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We discuss the two standard constructions used in the search for intermittency, the exclusive and
inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that
reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity
correlations that are contained in the inclusive moment. We show that there are some similarities
among most of the models that have been proposed to explain factorial-moment data, and that these
similarities can be used to increase the efficiency of testing these models. We begin by calculating
factorial moments from a simple independent-cluster model that assumes only approximate boost
invariance of the cluster rapidity distribution and an approximate relation among the moments of
the cluster multiplicity distribution. We find two scaling laws that are essentially model indepen-
dent. The first scaling law relates the moments to each other with a simple formula, indicating that
the different factorial moments are not independent. The second scaling law relates samples with
different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in
light-ion data, indicating possible spatial intermittency in the heavy-ion events.

I. INTRODUCTION

Recently there has been considerable interest in the
idea of intermittency, or self-similar behavior, in high-
energy nuclear collisions. ' '7 This phenomenon has been
predicted to occur as a result of the transition from
quark-gluon plasma to normal hadronic matter. ' Data
currently exist for m-p and j:-p collisions, p-emulsion and
0-emulsion collisions, and 0-emulsion and S-Au col-
lisions. In this paper, we discuss and improve the
current methodology ' used in the search for intermit-
tency. We also discuss similarities among most of the
models ' which have been proposed to account for the
data.

In Sec. II, we begin by discussing the two standard
constructions used in the search for intermittency, the ex-
clusive and inclusive scaled factorial moments. We point
out that the inclusive moment does not reduce to the ex-
clusive moment when events with a fixed window multi-
plicity are considered. We propose the use of a new
scaled factorial moment that reduces to the exclusive mo-
ment in the appropriate limit. This new moment is also
free of undesirable multiplicity correlations that are con-
tained in the inclusive moment.

There have been a large number of models proposed to
explain this data. ' We show that there are some simi-
larities among most of the models, and that these similar-
ities can be used to increase the efficiency of testing these
models. We begin by calculating factorial moments from
a simple independent-cluster model, which assumes only
approximate boost invariance of the cluster rapidity dis-
tribution and an approximate relation among the mo-
ments of the cluster multiplicity distribution. In Sec. III
we describe our model, introduce the cluster-model for-
malism, and calculate the single-particle rapidity density
so that we can reduce the number of unknown quantities
in our model.

In Sec. IV we calculate the scaled factorial moments

from our model. We find two scaling laws that are essen-
tially model independent. These laws hold in almost
every model of particle collisions that reproduces existing
rapidity correlation data, as most models assume that
particle production occurs via some boost-invariant as-
sortment of clusters. The first scaling law relates the mo-
ments to each other with a simple formula. The existence
of this relation indicates that the different factorial mo-
ments are not independent. The best course for experi-
menters is then to measure the second moment, as this
minimizes the statistical uncertainty. Higher moments
should then be compared to the second moment using the
scaling law, in order to determine whether sects other
than two body intera-ctions are signijicant.

The second scaling law relates samples with different
rapidity densities but similar cluster rapidity distribu-
tions. Using the second scaling law, we find evidence for
much larger clusters in 0-emulsion and S-Au collisions
than in n-p and K-p collisions. The existence of these
larger clusters suggests that spatial intermittency is actu-
ally stronger in heavy-ion collisions than in light-ion or
leptonic collisions.

II. SCALED FACTORIAL MOMENTS

Intermittency in ultrarelativistic collisions is most
cleanly observed using the exclusive scaled factorial mo-
ments

where a fixed rapidity window b, is divided up into M
equal intervals, k is the number of particles in the mth
interval, and X is the number of particles in the rapidity
window. If intermittency is presented in the rapidity dis-
tribution, the scaled factorial moments will exhibit a
power-law divergence ' in M as M ~ 00.
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as
Equation (1) can be rewritten in more familiar notation

px(y) . . y )
M

F;(M;b )=M'

II f dy pN(yi
L

where Y =y()+m b, Y/M for rapidity window (yo, yo
+b, Y), and p')v' is the i-particle rapidity density for events
with N particles in the rapidity window. We simplify Eq.
(2) for our calculations by using the fact that, in our mod-
el, all rapidity densities are approximately invariant un-

der Lorentz boosts along the collision axis. We therefore
construct

i) +sj dyn
n pA (y)»()
n=i

F;(5y)=
yp+5 Y Qy (i)II fyp

(3)

where y is now any point in the middle of the rapidity
w&ndow.

