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Minijets: Cross section and energy distribution in very-high-energy nuclear collisions

G. Calucci and D. Treleani
Dipartimento di Fisica Teorica dell'UniUersita di Trieste, and Sezione di Trieste, Istituto Nazionale

di Fisica Nucleare (INFN), Trieste, I 340-I4, Italy
(Received 31 July 1989)

The energy spectrum from semihard partonic interactions in nucleus-nucleus collisions with c.m.
energies of the order of 1 TeV per nucleon is discussed. The presence of a large number of nucleons
induces incoherence among most of the partonic collisions, while the large number of partonic in-

teractions makes the unitarization of the cross section an essential tool for a meaningful description
of the processes. This goal is achieved, accounting for all semihard partonic scatterings, namely, in-

cluding both disconnected collisions and rescatterings. The characteristic feature of the interaction
resulting from this analysis is that it is basically a geometrical one. As a consequence of the unitari-
zation, the energy distribution of the scattered partons turns out to be a regular function of the
cutofF p,

'" which separates semihard events from soft ones.

I. INTRODUCTION

In very-high-energy hadronic collisions one faces the
problem of discussing large-cross-section physics by
means of perturbation theory. One will in fact expect
that, as the scale for the perturbative coupling constant is
fixed, when the c.m. energy becomes increasingly large,
most of the interactions will be in a perturbative regime,
so that a large fraction of all the inelastic events can be
discussed using perturbative QCD. ' Analyzing
minimum-bias events at the CERN pp Collider, one has
evidence of an increasingly large hard component in the
interaction when increasing the c.m. energy, which is
consistent with this expectation.

In order to make a separation between soft and hard
events one needs to introduce a cutoff p,

'" in the trans-
verse momentum of the scattered partons (that can even-
tually be observed as minijets in the final state). Keeping
this cutoff fixed and increasing the c.m. energy, one gets a
corresponding increasingly large inclusive cross section
for parton production. Actually the growth is faster than
the one expected for the total cross section. The
kinematical region in s and p, '", where the corresponding
integrated inclusive cross section becomes comparable
with the total inelastic one, is called the region for semi-
hard interactions and, in that regime, unitarity starts to
play a major role.

In eikonal models the contribution from semihard col-
lisions can be included, in a way consistent with unitarity,
by splitting the eikonal phase into two pieces, giving, re-
spectively, the soft and the semihard component of the
interaction, and giving well-defined prescriptions in order
to calcu1ate the semihard part of the phase. As a conse-
quence the semihard contribution to the inelastic cross
section cr H (with cr;„,&„„,=o „«+crH ) can be expressed as

crH =Id PI 1 —exp[ —( n(P) ) ] I

oo
1f d P, (n(P))" exp[ —(n(P))],

n=1 nf

p being the impact parameter and (n(p) ) /2 the semi-
hard contribution to the eikonal function.

Equation (1) has an immediate probabilistic interpreta-
tion and shows how o.& is constructed with the in-
coherent sum of an infinitely large number of multiple
parton collisions characterized by a Poisson distribution
with an average number given by (n(P)). The connec-
tion with the usual QCD —parton-model expression for
the inclusive large-p, parton production cross section

o;„,& is obtained by noticing that the latter is in fact given

by the average number of partonic collisions multiplied
by the hard cross section, so that one has

cr;„, =(n)tr = Jd'P(n(P)) . (2)

The same expression for the semihard cross section 0.0
can be obtained without mentioning soft physics by sum-
ming all disconnected semihard partonic collisions, hav-
ing assumed a Poissonian expression for the multiparton
distributions.

Equation (1) shows how unitarity can provide a natural
cutoff for the perturbative QCD —parton-model singulari-
ty at x =0. Actually, although 0.;„,&, when expressed in
the QCD parton model, is divergent for p, '"~0, trH, as
given by Eq. (1), is finite. One has, in fact, that for small
values of the cutoff ( n (P) ) becomes very large, so that
the exponential in Eq. (1) is practically zero. When, how-
ever, p is larger than some typical hadronic radius r,
(n(p) ) becomes zero for any value of the cutoff, because
there is no overlap between the interacting hadrons. The
size of o 0 is then bounded by m.r . More explicitly we re-
mark that o.

H acquires, for p, '"~0, its limiting value
rapidly enough, i.e., for values of (n( )P) which are not
very large and correspond, therefore, to configurations
where a perturbative treatment is still trustworthy. Mul-
tiple collisions can then cure the problem of the singular
dependence of the single-scattering expression given by
the QCD parton model because one can find physically
meaningful variables which, being regular in the limit,
are not necessarily dominated by the soft processes.
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The situation is essentially the same when considering
high-energy nuclear collisions rather than hadronic. At a
given value of the nucleon-nucleon c.m. energy &s one
has a stronger effect from unitarity in this case, since the
presence of a large number of nucleons will largely in-

crease the number of multiple collisions. Moreover the
atomic mass will provide a further degree of freedom al-

lowing one to vary the amount of multiple collisions at
fixed c.m. energy per nucleon pair. The transverse-
energy spectrum from semihard interactions in nucleus-
nucleus collisions, given the above physical picture, is
discussed in Ref. 7 and the result can be written (with the
help of the central-limit theorem) as

dE,
= f d P[I—exp[ —(n(P))]]

x
QD, (p)m.

depending on the average transverse energy (E,(p) ) and
on its variance D, (p).

Given the Poissonian distribution of multiple-parton
collisions [Eq. (1)] and the connection with the QCD par-
ton model [Eq. (2)], (E,(p)) and D, (p) are essentially
computed with the single-scattering expression provided
by the QCD parton model. One will then notice that,
while the expression for oz is regular for p, '"~0, the
expression for dcrH/dE, obtained in this way is, on the
contrary, singular because the averages which character-
ize the differential distributions would become singular if
they were computed in the QCD parton model in the lim-

it@] 0
Our aim, in the present paper, is to gain a better in-

sight into the problem of the singular behavior of these
average quantities. We want in fact to show how, when
giving a more complete account of the interaction, one
can also regularize the differential cross section. We are
only able to consider a simpler case with respect to that
of the transverse-energy flow: We will look at the energy,
rather than transverse-energy distribution of the semi-
hard scattered partons. In our opinion this quantity is in-
teresting because, being independent of the fragmentation
(at least if the scattered partons will fragment indepen-
dently), it is a property of the initial state and of the in-
teraction only.

