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Chiral anomaly on the lattice with Wilson fermions
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We study a chiral anomaly based on lattice gauge theory with Wilson fermions. A random-walk
technique is used at a one-plaquette level. The possibility to define an appropriately normalized
axial-vector current is discussed. The ( A VV) correlation function consists of a massless pion-pole
term and a contact term. Although the contact term is not determined uniquely, the pion-pole term
is calculated without ambiguity.

I. INTRODUCTION

The lattice regularization of the gauge theory with
Wilson fermions provides a powerful method to investi-
gate strong-coupling phenomena. Through the study of
many physical quantities and phenomena, the reliability
and the usefulness of this regularization have been
checked. One such quantity is the chiral anomaly. In the
fermion formulation of Wilson, there is an additional
term, i.e., the Wilson term, to avoid doubling of species.
This term breaks chiral symmetry explicitly. Further-
more the Wilson term produces an additional term D„ in
the Ward-Takahashi (WT) identity with an axial-vector-
current divergence. It is well known that this term Dz
gives the chiral anomaly. Many authors investigated
this point mainly in the perturbative continuum limit.
See Ref. 3, and references therein.

Since the chiral anomaly of Wilson fermions is an in-
teresting topic, it is worthwhile to study it from various
viewpoints. In this paper we investigate this anomaly by
using a random-walk technique. ' This method was used
to calculate hadron masses. ' We applied this method to
the study of WT identities with an axial-vector-current
divergence. Based on the previous work, the possibility
to define an appropriately normalized axial-vector
current is considered in Sec. II. It is shown, at a one-
plaquette level, that there is uncertainty in defining it. In
Sec. III we derive an anomalous WT identity and consid-
er its property. The correlation function ( A VV& is cal-
culated in Sec. IV. There are a few works which study
the ( A VV & correlation function from the strong-
coupling region. For example, this correlation function
was calculated at the strong-coupling limit in Ref. 8. We
calculate it at the next order of the hopping parameter It:.
Section V is devoted to discussion. Comparison with the
result of Ref. 8 is also made. The Appendix contains the
expressions for meson propagators at the one-plaquette
level.

where P„=(1+ri„y„)/2 and ri„ is the sign of }Lt. The
subscript i represents a flavor. Since we consider the
chiral anomaly, we assume, for definiteness, there are
three flavors u, d, and s, and the flavor symmetry
E„=Ed=E,=K is satisfied. Now we consider the ma-
trix element

f [dg][dg][dU]lt(0) P(0)exp( —Sz)

and perform the infinitesimal transformation

5$(x) =iP'(x) y5l((x),
2

5$(x)=if(x)P'(x) y5,2

(2.2)

where

A„'(x)=2K f(x) y„y5U„(x)f(x+p)

+g(x+p) y„ysU„(x)g(x), (2.4)
4 P 5 P

D'„(x}=—2K g tt(x) ysU„(x)f(x+p, )

P

+g(x +p) y, U„(x)f(x)
4 5 p,

where SE is the Euclidean action and the flavor matrix A,
'

satisfies the normalization convention tr(A, 'A, ) =25' .
Then the following WT identity is obtained:

'""([&„A„'( ) —D'„( )—2P'( )]P'(0) &

II. NORMALIZED AXIAL-VECTOR CURRENT

In this paper we essentially follow the notation used in
Ref. 7. The fermion action is

Sf = —g l(t;(x)Q;(x)

—2K; g P;(x)P „U„(x)g;(x+p), (2.1)

+(x ~x —p)

P'(x) =g(x) y, f(x), S(x)=g(x)—,'g(x),

V'g„(x)= g [f„(x)—f„(x—p)] .

(2.5}

The operator D„, which comes from the Wilson term in
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the action, is expected to be rewritten as '

D„' =D„' —(Z„—1)V„A„'—2(1 Z—„p)P', (2.6)

where

( V'„A „'(x)P'(0)),„b=(Z„V„A„'(x)P'(0) )

where Zz is the normalization factor of the axial-vector
current and p is a current-quark mass divided by Z„. If
the operator D„gives rise to the contact terms

(D„'(x)P'(0}) = —C, (S(0))5(x)+C~Q5(x) (2.7)

in the continuum limit, the WT density (2.3) becomes

'""(V„A„'( )P'(0)),„,

+2Z„p g e '""(P'(x)P'(0)) =(1+C, )(S(0)),
(2.8)

l

—C2V„V„5(x) . (2.9)

In the chiral limit, where p=0 is satisfied, Eq. (2.8) corre-
sponds to the continuum identity

—g e '""(V„A„'(x)P'(0) ) = (S(0)), (2.10)

where P'=ZPP' and S=ZsS are rescaled finite opera-
tors.

