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We present the predictions of perturbative QCD for Compton scattering as a function of photon
virtuality. Individual helicity amplitudes are given, along with formulas to permit calculation of the
eN—e’'N'y amplitudes. We discover remarkable structure in some of the amplitudes as a function
of photon virtuality. Since eN—e'N'y contains a contribution from Bethe-Heitler scattering,
whose magnitude and phase are known, the phases of the virtual Compton amplitudes can in princi-
ple be measured by interference with it. It has been shown that the leading-twist behavior of high-
energy, large-angle Compton scattering is not affected by soft physics; thus at sufficiently high ener-
gies these predictions provide a stringent test of QCD.

I. INTRODUCTION

In collaboration with Sterman, we have recently
demonstrated' that the energy and angular dependence,
magnitude, and phase of Compton scattering are reliable
asymptotic predictions of perturbative QCD (PQCD),
unaffected by soft physics. As a result, prediction of the
virtual Compton (VC) scattering amplitudes, and elabora-
tion and verification of existing results>® for the real
Compton scattering amplitudes, have become important
goals. Virtual Compton scattering is of special interest,
as compared to real Compton scattering, for two reasons.
First, the photon virtuality provides an additional dimen-
sional variable so that predictions in this case are for a
function of two rather than one variable: g2/s as well as
t/s. Furthermore, due to the interference of Bethe-
Heitler scattering with the VC contribution to
eN —e’N'y illustrated in Fig. 1, phase information on
the VC amplitudes can be obtained more easily than in
the real Compton case. Thus virtual Compton scattering

(b)

FIG. 1. (a) Virtual Compton and (b) Bethe-Heitler contribu-
tions to eN —eN'y.

is a demanding testing ground for PQCD and, as we
show below, a sensitive probe of the nucleon wave func-
tion.

We find truly remarkable predictions for the behavior
of certain helicity amplitudes, reflecting subtle coherent
effects in the perturbation theory. These will be most in-
teresting to investigate experimentally. They also suggest
that the experimentally observed structure in the spin
dependence of pp elastic scattering may not be in conflict
with PQCD, as is widely supposed.

Except for technical complications in the algebraic
Feynman-diagram calculation coming from the nonvan-
ishing virtuality of the photons, and the fact that the for-
mulas for the amplitudes are considerably longer in the
virtual case, which makes the numerical integrations over
the hadron wave functions more time consuming, the cal-
culations are very similar in the real and virtual cases. In
this paper we present the details of our techniques, and
the helicity amplitudes for the real and virtual Compton
scattering processes yp—vyp, yp—yAT, yn—yn,
yn—yA® and yA* —yA™*. The latter reaction yields
insight into the physics of yp—yp and yp—yA™ and
may be of interest in experiments on nuclear targets.
Where our results overlap those of Refs. 2 and 3 we find
the numerical-integration results of the previous work to
have been inaccurate. We will supply a computer file
with our algebraic formulas for the Compton amplitudes
to persons requesting it, as they are too lengthy to give
here.

II. TECHNIQUES

The algebraic techniques and algorithms which form
the basis of our computer program DIAG, with which we
have obtained the Feynman amplitudes for the quark-
level scattering, will be described elsewhere. Using it, we
have reproduced known results for the meson and baryon
form factors, and for yy -MM’' and yy—BB’, and
have evaluated the amplitudes for meson-meson and
meson-baryon scattering. In short, the program which
we have used to produce the virtual and real Compton
amplitudes has been verified to work in a large variety of
cases. Some of the features arising when one photon is
virtual already occur in the form-factor calculations.
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Moreover when both photons are real the amplitudes are
related by crossing symmetry to the yy —BB ' ampli-
tudes, where our results agree with those of two indepen-
dent previous calculations.*’ Our algebraic formulas in
the g%—0 limit agree with those obtained by Maina®* for
real Compton using the program written by him and
Neri. We have checked that our expressions behave
properly in the g>—0 limit: amplitudes involving tem-
poral and longitudinal photon polarizations vanish, and
A r(0)= Ag, (m—0), where, e.g., A, refers to a helici-
ty amplitude for left (right) circularly polarized initial
(final) photons. Finally, we have checked the gauge in-
variance of our formulas under both U(1) and SU(3)
gauge transformations. For the above reasons we are
satisfied as to the correctness of the algebraic expressions
we use for the quark-level scattering amplitudes.