The basic element that will allow us to get rid of the
divergence in the average energy will be the introduction
of the concept of wounded parton, that is to say a parton
that has suffered at least one semihard interaction. While
the QCD —parton-model single-scattering expression does
in fact count all the partonic collisions, including all pos-
sible rescatterings of the same parton, when looking at
the average energy going into semihard collisions, all re-
scatterings are irrelevant. It is immediately obvious that
introducing the concept of wounded parton, the average
energy going into semihard collisions is finite, since it is
given by the energy carried by the partons that have
suffered at least one semihard collision and this energy is
smaller than the total energy available.

In eikonal models the semihard contribution is intro-

duced by adding to the soft eikonal phase a term which
represents the single-scattering expression as given by the
QCD parton model. As this term is linear in both parton
distribution and also in the elementary hard cross section
all parton rescatterings are neglected: When writing the
expansion in multiple parton collisions [Eq. (1)] only
terms where a given number of partons from the projec-
tile scatter an equal number of partons from the target
are present.

The introduction of the concept of wounded partons
requires that one takes into account also parton rescatter-
ings. In order to achieve this goal we will make the sim-
plifying hypothesis of incoherence among all semihard
partonic collisions, so that our treatment of the interac-
tion will be purely probabilistic. This hypothesis is con-
sistent both with previous works on inelastic nucleus-
nucleus collisions ' and with a recent analysis on rescat-
tering of partons on nuclear targets, "We think therefore
that it is a meaningful hypothesis in the context of high-
energy nuclear collisions.

The paper is organized as follows: In the next section
we introduce the semihard cross section and the expres-
sion for the average number of wounded partons. In Sec.
III we evaluate the average energy and the dispersion and
in the final section we present some numerical calcula-
tions and our conclusions.

II. SEMIHARD CROSS SECTION AND
AVERAGE NUMBER OF COLLISIONS

It is now necessary to give an explicit form for the mul-
tiparton distribution, which we assume to be Poissonian.
We expect that this form is a reasonable expression for
small values of x; it is obviously consistent with the as-
sumption of an incoherent superposition of Poissonian
distributions of partons at the nucleon level. The picture
then consists of a nucleus made of A noninteracting nu-
cleons: In the interaction with a high-energy parton the
partonic structure of the whole nucleus is obtained by
just summing up the parton composition of the individual
nucleons. We are neglecting, in this way, more exotic nu-
clear configurations which, on the other hand, give
corrections to the independent nucleon picture of the or-
der of a few percent. ' Information on the intermediate
structure is present only in the kinematical limits of the
parton momenta. (Further discussions on this point are
presented in Appendix C.)

The probability density for having n partons of nucleus
A (A being the nuclear mass) with fractional momenta
x„.. . , x„and with transverse coordinates 6&, . . . , b„ is
then given by

I '(x, ,b) . I "(x„,b)n!

X exp —f g I ~~ (x,b)dx d b
f

(4)

where I ~~(x, b) is the average number of partons in the A

nucleus with longitudinal-momentum fraction x (with
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respect to the nucleon momentum), b the transverse coor-
dinate, and the index f counts the various species of par-
tons. The normalization of I ~~(x,b) is 2 times that of
the nucleon parton distributions and the integral in Eq.
(4) is regularized with a cutoff related to p, '". Multipar-
ton distributions are dimensional quantities, ' and with
our assumption dimensionality is provided by the geome-
trical size of the whole nucleus.

One will notice that, in Eq. (4), there is no sharp con-
straint on the total energy of the nucleus: One is in fact
introducing a variance in the total energy proportion to
A. Since the multiparton distribution has a Poissonian
form the total energy can vary by amounts proportional
to A' around its average value that is proportional to

A. Therefore, although writing Eq. (4) one is satisfying
energy conservation only on average, the fluctuation
around the averaged value is subleading as a function of
the atomic mass.

To write the semihard cross section we make the sim-
plifying assumption of complete incoherence between
different semihard partonic collisions. That amounts to
assuming incoherence not only between disconnected
semihard collisions, but also between different rescatter-
ings of the same parton. Moreover all partonic collisions
will be treated on the same footing, so that we will not
distinguish between multiple collisions on the same nu-
cleon and multiple collisions on different nucleons. The
semihard cross section is then expressed as

00
1 f,

oH =f d P g Q, I „'(x„b,) I „"(x„,b„)exp —f g I'~~(x, b)dx d b
n=l fi .f„ f

00 I I

X g g —,I' '(x'„b', —P) I '(x,', b', —P)
1=1f' . . .f'

X exp —I Q I Is (x', b')dx'd b'
f' I=1J=1f

Xdxid b) dx„d b„dx', d b', dxi'd~bi', (5)

where &,J
' —=&,J '(x;xj,b; —bj ) is the probability for the parton f, from nucle. us A to have a semihard interactionf;f,.' f,f,'

with parton fJ from nucleus B, so 8 will depend on x,x, on the difference of the transverse relative distance b; —bj and

the indices f;,f '.
The term in large square brackets in Eq. (5) represents the probability of having at least one semihard partonic in-

teraction between nucleus A and nucleus 8, and the cross section is constructed summing over all possible partonic
configurations of the two nuclei and integrating on the nuclear impact parameter P. One will notice that in Eq. (5) all
possible interactions between partons of nucleus A and partons of nucleus B are taken into account, so that also all pos-
sible semihard rescatterings in nuclear matter are included.