The exclusive moments (3) can be measured by using a
rapidity window over which the particle distribution is
"relatively flat. " If all particles are uncorrelated, the fac-
torial moments are given by

M y

F; „„,(M;S) M' ' X J =dyF„(y)
m=1 . ym —

&

where

(4)

where (N ) is the mean number of particles in the rapidi-

p~(y) =p~(y)/N

is the normalized rapidity distribution. The maximum
value for F; „„,(M; b, ) is reached when M —+ (x), yielding

yp+hY
F' '"'=»' 'f (6)

yp

If F „„',"' is equal to 1 within experimental error, then any
significant measured value of F; cannot be due to the
shape of the single-particle distribution. In this case, we

say that the single-particle distribution inside the rapidity
window is "relatively flat. " It is possible to correct the
factorial moments for the curvature of the single-particle
distribution, but we will not do this as the corrections
complicate the calculation of the correlations.

Unfortunately, it is often hard to obtain a large sample
of events to analyze, especially when rapidity cuts (to get
a relatively Hat distribution) and multiplicity cuts (to
eliminate effects of multiplicity correlations) are per-
formed. In order to analyze a sample containing events
with a range of multiplicities, the common practice has
been to use the inclusive scaled factorial moments

M (k (k —1} (k i I+))—
F, (M;b, )= g M'

M (N)' , (7)

This difference between the inclusive and exclusive mo-
ments is similar to the "long-range" correlations, due
only to multiplicity effects, that were observed in studies
of two-particle rapidity correlations. '

We propose that, instead of constructing the inclusive
moments for event samples with a range of multiplicities,
experiments construct the scaled factorial moments

. (k (k —1) (k i +—I))
M i (N(N —1) (N —'+1) )

These moments contain information on rapidity correla-
tions that are independent of multiplicity correlations.
They also clearly reduce to the exclusive moments when
constructed for event samples with fixed N.

The scaled factorial moments (9) can also be expressed
in terms of i-particle rapidity densities:

M i
M' 'r II f, dy. P"'(yi

m=1 n=1 ™I
L

i yp+& Y

dy. p"'(yl, y;)
yp

F;(M;b, )=

Using the boost invariance of the rapidity densities, we
obtain

II f""'
y 5y

F;(5y;b Y)=

(i)
p (» ~ ~ y, }

i p&+())Ydy nII f p (y„.. . ,y;)
n=1

where y is again some arbitrary point in the rapidity win-
dow. We will use Eq. (11)for our calculations.

III. CLUSTER MODEL

We begin by constructing a very general cluster model
for high-energy co11isions using two assumptions.

(1) During the collisions, clusters of hot matter form.
These clusters are randomly distributed in rapidity, with
a distribution function n(y }wchich is .nearly invariant un-

der boosts along the beam direction.
(2) These clusters emit pions in a random manner, with

distribution function p (y —y, }.
The first assumption, which was introduced by Bjork-

en, is widely believed to be true for ultrarelativistic col-

ty window, averaged over the ensemble of events.
The inclusive moments are equal to the exclusive mo-

ments when the particle multiplicity follows a Poisson
distribution. In general, however, the multiplicity does
not follow a Poisson distribution, but follows some other
distribution which depends on the cuts made on the event
sample as well as physical parameters such as masses and
energies of the colliding particles. In particular, if we
take a sample of events with fixed window multiplicity N
and calculate both the inclusive and exclusive moments,
we find that

F(inclusive) — ( 1 ) (N + ) F(exclus(ve)
I N'
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n(y, )= 1/2L, L(y, (—L,
0, otherwise.

(12}

The number of clusters N, is given by the distribution
P(N, }. We will not specify this distribution; however, we
assume that for (N, ) )&1,

(N,') = (N, )'+O((N, )' '),
where

(13)

(N,'&= y e(N, )N,'.
N =1

(14)

The distribution function P(N, ) can depend on the pro-
jectile and target masses, on the center-of-momentum en-

lisions. The second assumption is almost certain to be
realistic for large clusters, and is fairly accurate as a
description of the decay of any cluster into more than
two pions.