The quark-level scattering amplitudes, which depend
on scattering angle, g2/s, and the momentum fractions of
the quarks, must be integrated over the wave functions of
the initial and final baryons, describing how the quarks
share the hadrons’ momenta. This integration contains
integrable singularities corresponding to the kinematic
possibility that the scattering takes place as a sequence of
on-shell scatterings. Although it was shown in Ref. 1
that the singularity does not destroy the light-cone domi-
nance of Compton scattering, it nevertheless makes the
numerical integration difficult. Our approach has been to
simply keep the i€’s which belong in the propagators, so
that the integrand is explicitly complex, and evaluate the
result for a series of €’s. We find that it converges nicely,
as illustrated in Figs. 2 and 3 for one helicity config-

Compton Scattering Convergence
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FIG. 2. Predictions for the cross section of y;p. —v,p+,
for various choices of €.
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uration. Although the convergence is better in some
cases than others, in all cases it is excellent by the time €
is as small as 0.01. When € is less than ~0.005 the func-
tions are so singular that they cannot be integrated accu-
rately in a reasonable amount of computer time, which
accounts for the waviness of the curves for very small ¢;
this contains no physics. Unless explicitly stated other-
wise, results presented below are for e=0.005. The nu-
merical integration required to complete the work report-
ed in this paper consumed ~ 100 hours of Cyber 205 time
at the John von Neumann Computer Center.

Maina® took a more subtle approach, and Taylor ex-
panded the numerators of the singularities in a symmetri-
cal region about the singularity, so that the singular part
could be set to zero. We extensively investigated this
procedure, using his programs (because our final predic-
tions differ significantly from those of Ref. 3), and
discovered, somewhat surprisingly, that the numerical ac-
curacy of a Monte Carlo integration of his regulated am-
plitudes is actually much worse than either (a) what is in-
dicated by the error estimate of his integration routine
(VEGAS), or (b) that of our ‘“brute-force” regulation
method. It turns out that his regulation procedure, while
eliminating the singularity itself, does not result in a
sufficiently smooth function where the singularities ap-
proach the edge of the integration domain. Since our
algebraic expressions agree with his, our numerical re-
sults are well behaved, and we have identified a source of
numerical inaccuracy in his procedure, we believe that
the results presented here are the correct ones.

Compton Scattering Convergence
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IIL. eN —>eN'y

As shown in Fig. 1, e(k,h,)N(p,hy)—e(k’,
h,)N'(p',hy)y(q',A") receives contributions from both
virtual Compton and Bethe-Heitler scattering. Since the
latter is well known experimentally, study of the angular
dependence of eN —eN'y is in principle a good method
of investigating the phase structure of the virtual Comp-
ton process. We give below formulas for the Bethe-
Heitler contrlbutlon to the eN—eN'y helicity ampli-
tudes, B,, hyo in terms of the chirality-nonflip form factor

of the nucleon, F N (g 2). We also give formulas for the
v1rtua] Compton contribution to eN—eN'y, denoted
Ah hys in terms of the VC amplitudes, denoted V,,li‘

Here h, and hy are the electron and nucleon helicities,
and A’ and A are the polarizations of the produced and
virtual photons, respectively. A single helicity label for
each fermion line is sufficient because in the leading-twist
approximation used in this paper, initial and final helici-
ties are the same. Likewise, we do not retain the contri-
bution of the chirality-flip form factor, F?.

All the formulas we give apply equally well whether N’
is a nucleon or resonance such as A™; in the latter case it
is the transition form factor which enters the Bethe-
Heitler amplitudes. For brevity we shall refer below to
the final baryon as a nucleon. When we refer to an ampli-
tude and include only some of its helicity or polarization
labels, the statement is true for each of the possible
choices for the other labels.

We select a reference frame such that the Compton
scattering takes place in the center of momentum of the
initial (virtual) photon and baryon, in the ¢=0 plane,
with scattering angle 6, so that the initial and final proton
and final photon momenta are

p=P(1,0,0,—1),
p'=Q’'(1, —sin,0,
q’'=Q’'(1,sin6,0,cos6) .

