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Bloch-Nordsieck regularization of QCD transverse-momentum distributions
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An expression for transverse-momentum distributions is presented for Drell- Yan-type processes:
it is infrared Anite, includes soft-gluon summation in the leading-logarithmic approximation and
reproduces the first-order perturbative results at large pT. In addition, our expression incorporates
soft QCD radiative corrections to that part of the cross section where hard bremsstrahlung dom-
inates. We compute W transverse-momentum distributions and average values for a set of different
energies: &s =630 GeV, 1.8 TeV, 6 TeV, and 18 TeV.

I. INTRODUCTION

The question of how final-state particles acquire their
transverse momentum in hadron-hadron collisions is of
great theoretical and phenomenological interest since it
can shed light on the dynamics of interaction between ha-
dronic constituents. A typical example is offered by the
Drell-Yan process, in which the final-state muon pair is
seen to acquire a Q -dependent transverse momentum
through initial-state bremsstrahlung from the colliding
quark-antiquark pair. ' This mechanism was shown to
hold for Drell-Yan pairs observed at the CERN ISR and
at Fermilab. At higher energies, the comparison be-
tween theory and experiments for the case of W and Z
production is considered to be an important test of QCD
at the CERN Collider. ' For transverse momenta of the
order of less than 10% of the Wmass, the calculation in-
volves the use of soft-gluon summation techniques, while
for higher transverse-momentum values the usual pertur-
bative expansion is quite adequate. However, since the
perturbative calculation diverges at small p~, particular
care must be taken in joining soft and hard terms, so as to
reproduce correctly the perturbative limit, and at the
same time avoid double counting in the soft region. We
would like to point out that this is a general problem,
present also in the case of jet production, where the ques-
tion of how to include both high- and low Er jets (the-
latter are often called, perhaps improperly, minijets) has
not been completely solved. In this paper we present a
formalism for regularizing the transverse-momentum
divergence which is based on an infrared regulator, rath-
er than the usual 6-function prescription. We believe this
method to be numerically simpler than the ones present
in the literature and to offer, in addition, a very transpar-
ent physical picture which can be applied to other prob-

lerns such as minijets.
We shall start with the soft QCD bremsstrahlung for-

mula which gives a finite distribution for W production in
the low-pT region. This formula can be derived using a
semiclassical approach based on the Bloch-Nordsieck
method for QED, but its validity has also been checked
through perturbative calculations.

We then apply the same formula to perform soft radia-
tive corrections to production of a 8'boson and one hard
jet. The subtractions needed to avoid double counting in
the soft region will then show how the soft bremsstrah-
lung distribution can act as an infrared regulator. We
present results at four different energies, v's =630 GeV,
1.8 TeV, 6 TeV, and 18 TeV, and show both the normal-
ized transverse-momentum distributions and the absolute
cross sections.

II. LEADING-LOG QCD RADIATIVE
CORRECTIONS TO W PRODUCTION

The two-vector pT probability distribution of the 8'
may be written in the parton model with QCD radiation
as

dP dP

dpT dKT

where

W y gluons

obtains its value from the transverse momentum due to
initial-state bremsstrahlung. The multiple soft-gluon
emission calculation (to all orders in a, ) is available in
the leading-log approximation ' (LLA). A calculation
which includes hard-gluon emission probability is avail-
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able to order a, in Ref. 5. A Monte Carlo calculation is

available to order a, in Ref. 7.
In the following we shall approach the problem using a

semiclassical four-dimensional derivation.
For soft massless quanta emitted by a semiclassical

source, the four-dimensional probability distribution is

I

given by
d P(K)= QP([nkj)6 K —gk'n„, d4K . (2)

k'

The four-dimensional 6 function selects the distributions
with the correct energy-momentum loss K. The above
distribution then reduces to

4

d P(K)= f exp iK x —. fd n(k)[1 e—xp( ik—x)] d K,
(2m)

(3)

where

d k
d n(k)= ~j„(k)~

0

with

=~'f fF(Q, )s(I, )5(pT I r—QT—)d QTd 1 T

The soft contribution to the differential cross section
for W production can then be written as

d ~soft

d prdy

2a,
/j„(k)/ =c,,Is v k2

and c,J 3 or 3 for quark or gluon source, respectively.
Thus, the distribution of the vector-boson transverse

momentum due to soft initial radiation is given by

d'P()»id» id d P
dKz. d j'