The formalism that we develop, based on these two as-
sumptions, holds for a wide range of collision models.
The "clusters" could be droplets of cold or hot quark-
gluon plasma, hadronic resonances, ' unspecified hadron-
ic matter, " or partonic strings. ' ' The clusters
could even be jets the pion rapidity distribution would
then depend on the angle of the jet axis, but many of the
features of the cluster model would be unaffected by this
change. In all of these proposed models of intermittent
behavior, ' the intermittency is generated by the ap-
pearance of some type of clusters of matter which have a
roughly boost-invariant distribution.

The exact cluster rapidity distribution ~(y, ) is not cru-
cial, as we only calculate quantities in the central rapidity
region of a collision where the particle densities are flat.
To simplify our calculations we use the flat cluster rapidi-
ty distribution

ergy of the collision, and on cuts made on the event sam-
ple.

Most of our results are independent of the exact form
of the pion rapidity distribution p (y —y, ). However, the
most likely distribution in high-energy collisions is

p(y)= 1

2 cosh (y)
(15}

for pions produced in the rest frame of a cluster. This
distribution, used in Refs. 21 and 8, results from isotropic
emission of relativistic pions. We use p(y) from Eq. (15)
in order to estimate the cluster size required to reproduce
the factorial-moment data.

Finally, we assume that the number of pions per clus-
ter n is given by the distribution function P(n ). We
define

(n' ) = g P(n )n'
n =1

(16)

as we did for the number of clusters. We assume that
P(n ) can depend on projectile mass, target mass, and
collision energy, but not on any cuts performed on the
event sample.

We can now predict the scaled factorial moments as a
function of the multiplicity and rapidity distributions for
clusters and pions. However, this will not be very useful,
as we have no general way of predicting the average clus-
ter or droplet multiplicities, or the width of the cluster
distribution. We determine these by first calculating the
single-pion rapidity density and comparing to experimen-
tal results. We present a detailed calculation below in or-
der to demonstrate the cluster formalism. We do not do
this for other quantities because of the length of the
equations.

The single-particle rapidity density is

00 N 00 N

p(y) y ~(N ) g f dyN~(yw) X P(nN) II p(VN, yx)
N =1

C
N=1 n =1

N
n=1

ng,

rr n
N'=1 n'=1

N n~

f dvx , n X'X'@y vx, n ) .
N=1 n =1

(18)

(19)

After integrating over the 5 function, we obtain

The first half of Eq. (17) is the probability density for events with different numbers of clusters, varying cluster size and
rapidity. The second half is an operator which is equal to the single-particle rapidity density for a fixed event, where
the 5 is the Dirac 5 function.

We first simplify Eq. (17) by using the two normalization equations

f" dx p(x)=1,

f dx ~(x)=1 .

Qo N

p(v)= X &(N, ) y X P(n~) X f" dv~~(v~}p(v —y~) .
N =1 N =1 n~ =1 n =1

We then use the definitions of ( N, ) and ( n ), Eqs. (14) and (16), to obtain the single-particle density:

p(y)=(N, )(n„)f dx m(x)p(y —x) .

(20)

(21)

We can simplify Eq. (21) by taking advantage of the approximate boost invariance of our initial state. Since m(y, ) is
constant over a distance 2L which is greater than the width of the pion distribution p (y —y, ) (typically about 1 unit of
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rapidity), we can replace Eq. (12) with ir(y, ) = 1/2L everywhere as long as y is well within the interval { L—,L). The in-

tegration is then trivial, and we obtain

&N, ) &n. )
p(y) =

2L
(22)

for the central region of an ultrarelativistic collision. Equation (22), which is independent of the precise shape of the ra-
pidity distributions ir{y, ) and p(y —y, ), is used to determine the cluster rapidity density (in the central region)

(N, ) /(2L) for given mean cluster size ( n ).

IV. CALCULATION OF MOMENTS

We have reduced the factorial moments F;(5y) to integrals of rapidity densities, so we now calculate the i-particle ra-

pidity densities. The calculation of these densities can be very complicated in cluster models because the i particles
could come from any number of clusters from one to i, and we need to sum over all of these possibilities. In practice,
however, the clusters overlap very much, so we therefore make the approximation that at most tioo of the i pions come
from the same cluster. The approximation is valid whenever the second moment is near one, as is true for hadronic col-
lisions.

