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Hot 5 expansion
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The 6 expansion, a novel perturbative scheme for quantum field theories, is investigated in the
case of finite temperatures. For the exactly solvable example of the large-N limit of massless scalar
four-dimensional P theory, the first two orders of the 5 expansion are compared with ordinary per-
turbation theory which at finite temperature is infrared singular beyond one-loop order. The 5 ex-
pansion gives results which are nonperturbative with respect to the coupling constant and which
compare favorably with the exact solution. Most importantly, the 5 series naturally solves the gen-
eral infrared problem of perturbative high-temperature field theories.

Ordinary weak-coupling perturbation theory is
deficient in the case of massless quantum field theories at
finite temperature, and generally so in the high-
temperature limit where the bare masses are negligible
compared with the temperature. Typically, an obstruc-
tion appears in the perturbative calculation at some order
in the coupling constant, depending on the quantity un-
der consideration, beyond which infrared divergences
block further calculations. ' As a prominent example,
the magnetic screening mass in perturbative thermal
quantum chromodynamics is completely incalculable due
to this obstruction.

A novel perturbative scheme called the 5 expansion has
been proposed and elaborated recently which uses an
artificial parameter 5 to expand a theory in a power
series, thereby liberating the physical coupling constants
from appearing in lowest powers only. It has been suc-
cessfully applied to scalar and fermionic field theories,
and, most recently, progress has been made in the case of
Abelian gauge theories.

In this Brief Report we shall consider a massless scalar
four-dimensional P [(P )4] theory with global symmetry
O(N}, defined by the Lagrangian
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Notice that there are no infrared divergences in the exact
solution (2).

For I the following series representation will be useful
for m IT & 2~:

In the limit X~~ this theory can be solved exactly so
that we can compare the conventional weak-coupling ex-
pansion and the 5 expansion with the exact solution. Fin-
ite temperature induces a mass m(A, }~T for the scalar
fields iI'i and conventional perturbation theory is only able
to determine m (A, ) to order A, ', infrared divergences set
in at two loops.

With N~~ the Schwinger-Dyson equation for the
propagator can be solved to give the implicit gap equa-
tion
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where E, (x) is the modified Bessel function of the second
kind and order 1, y is Euler's constant, and g(x) is the
Riemann g function.

Solving Eqs. (2) and (4) for m (A. ) and small k yields

m (A)= A,
—

A, + 7—2y —ln
T' &3
3 m' 4~~ 48M

+O(k ) (5)

Clearly, a perturbative expansion in powexs of A, is bound
to fail —only the first derivative of (5) with respect to A,

exists at X=O. A conventional perturbation series is a
formal Taylor series in integer powers of A, , so the result
in (5) is inaccessible to conventional perturbative
methods. The failure of conventional perturbation
theory to reproduce (5) manifests itself by infrared diver-
gences appearing in higher-order diagrams.

In the 5 expansion, instead of using A, as an expansion
parameter, one introduces an artificial perturbation pa-
rameter 5 which characterizes the degree of nonlinearity
of the interactions rather than their strength:

'5
L' '=-'(t) P) +AM P2 P NM'

L

=—'(t) P) +—'(2AM )P
00 gn

+A,M P g [ln($ /NM )]", , (6)
n=l n!

where M is an arbitrary mass parameter introduced to
keep k dimensionless.

This result depends on the arbitrary parameter M, which
we propose to determine by an optimization procedure
called the principle of minimal sensitivity (PMS); to wit,
we will require that

m =0 (8)

for the result of order E in the 5 expansion.
At I%' = l, this determines M through the implicit equa-

tion

M =I(2AM )exp[1+2AM I'(2AM )/I(2AM )], (9)

and the resulting m~, ~(A, ) is plotted in Fig. 1. The first-

The 5 expansion apparently leads to a highly nonpoly-
nomial Lagrangian. Although it is usually quite diScult
to calculate with nonpolynomial Lagrangians, Ref. 3 for-
mulates simple diagrammatic rules that determine the
coefficients of a power series [8] in 5. These rules will not
be repeated here. We only remark that these new di-
agrammatic rules are manifestly free of infrared
diSculties because now the propagators are massive with
squared mass 2A,M . Since M is arbitrary, we can use this
parameter to optimize the series expansion in 5. We will
consider the first two orders of the 5 series and demon-
strate their numerical accuracy by comparing them with
the exact result.