Performing the integrations in Eqs. (3)-(5), one obtains
for the soft radiation

dp soft = f b db Jo(pzb)exp[ —h (En,;b)],
pT pT

with

dawp

dp

=& g [q;(x „m&)q, (x2, m&)+ 1~2],

where

x1 ~7 e, xz=&re

mw p ma 1
2 2

S 3 s111 ga s

and with

(9)

(10)

where dp soft

F(Qr)—=
d QT

In Eq. (9) we have folded the soft distribution F(QT)
with the perturbative contribution, which in this case is
just a 5 function in transverse momentum.

The above distribution applies to the case when the
emitted gluon energy is not larger than 20—30%%uo of the
Wmass. For really-hard-gluon emission, when pT =mw,
the pT distribution is given by the first- and eventually
second-order perturbative expression. There is however
an intermediate range such as

X [1—Jo(bkT )]

kT 2W T kT 1 Jp b T
p

with

4as(kT) 1 En +QE11, kT—
f(kT)= ln

3n' kT E QE2 —k2—

8 Ett dkT 1 Eg +V Ea. kT—
h (Ea;b)= as(kr )ln

3n' 0 kT
'

E QE

Notice that the soft distribution depends upon the be-
havior of a, as kT~O as well as from the upper limit

Ew, which is rather arbitrary. For instance, the soft dis-
tribution discussed in Ref. 6 was obtained with a singular,
but integrable, a, given by

mw w mw

4
—pT—

where the W boson acquires its transverse momentum
through both soft- and hard-gluon emission, and we shall
concentrate in that region in what follows.

(k2) 12m. p
In[1+p(kT/A ) ]

with p =
—,
' and Ew =Mw/2' '. This choice of a, avoided

the introduction of the intrinsic transverse momentum, a
parameter needed to justify a nonzero (pT ) at very small
energies. Different choices for a, are given in Refs. 5 and
9.

III. LEADING-LOG QCD RADIATIVE CORRECTIONS
TO W+ JET PROCESSES

Consider the process drawn in Fig. 1 to which the sub-
process diagrams of Fig. 2 contribute. %'e now apply the
formalism of the preceding section to the process of Fig.
1 and write
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W
OUOOO

W

FIG. 1. W+jet production in pp collisions.

w+jet

p Tdp

dI. '"f p (QT)d kTd QT~ (pT kT QT)
d kTdy

dr. '"=J, F(pT kT—)d kT,
d kTdy

(12)

W

where dLI "/d kTdy corresponds to the cross section for
W+jet emission and F(QT) is the probability distribu-
tion for soft QCD radiation of total momentum QT. In
this way the total observed pT appears as the convolution
of two contributions: soft initial-state radiation together
with hard scattering Compton and qq annihilation in Wg.
However, of the two distributions, while F(pT ) is finite as
pT~0, dL"'/d kTdy has to be defined. To do that, we
start by considering the differential cross section for the
process shown in Fig. 1, i.e., order-a, corrections to 8'

production.
This cross section is given by'

d2 (1) d qq d qg
+

dPTdy dPTdy dPTdy

with

(13)

FIG. 2. Feynman diagrams for W production through qq an-
nihilation and Compton scattering processes.

and

4~& ~,V») 1 1 +T /X iX g XI /2X i X2
dx, g [q;(x„miq, )q, (x2, mii )+1+ 2]

pT y 9sin Hw ~ pT min x
&

—
—,'xTe

pT
~

i dxi 1 (xix2 T) + 4(xix2+q+ V)2

a, (pT) q g q;(xi, miq )G(X2, mii, )
dPTdy 3 Sin Oii

'
S "min Xi ,'XTei' X—iX—~ x &x2

—w+ V

(14)

+(1~2,V~ —V)

and with

mW, AT
2 2

We also have the definitions

2 T
—'XTe ~x, —v.

x )
—xTe2 T

2 T—,'x e~—v.

x min
1 —

—,'x e
2 T

V =x,x2+ v.—x &xTe

where &s is the proton-antiproton center-of-mass ener-

gy, G and q; are the (singular) gluon and quark densities,
respectively. We shall omit the explicit y dependence in
the following. All the calculations will be done for y=0.
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dL (1)
+f, F(pT kT)d'k—T,

qmax d kT
(16)

where, as kz becomes soft, the contribution of L '" is re-
duced, and we have an expression for the differential
cross section that joins smoothly the soft and the hard
contributions.

