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Topological fermionic string representation for Chem-Simons non-Abelian gauge theories
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%e show that loop wave equations in non-Abelian Qern-Simons gauge theory are exactly
solved by a conformally invariant topological fermionic string theory.

Recently, it was suggested in Ref. 1 that topological
non-Abelian quantum field theories in three dimensions
(3D) may be solved exactly by means of a noncritical fer-
mionic string theory. The correctness of this string repre-
sentation holds great potential for high-T, superconduc-
tivity since it produces evidence in favor of a fermionic
string picture for the fermionic magnons advocated in
Ref. 2.

In this Rapid Communication we address the problem
of solving exactly the Chem-Simons loop wave equation in
the formalism proposed by the present author in Refs. 3
and 4.

Let us start our analysis by considering a set of multi-
plet scalar fields P(x) interacting with an SU(N) non-
Abelian Chem-Simons gauge theory (in the Euclidean
sector) in 3D with a nongauged "fiavor" group SO(M):

r(p, p', A,")--4 i((a; —gA;)p(2(x)+e'~ Tr[A;(81Ab —8bA~+ - [AJ,Ab] —)](x), [i 1,2, 3;(a) 1, . . . , M].

Physically the Lagrangian in Eq. (1) may be thought of as the eA'ective Lagrangian obtained by integrating out the
quark sector of the Weinberg-Salam electroweak theory at finite temperature and in the very-low-energy regime. 5 After
integrating out the Gaussian action of the scalar field P(x) and expressing the resulting functional determinant as a func-
tional in the bosonic loop space (Refs. 4 and 6) we get the following expression for the theory's Euclidean vacuum energy
(Ref. 7):

Z exp — r 'pcs
Cxx

(2)

where 4c [C„]is the usual (normalized) Mandelstam loop defined by the loop C,„and the Chem-Simons gauge field
A; ' (x). The quantum average in Eq. (2) is defined by the pure Chem-Simons action of Eq. (1) and the sum over the
loops C„„[X;(a),0 ( o ( T] is given by the bosonic loop path integral
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(3)

In Ref. 1 the factorization (Ref. 6) of the averages of
the products of Wilson loops on the basis of a diagram-
matic analysis was presented. As a consequence of this re-
sult the nontrivial dynamical content of Eq. (2) is entirely
given by the quantum Wilson loop which in turn is a ma-
trix in the "fiavor" space SO(M):

W(a) (b) [C„„]
r

Tr 'P exp i('re d;(X(rr))dX~(rr) ). (4)1

In order to deduce a loop wave equation for W(, )(b) [C„„],

I

as in Ref. 4, Appendix A, we at first consider the covari-
ant version of the loop C„„by introducing an intrinsic
metric e(a) on it,

C,„-](X;(a),e(a) ); 0 ~ cr ~ 2)z; X~ (0) -X~(2)r) -xj,
and replacing in Eq. (4) the tangent loop vector dX„(o)
by its covariant version dx~(a)/e(a). By shifting the
A;(x) variable and introducing the Mandelstam scalar
area derivative b ) a ~

(X(o') ) at an arbitrary point
X(o') 6 C „(Ref. 8) we get the following unrenormal-
ized covariant loop equation ()i. g N)

8 +2* dX;(o) dXJ(a').-.
( )) ~(a)(b)[Cx(0),x(2 )] ~ ' ' ', Xk(a')ep, b" (X(a) —X(a'))40 ea ecr'

~(a)(c)[CX(0),X(a)]II (c)(b) [CX(a),X(2a)] (s)

where the line integral $0' means that only the nontrivial self-intersection loop points X((a) X&(cr') with a~o' contrib-
ute to the integrand in Eq. (5) since the condensate term (F (x)& vanishes identically in Chem-Simons gauge theories
(see Appendix A of Ref. 4).
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In order to solve Eq. (5) by means of a string theory let
us consider an arbitrary (but fixed) 3D surface

Z [p;(a(); 0~ a~ 2(r;0~ (~ T;i 1,2, 3}

possessing as a boundary the loop C„„[this will always be
possible if Z is a homology three-sphere (Ref. 1)].

