Xq)+o, q, ]yg,
(2.14)

(2.9) where n=(0, 0, 1), which leads to
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F+ (q ) = f d p'Q(p", p') t pI.pI'+ [gm„+(1—g)mb ][gm„+(1—g)m, ]I,Pl —4)

8+ K 3 1 Pi qi
Fr(q )=

3 f d p'Q(p", p') — (mb —m, ) +[pm„+(1—()m, ]
(2m) g

'
q

where
I I2

Q(p",p') =q1s(p" )yz(p') [Mo —(m, —m„} ] ' [Mo —(mb —m„) ]

(2.15)

(2.16)

(2.17}

and

(m2 +p2)1 /2E(m2 +prl2)1 /2

E' =(m +p' )' E' =(m +p' }'

1
kg e~„~pE P q

+OP(mJ3 m~g ) eP 2
E

q
The relation between p" and p' is given in (2.10). The ha-
dronic matrix elements for the transition 8~K* are
given by

J„=(p gisy„Lb~p23)+4E, Es

1+a+ e'P P„— Pqq„
q

(2.19}

+ A+a'PP„+ A e'Pq„],
J„=—(p ~ isi a„~'Rbip23 )+4E,Es

(2.18)

[iVe„„i''"P q~+ Ap(m23 —m, )e„'
2 m23+m

Again, the terms proportional to q„=(pz —p, )„do not
contribute to the rate of the transition B~K*ee. The
polarization vector e„=e„(J3) of K' has components
e(+1)= + (0, 1,+i,0)/&2 and e(0)=(0,0,0, 1) in the rest
system of K'. Using Eqs. (2.9}, (2.13), (2.14), and (2.17)
the form factors are given by

2 (pl ql)
V(q ) = — f d p'Q(p", p') (m—

1,
—m, ) +pm„+(1 —g)m, +, pi +

(2n. ) ( q Mo+m, +m„q
I

A+(q )=
3 f d p'Q(p", p') gm2+—(1—g)m, — [m, +(1—2()m„+2(m„]

(2m) (ma+m, ) ( ' q2

2pz

(1—g)q (Mp+m, +m„)

X I pi pI + [gm„+ ( 1 —g)mb ][pm„—(1 g)m, ]I—
(2.20)

(2.21)

m~ —m

2m
Ao(q2)+

2

'
2

A+(q2) —= A3(q2),
mg —m

A3(q')= — fd'p'Q(p", p') [(m„+(1 g)m&][pm—„+(1 g)m ]——(1—2$)p, p,
"1 3, „, 1

+ Ip' (m +m ) —p' q [gm„—(1—g)m, ]I
2(1—g)

Mo+m, +m„
(2.22}

1, , PI. qi)
(2~)

p'Q(p" p') p'l —2(1 —k) pl +, +(1—E)pl. ql1 — )

+ [gm„+ (1 —g)mb ][pm„+ ( 1 —g)m, ]

2( 1 —g)(mb +m, ) (pi.q1 )

iVO+m, +m„
(2.23)
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TABLE I. Values of the various F(0), A, , and A2 defined by Eqs. (2.11), (2.12), (2.18), (2.19), and
{2.26).

factor
F

8{0)
AI {GeV)
W, {GeV)

0.3
4.06
5.51

—0.3
4.08
5.50

—0.35 0.24
4.05 4.39
5.45 5.81

Ao

—0.37
5.92
8.54

0.31
4.05
5.44

—0.31
4.37
5.84

ao

0.31
6.40
8.84

a+(q )= f d p'Q(p", p') pt +2(1—g) —(1—2()(1—g)pt qt(2n)
'

g(1 —g) q

+ [gm„+ (1—g) m& ][pm„+(1—g)m, ]

(pt'qt)
(mb+m, ) +[pm„—(1—g)m ]p' q (2.24)

[(ms —m + }ao(q )+(ms —m +
—

q )a+(q )]=—a3(q ),
2m

a3(q )= —
3 f d p'Q(p", p')1 3, „, 1

(2~)'

X (1—g)q [gm„+(I —g)m, ]—pt qi[(1 —2()gm„+( I —g)m, +(1—2g')(I —g)ms]

+ [( I —g)q2pt~ —pt qgt —
p~ qt[fm„—(1 g)m, ][pm—„+(I ()ms]—IMo+m, +m„

(2.25)