In order to get the overall W differential cross section,
we have to add the soft contribution of Eq. (9) to the hard
one of Eq. (12) without double counting. Double count-
ing may occur unless the hard contribution in the soft ra-
diation region is subtracted. Let q,„be the maximum
value for such soft-gluon emission defined as the kz--

integration limit E)1r in Eq. (7). Then one can avoid dou-
ble counting by writing"

d0' p qmax dL=cr F(pT)+f, [F(pT —kT)
d PT d'k~

F(pT)ld kT
where

+
2

F pz. —r —F pz. zd'kT
(17)

dL (1)
o' —=f, d'kT

&max d kT
(18)

and we notice that fd p T( d o /d p T )= ( o +o' ) because
the soft distribution F (p T ) is normalized to 1.

Then

This distribution has to be such that the average value
ofpz verifies

( 2 ) —( 2 )1st orderPr Pr

and this constraint will define dL"'/d kT.
First of all we rewrite Eq. (16}as

dc' p
2

=(o +o')F(pT)
d PT

dL (1)
&x'& Jxrr~=a. ~s'a. +, , far f, (r~a. —a. ~

—x~ar~Ã' .s'a.o'+o' d'k,
dL(')=fpTF(pT)d'pT+, ) f, k,'d'k,

o +o' dkT

and expanding F(pT ) we have, to first order in cz„

dL (1)
1 do'

fpT'f(pT)d'pT+, ) f, krd'kT= , , f—pT 2 d PTo+cr' dkT o+o' dpT

where f (pT } is defined in Eq. (8}and

der�

'/d pT is the first-order perturbative cross section, Eqs. (13)—(15). Then,

dL" ' do'
()

dk dkT
—(o 0+o')f (kT )

and, from Eq. (18},

cr'=f
2

d kT
'1max d kT

because f (kT ) is defined only up to kT=q, „(the maximum transverse momentum for soft-gluon emission).
The full distribution can now be written as

(2O)

do' dg'
cr +f d k F"'(pT)+ fd pT ~ -d kT 0 d kT

(oo+cr))f (kT—) [F""(pT—kT) —F "(pT)]d kT, (21)

where q,„ is the only parameter we have to specify.
The maximum transverse momentum for the soft radiation is, for y=O (Ref. 3), q,„=Q (1—z)/2&z with z =Q /s,

where s =x)x2s is the energy squared of the subprocess qq~8'g and Q =m)r in the case of 8'production. Then the
exact expression to calculate would be

=f dx, f(x»Q )f(x2, Q ) [o 5(x,x2 T)+o ']F"'(p—r, q»(x»x2))d PT

de'+ f d'kT, —[o '5(x,x, —T)+o ']f (kT)
d kz-

X[F '(pT kT, q,„) F"'(pT,—q,„)]—
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the expression for F pr&s values. Using t e ex

and (1 1)] we obtain

and

f ( )f( )(x —rl
2 l J~s 'x(q",„)=

f(x)f (x)I&~x

(22)
dp soft

=(o +cr')

do+p, fdk cr +o')(2n.k )Tf(kr)

'( )f (x)(x six)—J
(g) ~s 'r x(q(b) )

f;(x)f, (x)
x

1 1 t th ditWe can now ca cu a

(23)

XR (pT, kr~qmax ) (24)

re ulator has beench-Nordsieck infrared regu awhere the Bloc - or

in E . (24) extends fromm zero to 11d the integration in Eq.an te'

r e" d
(k ) rather thana, Q asin e. .