The semihard cross section can be conveniently expressed introducing, as an intermediate step, the probability that
the parton f ' from nucleus B has at least one semihard interaction with a given configuration of n partons of nucleus A.
This probability is given by

PI'. . . y =PI'. . .I (x~,bj;x„b, . x„,b„):—1 —g ff (1—0 ') .f, f,', ,
" f,f,

'

/'=1

One can then write

~H = J d 0 g g, I „'(x„b,) . I „"(x„,b„)exp —f g I I (x,b)dx d b
n=l fl .f f

00 I I

X X X I, I '(x'»l —P) I'g'(xl', b'I P) exp ——f g I I'( bx')d dx'b'
I 1f . . . f~ f'

I f I

X 1 —g g [1 PI, .I (
'. ,b'.;,—b, ,b )]

J
j=1

Xdx&d g ' ' 'dx d b dx&d g ' ' dxId 61

The sums over l and fi can be evaluated, giving
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QO

1 f)
ee J (d X X

~

x'( &, &(
' ' ' x(x„,b„(exp —f X I'fx(xb)dx deb

n=1 fl . .f„ f
e

1 —exp —f g I'~&(x', b' p—)Pff . . .f dx'd b' dx, d'b
f t l n

The number of partonic collisions can grow very rapidly with the atomic mass, but the number of partons involved in
the interaction will grow much less. It is then convenient to introduce the concept of wounded parton (analogously to
that of wounded nucleon ) as a parton that has suffered at least one semihard interaction. Equation (8) is a convenient
expression to estimate the average number of wounded partons. One may in fact expand Eq. (8) in terms of the number
of wounded partons of nucleus B:

&H =fd P g g, I „'(x~,b~) I „"(x„,b„)exp —fg I f (x, b)dx d b
n

——1f, f

X g, f g I'fs'(x', b' P)Pff'—
k=1 ' f' f dXd b

X exp —f g 1 s(x', b' P)Pf .
—. . f dx'd'b' dx, d'b, dx„d'b„,

f'

so that one may write

AB ~ ~(k)
k=1

The average number of wounded partons is then easily obtained,

(10)

(k)oH = g ko'„"s
k=1

that can be immediately written as

(k)oH =f d P y y, I „' I'„"exp —f y rf„(x,b)dxd b
1 f) f„

&&+If (x', b' P)Pff . . . f dx'd b'dx d b ' ' 'dx„d b„
f'

Using Eq. (6) and introducing the definition

r]f„(x,b) =1—exp —f g I f (x', b)&ff (xx')dx'
f

(13)

one gets

(k )oH = f d Pdx'd O' Q I s(x', b' —P)ri„(x',b') .
f'

(14)

To obtain Eq. (14) the probability of a semihard interaction o f (xx', b —b') has been treated as a 5 function in b —b'
in comparison with the much smoother b dependence of the average number of partons I (x,b). The cross section
off (xx') is then the usual parton-parton cross section integrated on the polar c.m. angle with the cutoff provided by

p, '". The integral in the exponent is also regularized with the same cutoff.
Expression (14) has a transparent physical interpretation: The factor rl represents the probability for a parton of nu-

cleus B to have at least one semihard interaction with nucleus A, so that the average number of wounded partons of 8
is given by the average number of partons of B multiplied by the interaction probability.

If one wanted to look rather at the average number of semihard partonic collisions ( v) then (as discussed in Appen-
dix A) one will have to replace the square brackets in Eq. (5) with g"I &o . Since the sum over p can be replaced with
nlofIf, all partons being identical for the present purpose, one is able to carry out the sums over l and m so that the re-
sult takes the simple expression

(v)o" = g f d PI f (x„b,)l f (x', ,b, P)off (x,x', )dx dx—'d b, , (15)
ff'

that is the single-scattering expression given by the QCD parton model.



41 MINDETS: CROSS SECTION AND ENERGY DISTRIBUTION. . . 3371

One has then checked that the approach is consistent with the cancellation involving the average number of col-
lisions. On the other hand, quantities that are more directly accessible experimentally, as will be discussed in the next
section, are related rather to averages involving wounded partons.

III. AVERAGE ENERGY AND DISPERSION

The energy produced by semihard partonic interactions is the energy carried by the wounded partons (since a parton
is wounded when it suffers at least one semihard interaction). Also the dispersion in the energy produced will be related
to various averages involving wounded partons. We then start discussing these averages.

A further way to obtain the average number of wounded partons of nucleus B, which will be convenient later, is the
following: One may sum over the partons of each given partonic configuration of B (the sum over the index s in the fol-
lowing expression) and then for each term in the sum one will ask for the probability that the parton of B taken into
consideration will have at least one semihard interaction with A (the square brackets):

&k)o"'= fd'P y g ', 1-„(x„b,) I-'„"(x„,b„)
n=1 f) f„

oo k I I I

g Q I ii'(xi, b', —P) I *(x,',b,
' —P) I "(x„',b'„—P)

k=1f' . . . f' ' $=1 f'

Xexp — Iz x,b xd b
f

X exp —f g I fbi(x', b')dx'd b'
f'

Xdx, d b, . dx„d b„dx', d b', dx,'d b,
' dxkd b„' . (16)

With a little algebra Eq. (16) will give back Eq. (14).
One may now easily obtain ( k ) and ( kn ) (namely, an average involving both nuclei A and B). A natural extension

of Eq. (16) will lead to
00 n

(kn)on =fd P g g, g g I „'(x„b,) I „'(x,b ) I'~J(x„,b„)exp —f QI f dx d b
n =1 f) f„' j=1 f. f

00 k I I

, g gI' '(x', , b', —P) I' *(x,', b', —P) I q"(xk, bk —P)
k=1 f ~ ~ ~ f ' s=1 f'

X exp —f Q I fsdx'd b'
f'

n f(fsII II(' —&' *)
1=1,1%j f( i =1)i/s f'

Xdx id bi
' ' ' dxqd b dx id b 1

' ' ' dxkd b/

In Eq. (17) a simplification was made by neglecting the case ( =j and i =s that correspond to the possibility of in-
teraction for the parton s of B with the parton j of A, s and j being the partons taken into consideration in evaluating
the average. (The relevance and validity of this simplification is further discussed in Appendix B.) Given the very large
amount of partonic interactions in the regime considered here, this simplification will make only marginal corrections
to an exact result. On the other hand, the Snal expression obtained in this way has a very simple and transparent physi-
cal meaning. With some manipulations one gets, in fact,