—cosf) ,

Thus, when the reaction proceeds through virtual Comp-
ton scattering, the virtual photon has momentum

=(V'P1—02,0,0,P)
i.e, Q2= —g?. The initial and final electron momenta can
be taken to be
k =K (1,cos¢ sina,sin¢ sina,cosa) ,

k'=K'(1,cos¢ sina’,sing sina’,cosa’) .

The nine parameters P, Q, Q', K, K’, 0, ¢, a, and ' are
fixed in terms of the six independent invariants of the
eN —eN'’y reaction by imposing the requirement that the
virtual photon has ¢,=0, ¢,=P, and go=k,—k|
=po+qo—po.- Thus we have

K sina=K'sina’, K cosa—K'cosa’=P ,

0*=4Q"(P—Q'), s5,,=2p"-q'=4Q",

tyy=—2pp'=—2PQ'(1—cosb) ,
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Skp =2k -p =2KP(1+cosa) ,
t k = __'ZL:‘k:’::
tkq':_2k ‘q’

—4KK'cos¥(a’' —a) ,

= —2KQ'(1—sinf cos¢ sina —cosb cosa) ,
Spg=2k"-q’
=2KQ'(1—sinb cos¢ sina’ —cosO cosa’) .

We reiterate that the leading-twist approximation
which we make in our PQCD calculation is inherently
inaccurate with respect to order-m?/s corrections.
Therefore differences between, e.g., the usual definition of

=(p +k)? and the one given above in which mp2 and
m}2 are dropped, lead to differences in the final prediction
which are of the same order as the higher-twist correc-
tions. If, in a practical calculation for a particular experi-
ment, changing definitions of kinematic variables in this
manner alters the prediction unacceptably, that means
that the precision of the PQCD calculations is inadequate
as well.

Real photons can take helicities L and R; a virtual
photon can have polarization in the O (temporal) and 3
(longitudinal) directions as well. However the amplitudes
for temporal and longitudinal polarizations are not in-

dependent: in our reference frame gauge invariance re-
quires
3 —Q?
vV _SeTQ
0 2
VO supt+0

When we report VC amplitudes in the following it is
therefore sufficient to give the combination V*=(V°
+v3) /2.

We give the positive-baryon-helicity amplitudes; ampli-
tudes for negative baryon helicity are related by parity, so
they are obtained by interchanging R<»L and +<—.
For instance, BR 4 =B’; _, VER= Vﬁ’“, and VL= VﬁR.
The Bethe-Heitler contributions to eN —eN'y are

16
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BR _=(e s c—cysNe's, s +c,0)
9 K'(e'*sys+cyc)ey,+Q'c

sk'

+c o (e¥s,s+c,e)
»
K (e'*s e +cyc)e s, —cys)

, 3)
tkq'

BL _=(e ¥s s+cyc)es, s +c c)

(el —
K'(e'?syc—cys)cy

idg o —
+cyle®s,c—c,s)
Sk,q!

» K (es,c +coc)e s, s +e,0)— Q'

iy
times the common factor
F\(¢t,,) R
cp=—e3 22 IKK'PQ’ .

t .

PP
We have used the abbreviations ¢ =cos8/2, ¢, =cosa /2,
cy=cosa’'/2,s =sinf/2, s, =sina/2, s, =sina’/2.

The virtual Compton contributions to the eN —eN'y

amplitudes are

AR _=c c ViR +sys ViR —ebc s, VIR

—e _i¢saca‘ Vﬁ—R ’ (5)
AR =coc ViR+s s, ViR —ei®s c VAR
—e e s, VER (6)

times the common factor ¢ , = +2eV'2KK'/Q?* Expres-
sions for the 4~ amplitudes are obtained from (5) and (6)
by replacing the V®s with Vs, Similarly replacing
Vi’s with V_’s gives the A’s on a negative-helicity
baryon.