'
beCK

defined as

e
' '" [Jo(bkr) 1]—)= bdb Jo(bpr e ™x

0 rR(PT kriqm =xx0
a
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TABLE II. Average pr of 8'boson. 0.100 I I I I

I
I III I

I

I I I l
I

I 1 I I

~s (TeV)

0.63
1.8
6

18

&p &" (GeV)

7.27
10.96
14.86
17.8

&p, &'" (GeV)

7.36
11.15
15.22
18.6

0.075

0.050

0.025

done so as to be consistent with the argument of a, which
appears in f (kz ). Then for the small-kT limit we follow
Ref. 5 and use the expression

kg) 12m 1

1n[(kT+aA )/A ]

with a=2.
In Fig. 3 we show the normalized pz distribution for

the two values of q,„ for the same four values of the to-
tal energy as before. We have used the set of parton den-
sities given by Eichten, Hinchliffe, Lane, and Quigg'
(EHLQ) with A=0.2 GeV.

One can see that the two values of q,„gives a very
similar normalized distribution even at higher energies.
This is an indication of how stable our regularization pro-
cedure is with regard to the choice of the arbitrary sepa-
ration between soft and hard regimes.

From the above distributions one can numerically cal-
culate the average transverse-momentum value acquired
by the 8'boson at different energies: it is, again, rather
independent of the choice of q,„. We show, in Table II,
the relative numbers.

While the probability distribution is q,„ independent,
this is not true for the differential cross section, which de-
pends upon the chosen q,„value through the quantity
o f f

=o +o' ". In Table III we show the values of o
[Eq. (10)] and cr'(q, „) [Eq. (20)] for the four energy
values.

In Figs. 4 and 5 we plot the differential cross section
from Eq. (24) for the two values of q,„. At large-pz.
values, all the cross sections correctly tend to their first-
order perturbative result. An example of how our regu-
larization procedure works in recovering the first-order
perturbative result at large pT is shown in Fig. 6, for
v s = 1.8 TeV.

To further illustrate our normalization prescription, we
plot separately in Fig. 7, the soft contribution, the hard
one conveniently regularized once subtraction is per-
formed, and the total contribution (solid line) to the
diS'erential cross section for v's =6 TeV and q,„=36.6
GeV.

0.000
A

l. -0.025
A'0

'0

Q

10 20 30
P~ (GeV)

s i I a s i s I i i i s

40 50 60

FIG. 6. The first-order perturbative distribution (dashed line)

and the hard part conveniently regularized (solid line) for
v s = 1.8 TeV and q,„=32.6 GeV.

IV. CONCLUSIONS

08 s s e s

I

s s t e I I I I
I

l l I I

I
I I I I
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b'0
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0.2

0.0

The formalism which we have presented in this paper
regularizes the infrared divergence encountered in QCD
for transverse-momentum distributions, through a finite
Bloch-Nordsieck-type function. This regulator is used in
the cross section instead of the usual 5-function prescrip-
tion, to avoid the divergence at small pT in the first-order
expansion. Its physical justification lies in the fact that
the first-order calculation is meant to reproduce a physi-
cal process in which a hard jet is observed: in such a case
one must also perform soft radiative corrections and it is
through the latter that the Bloch-Nordsieck distribution

&s (TeV) 0 cT'(a)

TABLE III. Values of cr and 0'(q,„).
cr'(b)

-02 ~ /
I I I I I I I I I I I I I I

10 20 30
PT (G+V)

40 50 60

0.63
1.8
6

18

1.9 nb
3.7 nb
7.5 nb

14.6 nb

0.15 nb
0.5 nb
2.0 nb
6.0 nb

0.10 nb
0.3 nb
1.1 nb
3.4 nb

FIG. 7. The soft contribution (dotted-dashed line), the regu-
larized hard one (dashed line), and the total difFerential cross
section for &s =6 TeV and q,„=36.6 GeV.
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appears. At +s =630 GeV our method reproduces
within a few percent the calculations by Altarelli et al. in
the soft region and it can be improved further by adding
nonleading-logarithmic corrections. ' At Fermilab
Tevatron energies, our calculation predicts an average
transverse momentum for the 8'boson lower than that in
Ref. 5 (see Table II},and not very different from the one
found at CERN energies.
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