(kn)o~ =fd Pdx'd b'dx d b g I f (x,b)+z(x, b —P)l fbi(x', b' —P)+ (x', b'), (1g)
ff'

where the probability for a parton to have a semihard interaction with a nucleus is bounded by one also in the limit of
p, "close to zero: At a given transverse coordinate b one has, in fact, some average number of partons of the kind f:
I „(x,b) from nucleus A multiplied by the interaction probability with nucleus B: riff(x, b —P). The same operation is

dane with B and Snally one has to sum over all possibilities.
The quantities that we are more interested in are, however, the averages involving the energy of the wounded par-

tons. The reason is that one can then estimate the semihard energy spectrum, or better its average value and the disper-
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sion. Apart from a trivial rescaling we are then interested in (xs ), (xz ), (x„),(x„),and (x„xz ). Let us then look
for &x ):

00 oo I r

(x )cr" = f d P g g I „'(x„b,) . . I „"(x„,b„) g g, I '(x', ,b', —P) . I' "(x„',b'„—P)

t r

X(x,Pf . . .f + . +xkPf . . . f )

X exp —f g I „(x,b)dx d b exp —f g I z(x', b')dx'd b'

f f'

that will give

Xdx]d b&
' ' ' dx~d b~dx)d b) ' ' ' dxkd bk (19)

(xz )o H
= f d P g g, I „'(x~,b&) . I z" (x„,b„)exp —f g I f (x,b)dx d~b

n=1 f). f„ f
X gx'I'fear(x, b' P)Pff—. . .f dx, d b, dx„d b„dx'd b'

f'

and finally

(xz)crH = f d Pdx'd b'gx'I fz(x', b' —P}rI&(x',b')
f'

(20)

(21)

that can be compared with Eq. (14).
One will notice that in the limit of small p,

'" values
Eq. (21) is well defined, since the interaction probability is
explicitly less than one and the average momentum car-
ried by the partons of nucleus B is regular as a function
of the cutoff. In order to estimate (xz ) one will rewrite
Eq. (19} replacing the sum of x "s with a sum squared.
One will then get two contributions:

D(P)—:((x„+x ) )&
—(x„+x )&

= f yx'rf„(x, b)~f, (x,b P)dx d'b-
f

+ f y x'I f,'(x, b P)g„'(x,b—)dx d'b . (24)
f'

The energy spectrum is then easily written down with
the help of the central-limit theorem:

k

(x&+ +x/)~= g (x,') +
k

xfxJ ~

I,J = 1, lWJ

d (TH = f d P[1—exp[ —(n(P))])

The first one will give

f d Pdx'd b'g( )xI f (x', b' —P)rjf„(x',b')
fr

and the second one

f d P dx'd b'gx'I f (x', b' —P)gf„(x',b')
f'

(22a)

(22b)

which, as in the previous case, is a regular function of the
cutoff. For the dispersion at fixed impact parameter
D(P) one will have

(after having neglected the possibility for the two partons
of B carrying the fractional momentum x and xJ to in-
teract with the same parton of A).

When looking at (x„xz) one will get, analogously
with (kn ),

(x„xz)oH =fd Pdx'd b'dx d b

XgxIf (x,b)gz(x, b —P)
ff'

Xx'I f (x', b' —P)rIf„(x',b'),

(23)

~E —&E(p)) ~'

v'D(p)~ D(p}
(25)

IV. QUANTITATIVE ESTIMATES
AND CONCLUSIONS

In the present paper we have tried to gain a better in-
sight into the problem of the divergence of the
@CD—parton-model cross section at x =0. This singular
behavior is no longer present in the expression for the in-
tegrated semihard cross section after having included in
the interaction an infinite class of multiple parton col-
lisions, namely, disconnected (or parallel) multiple parton
collisions. It is, however, still present in average quanti-
ties. To overcome this problem a more satisfactory
description of the interaction is needed; we have then
given an expression for the semihard cross section where

In Eq. (25) (n(p) ) is defined implicitly by Eq. (5) giving
the semihard cross section o H .

The feature of Eq. (25) we want to stress is that it is a
regular function in the limit of small values of the cutoff

P, '", since the average values entering in Eq. (25) are well

defined also in this limiting case.
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all semihard partonic interactions have been taken into
account. To achieve this goal we have basically made the
assumption of complete incoherence among different
semihard partonic collisions, so that the picture of the in-

teraction is a purely probabilistic one and the semihard
cross section is given by Eq. (5).

Given the expression for the semihard cross section we

have been able to estimate the mean value and the vari-
ance of the energy going into semihard partonic col-
lisions. These quantities are conveniently evaluated in-

troducing the concept of wounded partons and are regu-
lar at sma11 values of x. The semihard energy spectrum
can then be estimated, the expression being Eq. (25) in
the preceding paragraph. To have some qualitative feel-

ings on these issues we find it interesting to comment on
the limiting situation of Eq. (25} for A ~ ao and later to
compare the limiting distribution to a more realistic case.

One may in fact notice that, at a fixed impact parame-
ter, the average energy produced (,E(P})and the disper-
sion D (P} are linear in the atomic mass A [see Eqs. (21)
and (24)] in the same way as the total energy. It is then
convenient to introduce a new variable e defined as the
energy divided by the total energy available. In the limit
of A ~ Oo one will notice that the Gaussian energy distri-
bution at fixed impact parameter P in Eq. (25) will be-
come a delta function as a function of e:

1
exp

[E—(E(P) &]' ~5(e—e(P)) .
&D(P)~ D(P)

For large values of A the dispersion in the semihard
energy produced in the interaction is then negligible at a
given impact parameter. The consequence is that a mea-
sure of the semihard energy is also a measure of the im-
pact parameter: if A is very large the energy carried by
the nucleons in the overlap region between the two in-
teracting nuclei will be wholly released by semihard
scatterings. Measuring that amount of energy will then
give the amount of overlap and therefore the value of the

impact parameter. One will notice that, in such a situa-
tion, in order to measure the energy produced in the
semihard scatterings, it would not be really necessary to
measure all the energy carried by all the final-state mim-
jets. It would be enough to be able to measure the energy
carried by the spectator nucleons (the ones that will not
happen to be in the overlap region).