The expressions above for the Bethe-Heitler and VC
contributions are most easily obtained using the method
of Farrar and Neri.® To fix conventions, we give the un-
polarized differential cross section for eN —eNy in terms
of the helicity amplitudes 4 and B:

1 1
do=—
4 heg:t 2pg2k,
hy=1%
A'=R,L

(21T)—5f84(p+k_p;_qr_k:)

Xd3kll d3E'ﬂ d3il:
2ky 2po 2q4

X|Ag.n +Biy P

IV. RESULTS FOR THE HELICITY AMPLITUDES

In this section we present results of the calculations de-
scribed in Sec. II for y'*)N—yN’, using the nucleon
wave functions of Chernyak, Ogloblin, and Zhitinsky
(COZ) (Ref. 7), A wave functions of Farrar, Zhang,
Ogloblin, and Zhitnitsky (FZOZ) (Ref. 8), and a, =0.3.
The perturbative QCD predictions for Gf, and ¢— pp,
using this value of a, and wave function, are in good

agreement with experiment.

Actually, rather than amplitudes, we give the contribu-
tions of individual helicity channels to the unpolarized
Compton scattering differential cross sections,

=1 (0.389X10° nb GeV?)|VLR|? |

do | _
g 16ms?

dt

where, as in the previous section, we let the nucleons
have positive helicity and use ¥ to denote Compton am-
plitudes, even when g2=0. In separate figures, we give
the phases of each helicity amplitude. The leading-twist
energy dependence, s %, is automatically that predicted
from dimensional arguments.”!® We computed the am-
plitudes at cos6=0,10.2,1+0.4,1+0.6,+0.8. Each point
has some error from the numerical integration, but rather
than fit to a smooth function, we elected to prepare the
figures by simply connecting the calculated values by a
smooth curve. Thus the waviness in the curves provides
a measure of the uncertainty in the predictions. It does
not reflect any physics.

Figures 4-15 show the ‘“helicity cross sections” and
phases for yp,—yp,, for Q2?/s=0.0, 025, 0.5,
0.75, 1.0. The Q? dependence and phase structure is ex-
tremely complex and interesting. The magnitude of the
dominant amplitude yzp . —¥zP 4, denoted RR below,
does not change greatly with increasing Q?, except that it
drops in the vicinity of Q2/s ~0.25, for scattering which
is not in the backward hemisphere. However the LL am-

Compton Scattering Virtuality
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FIG. 4. ygrp+ —vrp+ helicity cross section for several
values of Q2 using the COZ wave function and a,=0.3
throughout, except for Figs. 26 and 27.
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Compton Scattering Virtuality
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FIG. 13. Phase of the y.p, —yzp+ helicity amplitude for
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plitude has a dramatic dip at 90° for Q?=5s/2 (cos6=~0.4
for Q?=s/4). The RL amplitude grows with Q?, but the
LR amplitude falls. These four amplitudes show strong
variation in the phase structure as a function of Q2.

Both +L and +R grow with Q2 as expected, but the
latter has a strong dip for cos@ ~ — 1. We calculated the

amplitudes for Qz/s =0.125, to make sure there was no
problem with the ¢2—0 limit, particularly for the LL
amplitudes which show such a strong dip. Since the re-
sults fall between the Q2/s =0 and 0.25 curves, we do
not include them in the figures for clarity.

If these features can be investigated in detail experi-
mentally, it will be a very powerful test of our theoretical
understanding of both perturbative QCD for exclusive
Compton scattering and the accuracy of our wave func-
tions, as will be elaborated below.

In Figs. 16-23 we see the real Compton predictions for
other flavor channels, beginning with yp —yA™ in Figs.
16 and 17. Here, the RR and LL cross sections are quite
similar to one another, and in shape to ygp—vzp, but
almost an order of magnitude smaller. For yn—yn
(Figs. 18 and 19) the RR and RL cross sections are simi-
lar in shape to their yp —yp counterparts, just a factor-
of-3 smaller. On the other hand, LL has a quite different
shape: it resembles more closely the virtual LL cross sec-
tions. The yn —y A cross sections (Figs. 20 and 21) are
very similar in shape to, but about an order of magnitude
smaller than, yn —yn, just as seen in their charge +1
counterparts. The small size of yYAT —yA™ shown in
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Figs. 22 and 23 reveals that the suppression of yp —»yA™
and yn —yA°, compared to yp —yp and yp —yp, is not
just an issue of the orthogonality of the N and A wave
functions. We will see in Sec. V that the form of the A
wave function, which is qualitatively very similar to the
asymptotic nucleon wave function, is responsible for the
small size of these amplitudes. Evidently the gluon ex-
changes sufficiently “disrupt” the quark content that the
final quarks do not “remember” their initial wave func-
tions in detail.