In the first order of the 5 expansion one obtains

m~&~=2AM +5[2AM (1+L)], 5=1,
L = 1nI(2A,M )/M

m

T2 one loop

order

order
exact

FIG. l. A comparison of the exact solution in Eq. (2) with three approximations to the exact solution, the conventional one-loop
approximation, the first-order 5 series, and the second-order 5 series, all plotted as functions of the coupling constant A, . Observe that
the one-loop approximation veers away from the exact solution as A, increases but that the approximations obtained from the 6 ex-
pansion are almost uniformly accurate (cf. Fig. 2).
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order result is a highly nontrivial function of the coupling
constant k and is thus capable of containing nonperturba-
tive information (with respect to A,).

Let us compare the result in (9) with that obtained by
using conventional perturbation theory. To first order in

ordinary perturbation theory gives simply
m (A, )=A, /3; beyond first order in A, , the conventional
loop expansion runs into infrared divergences. Neverthe-
less, this first-order result expresses the correct behavior
in the limit A, ~O, whereas, to first order in the 5 expan-
sion,

m~2, =AM'[4+4L +L +4AM (1+L)I'/I], (10)

where I =I (2AM ). By invoking the PMS, M is fixed im-
plicitly by

0= rn(2) =2L +L +12AM (1+L)I'/I

8AM— L.I' /I +8k, M (1+L)I"/I .

proximation and the exact soluton is plotted over A, .
The figures also display the result of the second-order

calculation in 5, which is determined by

M ~ T =m (A, )~—A, T
12 6

(9')

and the relative error for small A, is approximately 36%.
However, as Fig. 1 shows, the error of the one-loop ap-
proximation explodes for large values of the coupling
constant, and the first-order 5 expansion is superior
beyond A. =O. 3776. Moreover, the relative error between
the first-order 5 result m~, ~(A, ) and the exact result ap-
pears to be almost uniform in A, , thus providing a good
qualitative picture of the true nonperturbative behavior.
This is most conspicuously demonstrated in Fig. 2 where
the percentage relative error between the respective ap-

In fact, there are now two distinct solutions to (11): one
of which corresponds to I ~—2 when A, ~O, implying a
completely wrong asymptotic behavior m ~2~ ~OX A, , and
another one with L~0 and miz~~A, T /3, which
surprisingly, is exact to order A, . The result based on the
second solution is plotted in Figs. 1 and 2. Note that it
gives a significant improvement over the first-order 5 re-
sult, and it is now better than the conventional perturba-
tive result for all values of the coupling constant.

The ambiguity we have encountered in implementing

error one loop
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FIG. 2. The relative errors between the exact solution in Eq. (2) and the three approximations to the exact solution shown in Fig.
1. This figure shows clearly that the relative error of the first-order 5-series approximation depends only weakly on k. The one-loop
approximation, on the other hand, rapidly becomes poor with increasing A, . The second-order 5-series approximation is extremely ac-
curate for all values of A, .
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the PMS at second order in 5 can in fact be resolved by
considering the analogous issue at higher orders. In the
limit A, ~O the Kth-order 5 result is given by the com-
paratively simple expression

K Lft —1 I/1
m (~) ~2AM 1+ g +

(n —1)! n!

I(o)
M

and the PMS condition in this limit reads

(13)

which for all K ~ 2 has two solutions: L = —K and I. =0.
These solutions correspond to extrema of the order 1 and
K —1, respectively. In the limit K~ 00 the result should

become completely independent of M, so only the second
solution is acceptable.

In conclusion, the lowest-order results in the 5 expan-
sion optimized by the PMS provide a good approxima-
tion to the exact solution. Even more significantly, the 5
expansion automatically solves the infrared problems that
generally occur in ordinary perturbation theory for mass-
less field theories at finite temperature and also for mas-
sive field theories in the high-temperature limit.
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