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Spacetimes admitting a three-parameter group of isometrics
and quasilocal gravitational mass
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Spacetimes admitting a three-parameter group of motions multiply transitive on two-dimensional
spacelike orbits allow construction of a simple geometrical invariant out of the magnitudes of Kil-
ling 6elds, their gradients, and the metric. We show that this invariant covariantizes and
geometrizes certain forms of "quasilocal mass" introduced and discussed in the literature, in partic-
ular, Misner's mass in spherical symmetry and Taub's "mass" in plane symmetry.

Let us suppose that (M,g„) represents an arbitrary
spherically symmetric spacetime. That implies that there
exists g(, ), i = 1,2,3 spacelike Killing vector fields obeying
the algebra of SO(3), i.e.,

Using the spacetime metric g„„as well as the above g(;),
we form the following invariant:

m(J)= —(1—g""V LVJ )
L
2

where

(2)

l gPv( P(1 4(1)+P(2)k(2) +P(3)P(3) ) (3)

lT
ds = f dt + +r (d—8 +sin 8d)p ),

By construction m (J) is constant over any two-
dimensional spacelike orbit J of the isometry group, i.e.,
it satisfies P~;)(Bm/(ix")—:0, i=1,2,3. Furthermore, it is
identical to some expressions of quasilocal gravitational
mass.

Let us, for example, consider a well-known spacetime:
the Reissner-Nordstrom black hole. The metric can be
written in the familiar form

generality we can always locally write the line element in
the following form:

ds = e "dt +—e dr +R (d8 +sin 8dtp )

v=v(t, r), A, =}((t,r), R =R(t, r) .
(6)

t= const foliates the spacetime by spacelike hypersurfaces
while no physical meaning is attributed to r, which sim-

ply measures coordinate distances away from the center
of symmetry. ' An arbitrary orbit is parametrized by the
coordinates (t, r} and using (6) it is easy to show that (2)
reduces to the following expression:

R (iR
m(t, r)= —1+e

2 (3t

(}R—e
dr

'2

However, the right-hand side of the above is identical to
what Misner and collaborators ' Cahill and McVitie
define as the mass-energy contained within a sphere of
coordinate radius r at time t. These authors also relate
m (t, r} to the curvature tensor of (6) in the following way:

22m e
f2

and one can easily show that (2) reduces as follows:

1 ern(r)=m ——
2 p

(4) m(t, r)= ,'R Re— (8)

The noncovariant character of the right-hand side of (7)
and (8) is rather displeasing. In this regard it is appropri-
ate to point out that the authors of Ref. 2 suggest a co-
variant definition for the right-hand side of (8).
Specifically, they indicate that one can write the
equivalent of (8) as follows:

Thus it is immediately recognized that the geometrical
quantity (2) is equal to the amount of mass-energy con-
tained within a sphere of radius r Furtherm. ore, (5) indi-
cates that at the limit of infinite spacelike distance from
the origin rn (J) reduces to the familiar Arnowitt-Deser-
Misner (ADM) mass. To see if the above property of
m(J) persists, we will evaluate (2) for a more general
class of spherically symmetric spacetime. Without loss of

R
m ( t, r ) =—a""a" R„„k,

where the a„„is a two-dimensional properly normalized
antisymmetric tensor associated with the intrinsic
tangent space of the ( t, r ) orbit. Furthermore,
R —= (gt)t) }' acquires an invariant definition by relating it
to the proper area of the (t, r) orbit. We believe, though,
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that the new expression (2) provides an additional and
easier to handle covariant representation of Misner's
quasilocal gravitational mass.

At this point and for later use let us indicate a connec-
tion between the proper area A of the orbits and the mag-
nitudes of the Killing fields g(;), i =1,2,3. It is captured in
the following formula:

& = f,« =2~[g((()),g()))+g(((2),g(2))

g( ~(3) k(3)) I (9a}

da stands for the infinitesimal surface elements, while the
right-hand side represents the magnitudes of g(;). The
derivation is rather trivial. In the coordinate system em-
ployed in (6) we have

a a g'"(a/ae, a/ae)
sin8

g '/2( sin+'(1) +cos(I)g(2), sin+'(1) +cos+(2) )
4)rg (k(3)~ C(3) } esin8

AL'= AR'&0 (10)

where

—v/2 a + —2. /2

at ar

is tangent to the outgoing null rays. Equation (10) is
guaranteed when the corresponding orbit J obeys the fol-
lowing condition:

g" V„LV„L(0.

where we have eliminated the basis vectors a/'ae, a/'ay in
favor of g(, ) and the right-hand side of the above is to be
evaluated in an arbitrary point of the orbit under con-
sideration. Further, if one expands and eliminates the an-
gle P via

g(4())'~()) g C(2)~k(2) +g 4(3)~k(3)}
sin2)}) =

2g ( g(3), g(3) )

the result is equality (9a).
In order to obtain further insight and particularly to

provide some physical reasons as to why m(J) should be
viewed as a "form of mass, " let us assume that (6) de-
scribes the geometry of a collapsing configuration. We
consider the progress of outgoing congruence of light em-
itted orthogonally from a given orbit.

Local convergence to the future of J requires that
along the rays we should have

Ricci tensor hold true along the entire future of the
congruence.

Finally, one can easily show that for every asymptoti-
cally flat at spacelike or future null infinity spacetimeI(J) reduces to the ADM or Bondi mass, respectively.