In our cluster model, the i-particle rapidity densities are

p"(yi, . . . , y, ) =(N, (N, —1) (N, i +—1))(n )'g p(y„)
n=»

where

+(N, (N, —1) (N, i+2))(—n )' (n„(n 1))—g g g p(yi) p' '(y, yk)+O((N, )' ),
j=» kWj lWj, k

(23)

p(y}=f dx m(x}p(y —x)

is the normalized single-pion distribution function, and

p
' '(y„yz ) = f dx m(x)p(y, —x)p(y2 —x) (25)

is the normalized two-pion distribution function. The first term in Eq. (23) is the contribution of pions from i diff'erent
clusters, in which case the pion rapidities are uncorrelated. The second term is the contribution of pions from i —1

clusters, in which case two of the pions are correlated in rapidity and the rest are uncorrelated.
Using the approximations p(y„)=~(y, ) =1/2L, which are both valid in the central region for ultrarelativistic col-

lisions, and performing the sums, we obtain

b ',
,

(n )(b —a)
g f dy„p"'(y, , . . . , y, ) = (N, (N, —1) (N, + i +1))

a 2L

2L(n (n„—1)) i, dy, i, dy,
X 1+i(i 1) ", f f p'(yy)+0((N) ')

ah —a ah —a
(26)

where

p"'(»»2}=2'�"'(yi y2)= f
After substituting p" from Eq. (26) into Eq. (11)and using Eq. (22) for p(y), we find

(n (n 1))/(n„—)
F; (5y ) = 1+i (i —1)

dN /dy

+p~ dy» +sydy2 (2)
&a+~ dy» &0+~~dy2 (z)p"'(yi, y2) — p'"(yi, y2) +0(&N, )-') .

~y vo 6Y &0

(27)

(28)

Equation (28) displays a scaling behavior which is in-
dependent of the distribution p {y) and of the rapidity
window h. All of the factorial moments are simply relat-
ed to each other:

Fz(5y) —1 F;(5y ) —1

2 i(i —1)
(29)

This scaling behavior is the same as that demonstrated
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for inclusive moments. The behavior of this new fac-
torial moment is more robust, however, as the scaling
laws have a very weak dependence on the cluster and
pion multiplicity distributions.

In Fig. 1 we show that data from n pa-nd E pc-ol-
lisions at 250 GeV obey the scaling law (29). We convert

the inclusive moments (7) to the proper moments (9)
by dividing all moments by F;(M = 1)= (N(N
—1) . . (N i—+1))/(N)'. The scaling law holds very
well for the third moment, not quite so well for the fourth
moment, and seems to be significantly inaccurate for the
fifth moment. The deviations from the scaling law may
be a result of inaccuracies in the data, as the value of the
fifth moment for large M seems to depend mainly on
whether M is even or odd.

Because all of the moments contain the same informa-
tion, at least to lowest order in the cluster density, the
most sensible approach for experimenters is to present
the second moment and to indicate the deviations from
scaling behavior of the other moments. The second mo-
ment usually has the least statistical error and thus pro-
vides the most stringent test of any models. The devia-
tions from scaling behavior are usually small enough that
they are difficult to measure, so they do not contain much
useful information.

Equation (28) also predicts that the factorial moments
scale with rapidity density, as the inclusive moments
do; for event samples a and b,

(dN/dy), [F;(5y)—1]=(dN/dy)b[F; (5y) —1], (30)
0.4
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as long as the droplet multiplicity factor ( n (n „—1))/(n ) remains constant. This law seems to work
at least to some extent, as the highest moments are ob-
served in m-p collisions where the rapidity density is
lowest. This trend continues in the p-A and A-B col-
lisions, '" where the smallest moments are seen in S-Au
collisions where the rapidity density is highest.

The multiplicity scaling law works very well with 0-
emulsion and S-Au collisions, but collisions involving
lighter particles have smaller moments than predicted by
Eq. (30). In Fig. 2 we compare (dN/dy)[F2(5y ) —1] for
m.-p and K-p collisions and for S-Au collisions. In order
to make a direct comparison we divide the hadronic mo-
ments by Fz(5y =2), as the S-Au moments are construct-
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FIG. 1. 2(F; —1)/i(i —1) vs —ln(y) for m-p and K-p col-
lisions at 250 GeV. The parameter y is the width, 5y, of the ra-
pidity bins. (a) The second moment (open squares) and the third
moment (open circles). (b) The second moment (open squares)
and the fourth moment (open triangles). (c) The second moment
(open squares) and the fifth moment (open diamonds}.