For convenience all form factors have been derived for
transitions K (K')~8 in the rest system of K, respec-
tively, E*. The expressions for the form factors given
above are valid only for q ~0 (since q+=0), while for
the decay B—+Eee the physical values for q lie in the
range 0 ~ q ~ (ms —mx ) . It has been shown in Ref. 5

that the form factors for spacelike q can be continued to
timelike q in the environment of q =0, if the form factor
F(q ) is approximated by

F( 2) F(0)
1 —

q /Af+q /A2
(2.26)

The parameters A, , A2 are determined by the Qrst and
second derivative of F(q ) at q =0. In order to avoid
extensive numerical calculations, we used an approach
analogous to the one of Ref. 15, where harmonic-
oscillator wave functions are used for the S-state wave
function qr(p) defined in Eq. (2.6). The quantity Q(p",p')
defined in Eq. (2.17) is therefore determined in terms of
oscillator wave functions of the type

y(p)=m ~ P (2m) exp( —p /2P ) . (2.27)

%'e used constituent quark masses m„=0.29 GeV,
m, =0.42 GeV, and mb =4.9 GeV, which are close to the
quark masses given in Ref. 16, and Px =P,=0.3575
GeV and Ps =0.386 GeV. The values of F(0}and A„A2
for the various form factors used are summarized in
Table I.

III. THE DECAYS B~Kll AND B~K *ll

A. ES'ective operator on the quark level

In this section we follow closely Refs. 6 and 7. (It has
been recently shown" by the authors of Ref. 7 that the y5
procedure of Ref. 6 yields the correct QCD corrections.
Also, some corrections not included in Ref. 6 yield small
contributions and are not included here. )

Starting from the standard-model interaction

s
—W„(u, e, t, . . . }y"LV

&2
(3.1}

where V =
I V," ) is the Cabibbo-Kobayashi-Maskawa

(CKM) matrix and L =
—,'(1 —ys), an effective Hatniltoni-

an for the process b~s/l is derived by integrating out
successively heavy particles. Since we expect the top-
quark mass m, to be as large as M~, t, t', . . . disappear
together with the 8' leaving an effective Hamiltonian
which only depends on light fields.

For our processes, a sufficient Hamiltonian is (the
notation of Ref. 6 is used)
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j=1,2, 7, 8,9
l =Q, C, E,

A,;c/(p)Oi(p)

4G~
g c,(p)OJ(p),

where

Oi =(sy„Lb)(cy"Lc),

02 =(sy„Lb)(cy"Lc),

(3.2)

c7(Mll, )=—,
' A (x, ),

c'8(M~) = . [B(x,)
—C(x, )]

1

sln0 gr

+4C(x; )+D (x; ) ——', ,

c9(Mll )= . [C(x;) B(—x;)],1

Sln0 ~
where

(3.9)

and

07=

08=

09=

mb(so„+b)F"",
16m

2

(sy„Lb)(ey"e),
16

(sy„Lb)(ey"y, e),
16m

(3.3)

m I

XI =
M~

and the functions A, B,C,D are

2x /3+5x/12 —7/12
(x —1)

(3.10)

3x /2 —x
4 1IlX

(x —1)

(3.11)

A.;=V;b V;*„ i =e, t, t', . . . . (3.4)
1B(x)=—
4

+
(x —1)

(3.12)

For the operators 07, Os, 09, i = t, t', . . . (all heavy
internal particles) while for 0„02, i =c. The up quark
is not included because A.„=V„b V„", is tiny.

In (3.2), p, is the "scale;" and if p=mb, one does
not expect the matrix elements of the 0; to contain large
logarithms, In(M 19 /mb ). These are absorbed into
the c,'(mb ) whose value is determined by the
renormalization-group equation from the perturbative
value CJ'(Mll. ). As shown in Refs. 6 and 7, one has

( m )
1 (p

6/23 p12/23 )g
(3.5)

( ) 1(
—6/23 + 12/23 )g

CS=y A, ;cs(mb)

—g A, , CS(Mll )

47rA, ,
[ 4 (1

—11/23)+ 8 (1
—29/23)]

(M )
33 P 87+s W

(3.6)

x x/2 —3 3x/2+1
4 x —1 (x —1)2

(3.13)

D(x)=
—19x'/36+25x /36

(x —l)3

+
—x /6+5x /3 —3x +16x/9 —4/9

lnx .
(x —1)4

(3.14)

m,
cs X Ries(mb') Ac[3ci(mb)+c2(mb)lg ~5

l mb

(3.15)