In order to have a more quantitative feeling on these
remarks, and without claiming to perform detailed pre-
dictions, we have performed some numerical calculations.
The relevant quantities to be evaluated to be able to esti-
mate do H /dE [Eq. (25)] are ( n(P) ), (E(P) ), and D (P).
To this purpose explicit expressions for I /(x, b) and for
8 (xx') have to be given. The interaction probability
& (xx', b —b'}, that enters in the general expression for
o H [Eq. (5)], appears only convoluted with the average
number of partons I (x,b) and since the range in b of I
is of the order of the nuclear dimension while the range
in b —b' of & is rather of the order of (p, '"} ' one can
use the approximation

f g I /(x', b')&~/(xx', b —b')dx'd'b'
f'

(x', b)& (XX') .
f'

For the average number of partons I /(x, b) we have used
the factorized expression

I'/(x, b) = AG/(x) (R —b )' 8(R b—)
3

2m'

where G (x } is the average number of partons with fiavor

f and fractional momentum x in a nucleon, A is the
atomic mass number, and the dependence on b corre-
sponds to a uniform spherical distribution.

For 8//(xx') we have used the expression given in
Ref. 3 of the gluon-gluon cross section integrated in the
polar c.m. scattering angle with the cutoff p, '".
Effectively we have considered the case of two fiavors
only, gluons and quarks, the elementary cross sections be-
ing equal apart from a relative scale factor.

(E(P)) and D(P) are then estimated using Eqs. (21)
and (24). The quantity (n(P)) is obtained writing the
cross section uH, as given explicitly in Eq. (5), in the
form of Eq. (1}. Since doH/dP depends weakly on
(n(P) ) when the number of collisions is large, we have
approximated (n(P) ) with ( v(P) ) that can be obtained
from Eq. (15). The approximation corresponds to include
in the evaluation of (n(P)) disconnected semihard par-
tonic collisions only, as in the eikonal models.

The kinematical region of interest is that one of small
values for the fractional momentum x: We find that with
a cutoff p,

'" around 3 GeV and for energies of 2 TeV in
the nucleon-nucleon c.rn. system one is not very far from
the limiting situation where all the energy in the overlap
region is released by means of semihard collisions. Typi-
cal values of x are therefore x =10 . For these values of
x the usual evolution equation is no longer adequate'
and one has to resume the logarithms of x. The behavior
of the parton distributions as a function of x in the
small-x limit gets therefore changed in a sizable way: a
behavior of x with J effectively of the order of 1.5 has
been argued. ' In performing our calculations we have
used the set 3 parton distributions from Ref. 16 where the
behavior of the gluon distributions was obtained requir-
ing the behavior x ' . As a scale factor in the parton
distributions we have used Q =(p, '")~. In the region of
interest, both for x and Q, the values provided by these
gluon distributions are not dramatically different from
those obtained in the recent analysis of Ref. 17. The
semihard cross section, that appears explicitly as dimen-
sional factor in the multiparton distributions, has been
assumed to be the geometrical cross section, namely,
oH =40X4X A mb. In the elementary partonic in-
teraction a k =2 factor has been assumed.

The results are presented in four figures.
In Fig. 1 one is plotting the average fraction of energy

released by means of sernihard collisions as a function of
the ratio P/R, with R the nuclear radius. The case taken
into consideration is that of A =8=208 and of 1 TeV
per nucleon c.m. energy. The dashed-dotted curve refers
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10.
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+tot
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FIG. 1. Average fraction of energy released by means of
semihard collisions as a function of the ratio P/R for
A =B=208 and c.m. energy of 1 TeV per nucleon. The
dashed-dotted curve refers to a cutoff p, '"=4 GeV, the dashed
one to p, '"=2.5 GeV, while the solid curve is the limiting case
where all the energy in the overlap region has been released.

to a cutoff p, '"=4 GeV, the dashed one to p, '"=2.5

GeV, while the solid curve is the limiting case where all
the energy in the overlap region is released by means of
semihard collisions.

In Fig. 2 one is plotting (1/o 0 )dcrH /de as a func-
tion of e:E/E„, f—or Pb+Pb collisions with c.m. ener-
gies of 1 TeV per nucleon. The dashed-dotted curve cor-
responds to a cutoff p, '"=4 GeV, the dashed curve to a
cutoff of 2.5 GeV and the solid curve to the limiting case.

In Fig. 3 one is looking at the effect on
(I/aH )doH /de of changing the atomic mass A, hav-

ing kept fixed the cutoff (p, '"=2.5 GeV) and the c.m. en-

ergy per nucleon ( = 1 TeV). The dashed-dotted curve
refers to A + A collisions with A =100, the dashed one
to A =208, and the solid one is the limiting case A ~~

FIG. 3. Differential cross section as a function of e for
different atomic masses in A + A collisions with p, '"=2.5 GeV
and with 1 TeV per nucleon c.m. energy. Dotted curve, A =10;
dashed-dotted, A =100; dashed, A =208. The solid curve
refers to the limiting case that can be understood as A ~ 00.

(all the energy in the overlap region is released). Al-

though the calculation is no longer reliable for small
atomic numbers, we have also included in the figure the
case A = 10 (dotted curve).

Figure 4 shows the effect on (1/o.H )doH /de of
changing the c.m. energy per nucleon keeping fixed both
the atomic masses ( A =8 = 100) and the cutoff
(p, '"=2.5 GeV). The dashed-dotted curve refers to a
c.m. energy of 0.5 TeV per nucleon, the dashed curve to a
c.m. energy of 1 TeV per nucleon, and the solid curve
refers to the limiting case that can now be understood as
the limiting situation where one has an infinitely large
amount of energy per nucleon in the c.m. system.

10.