Finally we give two figures for “unpolarized” cross sec-
tions, defined to be J the sum over the L and R helicity
cross sections even when the initial photon is virtual:
since the amplitudes for temporal and longitudinal pho-
ton polarizations are negligible in comparison to the
dominant amplitudes, how we treat them is unimportant.
Figure 24 shows the Q2 dependence of yp —yp and Fig.
25 shows it for yp—yA*, and yn —yn. It is remark-
able that the yp — yp cross sections at large Q2 are com-
parable to the Q>=0 cross sections, with a minimum in
the cross sections at Q2/S~}. Also noteworthy is the
prediction that the yn —yn and yp —yA™ cross sections
are extremely close in magnitude and angular depen-
dence.

The reader must study these figures himself in order to
fully appreciate the richness they reveal.

V. UNCERTAINTIES IN THE PREDICTIONS

How accurate are the predictions for Compton scatter-
ing given in the last section? The possible sources of un-
certainty are the hadron wave function, the choice of a,
higher-order corrections to the quark scattering ampli-
tude, and nonleading-twist effects, a special case of which
is the end-point sensitivity stressed by Isgur and Llewel-
lyn Smith.'!

The wave functions are uncertain for two reasons.
First, they are ¢ dependent and their functional forms
are only known'? with certainty for infinite q?; various
model forms have been proposed and will be discussed in
detail in a future publication. Second, the values of the
moments of the wave function, obtained from QCD sum
rules”'*® and lattice QCD (Ref. 14) are uncertain. Re-
stricting the wave function choices to ones which give a
good accounting of Gf,; and (¢—pp /¢—all) still leaves
several candidate wave functions. We have therefore car-
ried out the integrations for yp —¥p using a number of
wave functions. The results are summarized in Fig. 26.
For each wave function, a; has been set to the value
which gives the best accounting of Gf;; in each case it is
quite close to 0.3. The form of the wave functions labeled
COZ, KS (King-Sachrajda'®), and CZ (Chernyak-
Zhitnisky'®) are the same (quadratic polynomials in the
momentum fractions, multiplied by the asymptotic wave
function). They differ only in that their moments corre-
spond to the results of three different papers.””!>!> The
CZ case is really only of historical interest, since that cal-
culation was superseded by the COZ work. In principle,
the KS and COZ calculations agree, so we do not under-
stand why their moments are not in agreement. The
difference, then, between curves COZ and KS—a factor
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FIG. 26. Unpolarized Q>=0 cross section for yp—yp for
several different wave functions, compared to the data (Refs.
17-19).

of 2-3 in the unpolarized cross section—reflects the sensi-
tivity of the predictions to the moment values.

The curve labeled ZD04 uses a wave function whose
form is suggested by a light-cone quark model,'® with its
parameters constrained to yield the COZ moments. The
difference between this curve and the COZ curve reflects
the sensitivity to the form of the wave function: again,
about a factor of 3.

The curve labeled srO is the prediction using the
asymptotic wave function, normalized to the lowest
sum-rule moment. It is not meant to be realistic for ac-
cessible energies, but is another indication of the sensi-
tivity of the result to the form of the wave function, as
well as its higher moments. It is also interesting because
the actual A wave function is® practically asymptotic in
its form, indicating that the small values of Compton
cross sections involving A’s result from the form of the A
wave function, as mentioned in Sec. IV. Figure 27 shows
the separate helicity cross sections for this asymptotic
wave function, and its striking behavior at 90° in the RR
channel. This phenomenon is probably similar in origin
to the vanishing of G§; when the asymptotic wave func-
tion is used.