The operators 0, , 02 will contribute to the b ~sll ma-
trix elements through c-quark loops. These result in an
expression with the same structure as 08, because the
coupling of the cc pair to II is through'the (vectorial) pho-
ton. Thus, OI, O2 can be included in an "effective" 08 if
the coefficient c8(mb ) is replaced by

C9 =g A, ;c9(mb )=g A,;c9(M+I)

C7 =g A, ;C7(mb )

(3.7)

g (z, s ) = — —lnz—4 2 8

9 27
16 z

s

—16/23 'y g i (M ) g [ ss
(

10/23

+ 29 (
28/23

1 )]189

' 1/2
2 4z+ —1—

s

24z

where

a, (mb)

a, (Mll, )

(3.g)

X ln

2
] /2

1+ 1-"
s

] /2 + l 7T

421—
s

The c,'(Mll, ) are given by ' ' s)z (3.16)
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16 z

4 4z

s

]/2
—1 2+

g(z, s)= — —lnz—4 2 8

9 27

s

M = &FIII&Ia )

4GF e'
&Z 16~'

2mb
cB J„— c7J„ ly"l

q

+c9J„ly"y5l (3.20)

where

4z
X arctan —1

s

—1/2

s (z2, (3.17)

where J„,J„are the matrix elements of sy„Lb and
i so„~'Rb [see Eqs. (2.11) and (2.12)] and the final state
F is either E or K*. After integrating over the lepton
momenta and summing over their spins, keeping

q =pl+pl fixed, we get

m~ s=
mb

(pi+ p , )'-—:q /m&.
mg

(3.18) f IMI'= GJ';(q "q' g""q—')
leptons

4GF e'
~2 166

2ic7m
cs sy„Lb — srr„~ "Rb (ly"1)

The second piece in (3.15) refiects the contributions of Oi
and 02.

Similarly, 07 will contribute to b ~s/I through photon
exchange, resulting in an effective coupling 0- c7/q . In-
cluding this, the effective transition operator is

2mb
CB JP 2 C7JP

q

2mb
X cB J — c7J,,

q

+ lc, l'J„Z„ (3.21)

+C9(s&„Lb)(il "7 51) (3.19)

Here, q =p&+p&', cs, c7, c9 are given by (3.15), (3.8), and

(3.7), respectively.

B. Matrix element and rate for exclusive decays

In obtaining (3.21) we have neglected the mass of the lep-
tons (we only consider e and p).

1. B—+Kll

Starting from (3.19), we can obtain the rate in a stan-
dard fashion. We write

Using the matrix elements (2.11) and (2.12) of the pre-
vious section, we get, for the total rate,

m 6 2 g 3/2
r(a ZII)= ',' ', J ""ds ~

48m 16m

2
2c7FT

2 2cs F+ — — + Ic9 I F,1+ a

m~ GF5 2

48m

2
e dI (s)

ds
16+2 ds

(3.22)

10
[Note that with our normalization, the usual phase-space
factors (2E) ' are included in (2.11) and (2.12).] Here

2

P = (s —1 —i~) —4',
mg

(3.23)

10

2

2 '
mg

smin

4m s,„=1 —2&a+i~ .

40 70
I

100
m, [GeY]

I

130 160 190

FIG. 2. Branching ratios of the rare processes B~K/1,
B~K*ee, and B~K*pp as a function of m, .

Since d I (s )/ds can have a pole at s =0 (see Sec. III B 2)
we must include the lepton mass at this point. In obtain-
ing (3.22) we have used ms =m„, a rather unproblematic
simplification. Note that &P/2 is the normalized three-
momentum of the kaon.

We divide {3.22) by the total width of the B meson, es-
timated to be'
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and obtain the branching ratio
'2r 4 a '-* dr(s)8= ds

I ... I y,„I'f 4n. (3.25}

where d I'(s )/ds is given in (3.22).
Restricting ourselves now to three generations, we

need only A., = —k, (k„ is small). Equation (3.22) is then
proportional to A,, which drops in (3.25); we then have

8 =4.5X10 s (3.26)

0 I

0.0 O. l 0.2 0.3 0.4 0.5
A
S

0.6 0.7 0.8

FIG. 3.
9=(pI+pI ) /mz.

Partial branching ratios of B~Kll;

%e note that the lepton masses have been neglected
throughout, except in determining the lower limit of the s
integration. This is irrelevant in the case of the kaon;
however, in the following discussion of the E', the
correct s;„ is crucial since the partial rate has a (I/s)
behavior near s =0. All other effects of the lepton mass
are tiny, except for the ~ which is not considered here.