10. Hd AB

~AB
H

1 d~AB
H

0' ckH

FIG. 2. Differential cross section as a function of e=E/E„,
for Pb+Pb collisions with c.m. energy of 1 TeV per nucleon.
The different curves are as in Fig. 1.

FIG. 4. Differential cross section as a function of e for
different c.m. per nucleon energies and with Axed atomic masses
(A =B =100) and cutoff (p, '"=2.5 GeV). The dashed-dotted
curve refers to a c.m. energy of 0.5 TeV per nucleon and the
dashed curve to a c.m. of 1 TeV per nucleon. The solid curve is
the limiting case that can be understood as the case of an
in6nitely large amount of energy per nucleon in the c.m. system.
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The indication from the numerical calculation is that
this limiting case is not as far as one could perhaps have
expected. Very roughly, at these c.m. energies, the basic
description of the semihard interaction between the two
nuclei is represented by the simple geometrical picture
where most of the constituents in the overlap region take
part in the interaction, all the others being spectators.
When moving from the hard to the semihard region uni-
tarity will switch on different multiple-scattering process-
es. In the regime where o;„d-—cr;„,1„„,one has discon-
nected multiparton scattering. When rifz(x, b) is sizable
one has parton rescattering. The first regime wi11 start at
higher p, with respect to the second because of the
different dependence on A. One will notice in fact that,
when it is possible to keep only the term linear with & in
the expansion of g, the average quantities are those com-
puted with the single-scattering expression given in the
QCD parton model. Similar conclusions have been ob-
tained in the framework of extremely high-energy ha-
dronic collisions. ' The large variation of the output
semihard energy distribution as a function of the cutoff

p,
'" shows that the parton distributions at values of

x =10 or less are the really critical parameter.
Our analysis is based mainly on two different assump-

tions. The first is the Poissonian expression for the mul-
tiparton distributions. The second is the assumption of
incoherence between different multiple-parton collisions.
Our justification for the first is that we expect parton-
parton correlations to be relatively small in a large nu-
cleus. Because of purely combinatorial reasons, it is in
fact easier for a parton which suffers two or more col-
lisions to hit partons originating from different nucleons
than partons originating from the same nucleus. We be-

lieve that a good support for our second hypothesis is the
present understanding of the high-energy inelastic
nucleus-nucleus cross section in terms of the inelastic
nucleon-nucleon cross section. In our opinion, however,
both hypotheses can find a sounder justification and we
are presently investigating this possibility.

APPENDIX A

We wish to show here how one can derive the average
number of partonic collisions, from the expression for the
semihard cross section [Eq. (5)]. For simplicity we will
indicate here all the degrees of freedom of the interaction

probability & ' with only one index.
Since the factor

t =1g =1f f' v=1
(A 1)

+ ' ' ' +X2X3 ' ' ' Xk+3 ' ' ' ) (A2)

so that one is choosing in all possible ways k elements in
a set of n, summing the products and dividing by the
number of combinations.

I.et us first consider

in Eq. (5) is multiplied by a symmetric expression it is
convenient to introduce the symmetrizing operator 4
defined as

+XIX2 Xk =(XIX2 Xk+XIX2 Xk+I

+ ' ' ' +X1X2 ' ' XI +3

Q
(1—&) (1—o )& &

V 1 v v+1 Q
v=O

Q V Vg( —1)&, &, &+, . &g

g v QI
( —1)I'& &

II I2 (Q —v)!(v—p)!pI 1 Q
—v+p

( Q —p —g)IQIpl( Q —g )I ] g —x

One wi11 then write the relation

A

(1—1)g &I &I =1 .
A, =O g —A,

(A3)

Q —1 Q
(1—&I) (1—&„)&„+I &g=eV g —(v=Q)=1 —(1—& ) (1—& ) (A4)

v=O v=O

We can now evaluate the average number of collisions:

Q
4 g v „(1—&, ) (1—&„)&„+,

g —I Q —1

&g=SQ g
O P

(1—&, ) . (1—&g, )&g . . &g

g —I Q
—1

=SQ&g g P
(1—&, ) . (1—&p)cr +, &g

which is the relation we wanted to prove.

=4'Q&g=&I+&2+ . &g, (A5)
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APPENDIX B

In this appendix we will show how to obtain the complete expression for (x„xz )OH and (xs )uH, including the
correction term that has been neglected when writing Eqs. (22) and (23) in the text. To simplify the notation we do not
write the indices identifying the various species of partons.

Following Ref. 9 we introduce the generating functions for the collisions between n partons from nucleus A and m
partons from nucleus B:

F(x„.. . , x„;y&, . . . , y )= g g (1—o, +x,y &, ) .
i=1 j=l

(B1)

The expansion of I' in powers of x s and y s provides all the probabilities for multiple collisions: e.g. , the coefficient of
the term containing x; 'x; '

y 'yj ' is the probability fori& to collide n& times, i2n2 times, etc. (One will notice
1 2 JI J2

that g„n„=g,m, by construction. )

We then introduce the notation

F(1,1)=F(1,. . . , 1;1, . . . , 1)=1,

F(0, 1)=F(1,. . . , , =0, . . . , 1;1, . . . , 1)= g (1—o;, ),
J=1

F, (1,0)=F(l, . . . , 1;1, . . . ,y, =0, . . . , 1)= g (1—o;, ),
(B2)

F, .(0,0)=F(1, . . . , x; =0, . . . , 1;1, . . . , y) =0, . . . , 1)

rr(1-~ ) rr
14j kWi

To get the probability for i to have at least one interaction one then writes

n

xq', y~ ys)l =o,y=o=F(1, 1)—F (0, 1) .
!

(B3)

The probability for x; and y to have at least one interaction is, analogously,

F(1,1)—F;(0, 1)—F (1,0)+F; (0,0) .

One then has

(B4)

1(x„xs)crH = fd P Q, I „(x„b,) I"„(x„,b„)exp —f I „(x,b)dx d bA

00

X g „,I'z(xI, b', —P) I s(xk, bk —P)exp —f I s(x', b')dx'd b'
k=1

n k

X g g x;x'[F(1,1)—F;(0, 1)—F (1,0)+F, .(0,0)]
i =1 j=1

dx„d b„dx ~~b~I

The contribution from F(1,1) is

fd'PI „(x„b,)I s(xI, bI P),dx, d'b, xId—xId'bI .