Let us introduce in Z an O(M) (neutral) spinor struc-
ture {(((,) (a, g) together with a metric structure
[g„„(a,g);p, v 1,2}. We, thus, consider the following
O(M) fixed-area string propagator (the reader should
compare this with the QCD[SU(~)] string propagator of
Ref. 4):

G(,)(b)(C„„;A) D'[g„,]D'[{y(~)]{(({~)(0,0){7({b)(2(r,0)
+2m ( T +2m (I' T

xb da d(Jg(a, ()—A exp —„da dg({7(Bg{(()(a,()

~2g X((a) ~2a ~ T
xexp —g, ; da .- da' dgh'g(a', g)({(({(()(b',g)

xb(2)({b((a',g) X,(a))ei Tib({b((a' g))] (6)

where &g denotes the covariant Dirac operator associated
with the intrinsic metric g„„

T, (y( ', g))-[(IIV') "a„y a.y"]( ', g)
is the (normalized) orientation tensor of the surface Z at
the point {|)((a',(') and $ means that only the nontrivial
self-intersection points of the surface Z with its boundary
C„, contribute. The intrinsic metric g„„satisfies the
boundary condition lim& 0+ 4g(a, () e(a) and the in-
trinsic fermions y(a, g) satisfy the Neumann condition
lim( {)+8 {(((a,()—=0.

Let us remark that the A, -interaction term in Eq. (6) for
nondynamical fermions, (y{,)y(,))(a, (,") p const, is to-
pologically invariant, being an entanglement index of the
loop C„, with respect to the surface Z. As a result our
string propagator depends functionally only on the topo-
logical class of the Z surface. This is one of the reasons
that we do not consider surface fluctuations in the above-
written string propagator.

I

It is important to point out that it is inconsistent to con-
sider string solutions for Eq. (5) which have surface fluc-
tuations since these fluctuations will lead one to consider
second-order loop wave equations for W(,){»[C,„] as in

QCD [SU(0))] which is not the case in Chem-Simons
gauge theory since it has a nondynamical content
(V;F;b (x)W[C,„])=0. However, the area A induced by
the intrinsic fluctuating metric g„„still is a variable quan-
tity since the metric structure on Z is fluctuating in Eq.
(6). So, our string representation differs from that sug-
gested in Ref. 1, Eq. (22). Another important remark to
be pointed out is related to the conformal invariance of
the O(M) string propagator in Eq. (6). This propagator
has its conformal anomaly canceled if M 26, producing,
thus, a noncritical string.

Let us show that G(,)(b)(C„,A) satisfies the same loop
equation, Eq. (5). In order to write the area equation for
G(, ){b)(C„„,A ) we evaluate its area partial derivative as in

Eqs. (4)-(7) of Ref. 3:

G(,)(b)(C„„,A) -—lim
0+

( 2& +T
D'[g„,]a da, dying(a, J)—~ (a)(b) P(a)~ tv

1 b

2 gg ~goo a
(7)

where the pure fermionic string propagator is

+2m QT
I(,){b)[y,g„„] „D'[1((]{(((,) (0,0) |(({b)(2(r, 0) exp — da„„dg(yNg y) (a, g)

+2m X((a) +2m + T
xexp —k ' da ~ da' dgJg(a', g)(y{(()(a',g)b "

40 e(a) 40 40

x (y((a', g) —X((a))e""T,b (y((a', g) )

By canceling the conformal anomaly by choosing M-26 and evaluating the boundary limit of Eq. (8) as Eqs.
(27)-(29b) of Ref. 4 we get the following result for the right-hand side of Eq. (7):

p2m

~ G(a)(b) «x(0)~(2.);&)-& ' d&g (a)dXJ (a')Xb (a') e;,kb"'(X((a) —X((a') )

G(a)(c)(CX(0)X( ) '+ )G(c)(b)(CX( )X(2 ) ~ ) .

The above-written equation coincides with the Chem-Simons loop wave equation in the loop proper-time gauge.
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As in our earlier proposed formal string-wave-equation calculus we have worked with singular quantities. A useful
regularization scheme for these self-suppressing terms is analyzed in Ref. 9 (for a perturbative regularization scheme see
Ref. 10). Work on this regularization problem will be reported elsewhere.
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