In Fig. 2 result (3.25) is given for various values of m, .
Figure 3 shows I d I (s )/I „,]/ds.

m'G'fm~

192m

f=3.0
(3.24}

2. B—+K ll

We now use (2.18) and (2.19) and obtain, instead of
(3.22), the expression

mqGF5

r=
48m

max

min

2

IGI 2fs+ IFI 2s+ ", + IH+ I

—2 Re(FH+ ) (s —I+a')
4v' 4m* 4]c*

(3.27)

where a' =mx /mz, and P and sm, „are given in (3.23) but with Ic replaced by ic*; furthermore,

IGI2
V

1+~ic'

2
2C7

g +
s

2
c9V

1+ (/ x'
(3.28)

2
2C7

IFI = cs Ao(1 —+ic")— ao(1 —z') +Ic9AO(1 —+a')I
s

(3.29)

IH+I = cs
A+

1+

2
2C7 c9A+

a+ +
1++v" (3.30)

2C7 A+
ReFH+ =Re cs Ao(1 ~ic') — ao(1 —K ) cs

(1+ x')'
2C7

a+ +Re
c9 A+ c9 Ao(1 —}/ic' )

1++a'
(3.31}

Here, Ao, A+, V, ao, a+,g are the form factors intro-
duced in (2.18) and (2.19).

Again, we work in the three-generation model. This
yields

B(B~K'll)=3.9 10XJ($, (3.32)
CS

where d I (s )/cS must be taken from (3.27).
The normalized partial rates are given in Fig. 4. The

branching ratios are plotted against m, in Fig. 2. The

rates for B~Kee are larger than those of B~EpIT, be-
cause of the pole at s =0 discussed earlier.

IV. SUMMARY AND DISCUSSION

In this paper we have used a light-front formalism
based on relativistic quark model and @CD-corrected '

quark-level operators to calculate the exclusive branching
ratios (BR's) for the rare processes B~K11, 8~K'pP,
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12-

0.0 0.1 0.2 0.5 0.4 0.5 0.6 0.7

FIG. 4. Partial branching ratios of B~K*11;
s =(pl +p& )2/mz.

and 8~E'ee. We have not reevaluated B~K*y since
in this case our model agrees with previous estimates.

Our results are shown in Figs. 2—4 for the total and
partial branching ratios, respectively. [We have not
drawn the threshold effect at s=4rn, /mtt coming from
the function g [Eq. (3.16)], since it gives rise to a very
small jump (Refs. 6 and 7).] In the favored range for m,
between 100 and 170 GeV, these BR's are between 10
and 10

In comparison to previous calculations, the BR's are
considerably reduced. This effect of the QCD correction
is already present in the inclusive calculations of Refs. 6,
7, and 11.

In the exclusive decays, in particular those with a E',
this suppression can be partially understood from the first
piece in a [Eq. (3.19), or from Eq. (3.21)]. Depending on
the signs of the form factors J„and J„,there is a strong
cancellation between the terms proportional to cs and c7,

respectively. (This is not the case in the inclusive decays,
where the matrix elements of y„and o.„„q have a
different form. ) It turns out that in our model this can-
cellation indeed takes place, if s= ~2c7/c',

~

=0. 15, de-
pending on m, . {One might be tempted to use the posi-
tion of the minimum to predict m, . However, it is more
likely that top will be discovered before these curves can
be determined precisely. ) This effect is seen clearly in
Fig. 3, where the partial rate goes through a minimum in
this range of s. A change of the relative signs of J„and
J„would increase the rate by about a factor of 3-4.

This suppression is not operative for very small ~s, as a
result the rates for K'ee and K*pp differ more strongly
than in Ref. 8. This preference of small s clearly favors
the use of the relativistic quark model, since the nonrela-
tivistic model' ' does not predict reliably the s depen-
dence of form factors, and is particularly uncertain for
small values of s. Considering the s dependence, we note
that the form factors in our model [Eq. (2.26)] deviate
from the usual ansatz (Ref. 9) for the relativistic model or
the nonrelativistic model used in Ref. 6 to estimate
8 ~Kll. Since (2.26) can be roughly represented by

F(q ) — with A,s=A2 )
F(0)

(1—
q /A )

the rate for larger values of s is increased compared to the
ansatz F(q )=F(0)/(1 —

q /A ) in Ref. 9. Comparing
our results to those obtained with the nonrelativistic
model (Ref. 6), say, for m, =100 GeV, there is good
agreement for s &0.6. For smaller s, the exponential
damping in the nonrelativistic model reduces the rate in
comparison to the relativistic mode1.
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