The contribution from F;(0, 1) is

(B5)

(B6)

d PI „(x„b,)(1—8» )I s(xI, bI —P) exp — 1 z(xz, bz P)&&2dxzd b'z x—, dx, d b, x', dx', d b', . (B7)

The contribution from F (1,0) is obtained exchanging A and B in F;(0, 1). The contribution from F,"(0,0) is

fd P,dx, d'b, ', d ', d b', I „(x„b,)(1—8„.)l s(x'„b', —P)

X exp —f I s(xq, b2 —p) ( o1 2dxb22 exp —f I „(x2,b~)8~, dx2d b2 . (B8)

All together one gets
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f d Px, dx, d b, x', dx', d b', 1 „(x„bi) 1 —exp —f I ~(xz, bz —P)o,2dxzd bz

XI (x', ,b', —P) 1 —exp —f 1 „(»2,b2)oi, .dx~d b~ (89)

that is the expression given in Eq. (23},and the correction term

fd'Pxid»id'bi»id»'id'b'iI g(xi, bi)o ii I'a(» i, bi —P)
r

X 1 — 1 —exp —f I'a(»2, bz —P}o,2dxzd bz
't

1 —exp —f I „(xz,b2)&2, .dxzd bz . (810)

One will notice that, in the limit of a large number of collisions, the term in the curly brackets will get a negligible con-
tribution from the overlap region between the two nuclei, unless b, or b& are close to the nuclear border.

The correction term is then a term of order A'~ while the dominant term is of order A ~ . In order to evaluate the
correction term to the squared energy emitted by the partons of nucleus B we make use of Eq. (83) twice. We get

00

(xa}o'H =f d P g, I"„(x„bi) I „(x„,b„)exp —f I „(x,b)dx d bA 1& 1

00

„,I' (x', ,b', —P) 1 a(xk, bk —P) exp —f I s(x', b')dx'd b'
k=1

X g »J' [F(1,1}—F (1,0}]

8 1 B
+ g g »J'x('[F(1, 1)—F, (1,0)][F(1,1)—F;(1,0)] dx, d b, dx/, d bk .

j=1 i'
(811)

(812)

where V is defined as

V= exp fo(x",b";x,b)1 „(x,b)&(x,b;x', b')dx d'b —1 .

From the first term we get the expression (22a); the second term can be splitted into two pieces, the first one of which
reproduces expression (22b) while the second one is

f d Px "Ia(x",b"—P) V(x', x";b',b")x'1 ~(x', b' —P)
T 'I

X exp —f I'z(x, b')o(x, x')dx exp —f I z(x, b")o(x,x")dx dx'dx "d b'd b",
J

One should notice that, since & is a probability, it will
never exceed 1; as a consequence the positive exponential
in V will always be compensated by the negative ones in
expression (810). In the limit of a large number of par-
tons one has then that Eq. (812), analogously to Eq.
(810), gives a contribution of order A '~ to be compared
with the dominant contributions that are rather of order

APPENDIX C

In this appendix the origin and consequences of possi-
ble deviations from a strict Poissonion distribution for
the nuclear parton population are discussed. We take
into consideration two possible sources of deviation: The
first one is the eSect of the intermediate nucleon struc-
ture, which mainly enters into the game inducing correla-
tions; in the second case the partonic distribution devi-
ates from a Poissonian already at nucleonic level. The
treatment discussed until now relies on a partonic

description of the whole nucleus [see Eq. (4)] and the only
explicit remnant of the nuclear properties is in the index
A appended to the functions I'~~ (x;,b; ).

The e8'ects of the intermediate nucleonic level could
show up in difFerent ways. We have chosen a well-defined
nuclear e8ect which is certainly present; it is the correla-
tion between nucleons and the related fluctuation in the
nuclear density.

In the absence of density fluctuations, partonic Pois-
sonian distributions from the single nucleons would result
in a strictly Poissonian distribution of partons for the
whole nucleus, at fixed b; if, on the contrary, there is a
fluctuation in the nucleon number, at a fixed impact pa-
rameter, then the resulting distribution cannot be Pois-
sonian, as discussed, in general, in Ref. 9.

We will consider here the correlations rising from the
Pauli principle. The nucleus will be represented by a Fer-
mi gas (at zero temperature) in a rigid box as, e.g., in Ref.
19.

Starting from the normalized nuclear wave function
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one defines

w"'(r, )=f dr& dr„w„,
w (ri r2)= fdr3. ' dr'~w~ .

(Cl)

F„(s, s„)=f dz) dz„wq,

F'"(s )= dz, wI",
1

F~ ~(s), sp) = fdz, dz2w

where r =g +z
Following Ref. 19 we get

Aw' '(r„r2)= [w(r))w(r2) —c(r„r2)] .
A —1

(C2)

The correlation function c depends only on the relative
coordinate r=r, —r2. Actually,

1 9 sinuc(r)=—. cosu
u4 u

and

Since, in this description, the surface effects are neglect-
ed, the one-body distribution is constant: m"'=1/V,
with V=(4n/3)R the volume.

We always work in the impact-parameter representa-
tion and therefore it turns out to be convenient to intro-
duce the distributions

F~ (s)=f($)= ( I s /R2)1/2g(R &)
2R
V

F' '(s, , s2) —f(s, )f(s2)+g(s, ,sz),

with

(C3)

1 A
g(s&, s2)= f (s, )f(sz) — dzldz2c(r„r~)

and

fg(sl&S2)dsi =fg(sl~s2)ds, =O . (C4)

The analytical expression for g is rather cumbersome; in
the case s, =s2 (that is also the case where the effect of
the Pauli principle is larger) one gets, however, a simple
expression.