Because of the above described properties of Killing
fields for spherically symmetric spacetimes, one wonders
whether similar properties hold for the other classes of
spacetimes admitting groups of isometrics. It is well
known that besides the spherically symmetric class of
spacetimes there exists another two classes admitting a
three-parameter group of spacelike motions tnultiply
transitive on two-dimensional spacelike orbits. 6 They are
the plane symmetric and "hyperbolically" symmetric
classes. The Killing fields respectively satisfy the follow-
ing algebra:

[C(1)&k(2)l & lk(2)&C(3)l C(1)& M(3)&C(1)) k(2) &

[k(1)&C(2)1 k(3)& [C(2)&C(3)~ k(1) [C(3)&k(1)1—k(2) ~

However, one crucial difference between the spherically
symmetric class and the two classes described above is
that the corresponding orbits for the latter are open topo-
logically two planes. Let us, for example, take a closer
look at plane-symmetric spacetimes. We can always
write the line element in the following form:

ds = e&dt +e2—~dz +R (dx +dy )

One can easily show now that (11) implies

2m(J) &1
L (12)

(t)=P(t, z), g=f(t, z), R =R(t, z) (13)

implying that the associated infinitesimal generators of
Euclidean motions on the t=const, z=const space have
the form

and vice versa. Inequality (12) justifies us attributing
m (J) properties of mass. Whenever it is satisfied, light
emitted from such orbits finds itself in a strong field en-
forcing an initially outgoing congruence to start to recon-
verge. Of course (12}is a local condition and reveals no
information about the future of the congruence. Its fu-
ture depends whether or not certain inequalities upon the

—$V a
k(1) x

Bx

$'t/ a
f(2) y Bx

c)
g(3) =x t) —y5„"

DX DX

(14)
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Using this explicit representation of g~,
.i, we form the fol-

lowing quantity:

M(t, z ) = — g—""V„LVQ,I.
(15)

where

L = ,'[g„—~(P(,)g(1)+P(2)((2))] . (16)

It is easy to show that a combination of (13), (15), and
(16) yields

( )
R 2p t)R

2 dt

r)R—e
az

This quantity formally plays a role similar to the corre-
sponding Misner's mass in the spherically symmetric
case. The similarity is justified by the following easily
verifiable relation between M and the curvature tensor of
(13):

In addition, if one uses the left-hand side of (17), then the
Einstein nonvacuum field equations have a simple and
elegant form. However, because of plane symmetry we
have now lost a physical interpretation of M(J) as a
quantity measurable from spacelike infinity, characteriz-
ing the gravitational field of a bounded source. If one im-
agines some plane-symmetric distribution of matter, then,
again due to plane symmetry, asymptotic flatness is lost.
Therefore, we cannot associate in the familiar way an
ADM type of mass to the gravitational field. However,
we might attempt to interpret (15) as a "local mass. " To
make our point, let us again consider a locally collapsing
plane symmetric spacetime. For such spacetimes, an ob-
server "attached" to a specific orbit J feels that the prop-
er area R of a small coordinate rectangle is a decreasing
function of his proper time. Similar analysis as the one
in the spherically symmetric case leads us to the con-
clusion that both congruences of light emitted orthogo-
nally from a given orbit J locally converge to the future
of J provided that L [see (16)] obeys (11), i.e.; the same in-

equality as in the case of spherical symmetry. In view of
(15) and the positiveness of L, this implies M) 0. Con-
versely, if in this collapsing configuration there exist or-
bits characterized by M )0, then light is locally trapped.
Thus M appears to affect the expansion of null
congruences. We may note that for Taub's static vacuum
plane-symmetric solution of Einstein's equation, M (J) is
a negative constant, i.e., behaves as (2) does for a negative
mass Schwarzschild solution. For the other known vac-
cum plane-symmetric solution of Einstein s equations,
i.e., the special case of Kasner metric, M is positive.
However, a physical interpretation is unclear.

Although not enough results are known, we expect the
above discussion to be extended without any diSculties
to the hyperbolic class of spacetimes. Finally, we should
mention that Thorne's C energy of cylindrically sym-
metric spacetimes' also finds a covariant representation
by means of the two-spacelike Killing vectors, which gen-
erate translations and rotations along and around the
symmetry axis.

We can conclude from the above discussion that
infinitesimal generators of isometrics in combination with
the metric offer the possibility of constructing nonlocal
invariants that may be of physical importance.

Note added: After this paper was submitted for publi-
cation I became aware of the recent work of Poisson and
Israel. " In their fascinating treatment of the mass
inflation of spherical black holes they also advanced a co-
variant definition of what we have called Misner's mass.
Their definition is essentially identical to ours except that
they use the proper area of SO(3) orbits instead of the
norm of the Killing vector fields. Of course, in view of
(9a) the two definitions are equivalent to each other. I
have also become aware of the work of Berezin et al. '

Although in their work one can see seeds for a covariant
definition of m, no explicit covariant formula has actually
been written.
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'It is assumed that there exists a unique center of spherical sym-
metry, i.e., that t—=const hypersurfaces are nested by a se-
quence of spheres and furthermore, R (0, t) =0; however,
similar considerations hold if a Kantowski-Sachs or a
Friedmann-Robertson-Walker model of spherical symmetry
is considered. [The latter model, although homogeneous and
isotropic, allows orbits invariant under SO(3).]
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