0.0
-1.0 0.0 1.0 2.0

-In(y)

FIG. 2. (dX/dy)(F2 —1) vs —ln(y) for m-p and K-p col-
lisions at 250 GeV (open squares) and for S-Au collisions at
200 GeV (open circles).
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ed for EY=2. The violation of the multiplicity scaling
law suggests that the correlations observed in the 8-Au
collisions are produced by clusters approximately 30
times as large as the clusters produced in the hadronic
collisions.

There are two possible interpretations of this violation
of the multiplicity scaling law. The first possibility is that
large cluster formation occurs in heavy-ion collisions but
not in hadronic collisions. The second possibility is that
large cluster formation occurs in both types of collisions,

I

but is less frequent in hadronic collisions than in heavy-
ion collisions. In either case, it is likely that spatial inter-
mittency, or the formation of clusters of varying spatial
extent and thus varying pion number, is actually stronger
in heavy-ion collisions of lighter particles.

We further simplify Eq. (28) when the width of the ra-
pidity window hY is much greater than the width of the
pion distribution p (y —y, ). In this case, we can perform
the integrations over the rapidity window 5, obtaining

(n„(n —1))l(n )
F; (5y) =1+i (i —1)

dN/dy

(31}

It is clear from Eq. (31) that the scaling of the factorial moments will be most accurate for 6Y &) 1.
Finally, in the case of small 5y we use the approximation

f p(y)=p(0}+ —,', p"(0)5y +O(5y ) .—5y/2 5y

We then obtain, after integration by parts,

(n (n —1))l(n )
F;(5y ) = 1+i (i —1)

dN/dy

(32)

f" dy J(y)' —
—,', f dyp'(y)' 5y'— +O((N, ) )+O(b Y )+O(5y } . (33)

We can see from Eq. (33) that, in general, the factorial
moments will converge as 5y~0, and that the deviation
from the asymptotic value will be negative and propor-
tional to 5y . This behavior, like most of the behavior
discussed in this paper, is practically independent of any
specific theory of factorial moments, depending only on
the assumption that pions are created in some sort of
clusters. The quadratic dependence on 5y is sufficient to
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() () () (I()
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FIG. 3. F& —1 vs —ln(y) for 8-Au collisions at 200 GeV
(open squares). The solid curve is the best fit to the form
F2 —1 =a —b 5y, with a =0.024 and b =0.0076.

explain the observed behavior of the factorial moments in
nucleus-nucleus collisions, as shown in Fig. 3.

Our calculation to O((N, ) ') is exact for the second
moment. Because of this, violations of the multiplicity
scaling law can be used to obtain information about the
pion and cluster distributions. The scaling violations due
to cluster multiplicity, occurring as a result of two-
particle correlations, are usually larger than corrections
due to three- and four-particle e6'ects, and so the latter
can often be neglected. Corrections due to three- and
four-particle e6'ects can be calculated from the general
model given here; we leave that as an exercise for the in-
terested reader.

V. SUMMARY

In this paper, we have discussed the current methodol-
ogy used in the search for intermittency. We pointed out
that the inclusive moment does not reduce to the ex-
clusive moment when events with a fixed window multi-
plicity are considered. We proposed the use of a new
scaled factorial moment, which reduces to the exclusive
moment in the appropriate limit, and is free of undesir-
able multiplicity correlations which are contained in the
inclusive moment (but not the exclusive moment).

We calculated factorial moments from a simple in-
dependent cluster model, which assumes only approxi-
mate boost invariance of the cluster rapidity distribution
and an approximate relation between the moments of the
cluster multiplicity distribution. We found two scaling
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laws that are essentially model independent. These laws
hold in almost every model of particle collisions that
reproduces existing rapidity correlation data, as most
models assume that particle production occurs via some
boost-invariant assortment of clusters.

The first scaling law relates the moments to each other
with a simple formula, indicating that the difFerent fac-
torial moments are not independent. The best course for
experimenters is then to measure the second moment, as
this minimizes the statistical uncertainty. The second
scaling law relates samples with different rapidity densi-
ties but similar cluster rapidity distributions. The viola-
tion of the second scaling law suggests that the correla-
tions observed in the 0-emulsion and Su-Au collisions are
produced by clusters approximately 30 times as large as
the clusters produced in the hadronic collisions. These

large clusters indicate that spatial intermittency is actual-
ly stronger for heavy-ion collisions than for hadronic col-
lisions.
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