In this case F' ' is given by

fd rc(r)= 1

AV
'

where u =rkF and the Fermi momentum is taken equal
both for neutrons and protons (E =Z =

—,
' A ),

k =—'m A/V.F 2

An important property of c is that it differs sizably
from zero only in a range of r which is, in a heavy nu-
cleus, quite small with respect to the nuclear radius; as a
consequence the integration in r can be extended to
infinity.

Going to the impact-parameter representation we get

R +SF' '(S——'s, S+—'s) = f (S) l ——
2 2 A 1 4 (R&—g2)2 F

(C5)

The first part is from the factorized part (ff), the second from the correction (g).
The main observation is that, while for r, =r2 m' ' is zero, for s, =s2 F' ' is not zero. The negative correcting term is

roughly 0.2 for A =200; the effect then is not a very relevant one unless s~r, where, on the other hand, the surface
effects are important. (If s is very close to R the expression for F' ' can no longer be trusted since the integration over z
cannot be done over all the real axis in that case. )

As expected the z integration softens the effect of the Pauli principle in a rather efficient way; as a consequence, when-
ever an impact-parameter description is allowed, the effect, on large nuclei, can be treated perturbatively. We will then
work out a definite example (neglecting for simplicity fiavor indices). The semihard cross section [see Eq. (5)] then takes
the form

o" = fd PIIdsF„(s, s„)IIds'F (s', s' }

1
X Q I(xz] bz] sz) ' '' I(xz bz sz)

X y (, r(x„', ,b'„—s'„). I(x,', ,b'„—s', )
Y'

X exp —A f I (x,b)dx d b exp Bf I (x', b'}dx'b —b'

A "z B I),

l —II II II II(l &. ;,J) IId d 'IId'bd'b'
Z=l i =1 Y=1 j=l

where Z = 1 . A, Y= 1 . . 8 refer to the nucleons in A and 8, I are the parton distributions of the single nucleon,
and [nz] denotes the indices n, . n„ that have to be summed.

The mean energy is easily obtained:
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(C7)

rl has been defined in Eq. (13); in this case, however, I' refers to a single nucleon. The function Fs is symmetric in its
arguments so the sum gr gives simply a factor 8; moreover, Fs can be integrated over 8 —1 arguments giving fs(s');
on the contrary, all the arguments of F~ are present also in 1 —q and therefore a more detailed treatment is needed in
this case.

In general one may write

F„(s)=f„(s,) f„(s„)+f„(s,) g„(s,sk) f„(s„)
+f„(s, ) h„(s~s„s, ) f„(s„) +f„(s,) g„(sjs„) g„(s~s„) f„(s„)+ (Cg)

Since the effect of the correlation is not large we keep (in addition to the factorized term) only the first-order term in g.
Introducing this truncated expression in Eq. (C7) and using the approximation (1—y)"=e ~ we get

(x )o" =fd'13Bf (s')I'(x', b' s')x'—ds'

X 1 —exp —A ff„(s)r)(x',b' s)ds—

2

fg(K, I')g(x', b' —s)i)(x', b' —s) exp —( 3 —2)ff„(s)rl(x', b' —s)ds d ad s+ (C9)

The nuclear parton distributions are obtained convo-
luting f with I . More precisely,

r, (x', b —P)=a ff (s')I (x', b' —P—s')ds',

where, keeping into account that fz is centered around P,
one has defined fo as fo(~s' —P~)=fs(s'). The compar-
ison with Eq. (21) shows two differences: The first is the
term in g; the second is the appearance of g at the ex-
ponent. One will notice that if rI is "small" then i) = I 8
and defining

I „(x,b„|=A If„(s„)Px,b —s„)ds„

one gets the same exponent as in Eq. (21). The correction
term in (C9) looks proportional to A and thus potential-
ly large. It may, however, be recast in the form

,' f I „o—I„&(glff) and, in accordance with the previ-
ous discussion, the term in parentheses is small.

The same procedure can be applied also in computing
(xs ) and (x„xs ), and as the details are rather compli-
cated we will only sketch the calculation.

The term (xs) has three different kinds of contribu-
tions: one of kind x '„(energy squared of one parton), one
of kind x'rx, 'r (energies of two partons of the same nu-
cleon), and one of kind x'rx s. (energies of two partons of
different nucleons). The first two contributions do not in-
volve the correlation function for the nucleus B; the third
does. The term (x„xs ) finally will depend on the corre-
lation functions of both nuclei that will act between the
terms linear in I and the exponential terms.

In conclusion we see that a systematic way to treat the
density Auctuations of the nucleus is available and that
this kind of perturbation does not play an important role
in the problems discussed in the present paper.

There is a question about the parton distribution which
is complementary to the problem analyzed above, name-
ly, that one can ask how much the Poissonian distribu-
tion is fundamental for the conclusions which have been

drawn. The question in this form is too general, so we
will look at a much more specialized case, where one
keeps the distribution still factorized, but not Poissonian.
The alternative chosen is the negative-binomial distribu-
tion, which, although in a different context, has been sug-
gested as relevant in high-energy multiplicity phenome-
na."

We start, therefore, with a distribution

—a 'a
(
—)"A(x„b, ) A(x b ) 1 —fA(x, b)dx d b

From the exclusive distribution A one can derive the par-
tonic density which is

b) A(xyb)

1 —fA(x, b)dx d'b

One can use the previously given formulation in order
to calculate physical observables. As an example we find

(x' )o =f d 13dx'd b'x'2)(x', b' P)—
X 1 — 1+—f2)(x,b')o (xx')dx

(C10)

The geometric limit corresponds to J2)o ~ ao at fixed a.
As is well known one can obtain the Poisson distribution
and the related result in a limiting case:
A= I /a, a~ 0o, in fact in this case one gets back, from
Eq. (C10), Eq. (21).

This kind of distribution can be taken for the single nu-
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cleon, then inserted into the nuclear structure as in (C7)
(which remains valid provided an obvious redefinition of
r) is made) and, in the same way, Eq. (C9) is obtained.
When S is small, the approximation i)=XI& holds and

the parameter n disappears. We are induced to conclude,
in this example, that all the features of the Poisson distri-
bution are reproduced, not because of the original par-
tonic distribution, but because of the large- 3 effect.
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