As for the other sources of uncertainty mentioned
above, that due to the value of a, is somewhat related to
the question of the sensitivity of the result to the end-
point region, i.e., to wave-function configurations in
which one quark carries almost all the momentum. This
is because sensitivity to the end-point region translates
into sensitivity to the contributions of low-k? gluons and
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FIG. 27. Q*=0 helicity cross sections for yp—yp with the
asymptotic wave function.

thus into sensitivity to the effective coupling at low k2.
On the other hand, since the value of a; used in the
Compton prediction gives G§, and (¢Y—pp/¢Y—all)
correctly for the wave function under consideration,
there is little sensitivity to the uncertainty in a; if the cal-
culation is not sensitive to the end-point region. Since
considerable controversy still surrounds the correct
analysis of the end-point regions, we defer a quantitative
discussion of this problem for a future publication and
merely underline the need for caution in presuming that
present experiments should necessarily conform to the
predictions given here from perturbative QCD. It should
be noted that end-point sensitivity, being a higher-twist
effect, leads to an important deviation from the leading-
twist scaling behavior.

As for higher-loop corrections, the canonical measure
of their contribution is a /7 in the amplitude, amounting
to ~20% uncertainty in the cross section. Finally,
higher-twist amplitudes can be estimated to be
~A4cp/{k?) times the leading-twist amplitude, where
<k2(§ is the average virtuality of the gluons. Assuming in
addition that (k?) /t for Compton is similar to that for
the proton form factor, ~0.1, gives about a 10% uncer-
tainty in the cross sections for 90° scattering at s ~20
GeV>.

VI. COMPARISON WITH DATA

Figure 26 shows, along with the predictions of the vari-
ous models for the proton wave functions, the largest



41 PERTURBATIVE QCD CALCULATION OF REAL AND VIRTUAL ...

s,t,u data available for (real) Compton scattering on a
proton target.'’ "1 It can be seen that none of the mod-
els gives satisfactory agreement with the data as to abso-
lute magnitude, nor is the s ~® scaling behavior accurately
manifested at these low energies (p,,, =2-5 GeV/c for
90° scattering). Nonetheless, the angular dependence of
the predictions is in excellent agreement with observation
and the s ¢ scaling looks reasonable when the data is
viewed as a whole, on a log plot. Since the magnitudes of
the predictions are very sensitive to the detailed form of
the wave function, but the angular dependence is not (see
Fig. 26), an economical interpretation of the discrepancy
between the predictions and the data is that the leading-
twist approximation is valid for p,,, =5 GeV/c at 90°, but
we have not yet found the correct wave function for the
proton. Alternatively, since even the form factor does
not exhibit the asymptotic ¢ 2 behavior until 1~ —5
GeV?, and since there is a significant difference between
s%d o /dt at 90° for various values of s, even at the highest
energies, it is reasonable to regard this data as simply at
too low an energy to be compared to asymptotic predic-
tions.

VII. DISCUSSION

Our most interesting result is the discovery of the re-
markable structure in many of the virtual Compton
scattering amplitudes as Q?/s and 6 are varied. We in-
vestigated the origin of this structure at the level of the
individual Feynman diagrams, and discovered the follow-
ing.

g(a) Diagrams in which both photons attach to a single
quark line generally give substantially larger contribu-
tions than those in which they attach to different quark
lines.

(b) In the kinematic regime exhibiting the dramatic
structure, the full amplitude, which is the sum of all the
(~100) Feynman diagrams, is much smaller than the
magnitudes of the largest diagrams. That is, there is very
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substantial cancellation between the different diagrams.

(c) The dominant diagrams’ contributions individually
vary rather smoothly; the strong structure of the full am-
plitude arises from shifts in the delicate balance between
diagrams.

This kind of collective behavior of many Feynman dia-
grams, while clearly a theoretical possibility, has general-
ly been dismissed in the quest for finding the “dominant”
mechanism for exclusive scattering. It has also been
claimed that PQCD would necessarily give only smooth
variation, and thus could not explain the dramatic struc-
ture seen in various spin observables in pp scattering, as a
function of kinematical variables. Our results for virtual
Compton scattering show that the previous discussion of
these other issues has been too simplistic; much more
work will be needed before any firm conclusions can be
drawn.

Hopefully the results presented here will spur the
theoretical community to improve the accuracy of the
moments of the proton wave function, and to develop a
sound theoretical basis for choosing a form for the wave
function. Compton scattering deserves renewed experi-
mental study. We have seen in this paper that QCD pre-
dicts a wealth of complicated and sometimes surprising
behavior. Accurate data at larger momentum transfer
will be most welcome.
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