In the previous paper, by using the random-walk tech-
nique at the one-plaquette level, we showed the (DzP')
term in Eq. (2.3) can be rewritten as

g e '""(D'„(x)P'(0)) =(1—Z„)g e '""(V„A'„(x)P'(0))

—2(1—Zzp) g e '""(P'(x)P'(0)) Z„N, (—2K) vX(k)+(1 —
—,'Z„)(S(0)}, (2.11)

(2.14)
In the chiral limit, Eq. (2.14) corresponds to Eq. (2.10),
and X(k) term must correspond to the C2 term in Eq.
(2.9). Thus at the one-plaquette level, it is reasonable to
set

( V„A „'(x}P'(0)),„b
=Z„[(V„A „'(x)P'(0) )

+N, (2K) uX(k)] . (2.15)

Since the term X(k) has the divergent form

X(k)= —,
' g (1—e ") g (1+e ~)G&~(k)

+p, +p
(&p)

+—g (1—e ")g„g (1+e ')G„p(k),
+p +p

(&p)

(2.16)

where

p= —,'[1 4(2K) ——12(2K) u+24(2K) v]

= —,'[1—6(2K} u][1—4(2K) —6(2K) v], (2.12)

X(k)= 12—g g cosk„cosk Gzp(k)
p p

(~p)

6+2 g cosk sink„G& z(k) . (2.13)
P P

(&p)

Here v = (0) /N, is the vacuum expectation value of a
gauge plaquette divided by the number of colors N, . The
meson propagators Gpp and Gz & are given in the Ap-

pendix. The normalization factor Z„ is undetermined at
this stage. Substituting Eq. (2.11) into Eq. (2.3), we ob-
tain
—pe '""Z„(V„A„'(x)P'(0)) Z„N, (2K) uX(k)—

ZA
+2Z„p g '""(P'( )P'(0) &

= (S(0)& .

I

we consider the possibility to construct the operator Y„'
which satisfies the following equation of order 1:

g e '""(V„Y„'(x)P'(0)) = —N, X(k) . (2.17)

Y,„(x)= g [A„(x)+A„(x—p)]
+p

(&p)

with A„(x) given by Eq. (2.4). At order 1 we obtain

ge '""V„Y,„(x)-——,'(2K) g g (1—e ")
X +p +p

(&p)

(2.19)

The second operator to be studied is

X(1+e ~)

x(5»+i~„5»
(2.20)

Y2„(x)= g [A„i„{x)+A„&„(x—p)+(x~x+p)],
+p

(&p)

(2.21)

From Eq. (2.16), neglecting the flavor matrix A,
' and the

color factor for siinplicity, the Fourier transformation of
the operator V„Y„must yield the expression

pe '""V„Y„(x)-—,
' g g (1—e ")(1+e ~)

X +p +p
(~p)

X(5„,+2in„5„„).

(2.18}

Here the indices P and A„ imply P=P ,'y5$ and—
A„=P(i/2)y„y5$ Now w.e show that it is impossible to
construct a unique operator which satisfies Eq. (2.18).
First we consider the operator
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~here

A„„,(x)=((J)(x)—,'y„y, P(x) .

This operator gives

(2.22)

Y3„(x)= g [P(x)+P(x —p) —(x~x+)(i, )] .
+p

(&p)

(2.24)

pe '""V„Y~„(x)- —i g g (1 e —")
Z +p +p

(&p)

X (1+e ')q}„5„„

(2.23}

Finally we consider the operator

Then the equation

pe '""V„Y3„(x)-g g (1—e ")(1+e ')5„),
Z kp kp

(~p)

(2.25}

is obtained. Now it is evident that the combination of
Eqs. (2.20), (2.23), and (2.25),

pe '""V„[a)Y»(x)+a& Yz&(x)+a& Y&&(x)]—g g (1—e ")(1+e ~)[( —2E a, +a&)5„P i(—2K a, +a&)5„„]
Z kp Xp

(&p)

(2.26)

with the appropriate coefficients a s, can produce the ex-
pression (2.18). In other words, the operator Y„(x) can
be constructed, for example, by the linear combination of
Y;„'s, i.e., a, Y&„+a&Yz„+a3Y3„. The coefficients a s
must be chosen such that Eq. (2.26) coincides with Eq.
(2.18). However this condition does not determine a s
uniquely. Namely, we cannot define a unique operator
Y„.

Now we summarize this section. At the one-plaquette
level, the WT identity (2.3) is rewritten as

—y e '""&V„A „',„„(x)P'(0)&

+2Z„p g '""(P'( )P (0) ) =—'Z„(S(0)&,

A', b(x)=Zq A„',,„b(x)

A„',„b(x)=A„'(x)—(2I(.') U Y„'(x) .

(2.28)

(2.29)

The anomalous WT identity with two vector currents
is obtained from the matrix element

f [11()][dg][dU]V„(y)V'„(z)exp( —SE) .

At the chiral limit, Eq. (2.27) corresponds to the continu-
um identity (2.10). Therefore an appropriately normal-
ized axial-vector current is given by Eqs. (2.28) and (2.29).
However the operator Y„', which must satisfy Eq. (2.17),
has the ambiguity stated above.

III. ANOMALOUS WARD-TAKAHASHI IDENTITY

where

(2.27} By performing the infinitesimal transformation (2.2} and
then differentiating it with respect to P'(x), we obtain the
following WT identity in the Fourier-transformed form:

g e '""+& +q'i ([V&A &(x) Dz(x) —2P'( —)]xV„(y)V'„(z)}+f' g e '"+ ')' 'q'
—,'(1+e ")(A (y) V'„(z) }

Z)y) Z y, z

+facd y e
—iPy —i(k+q)z ) (1+e '"v)( V (y) A (z) ) + y e

—i(k+P)y iqz (1
—

e '"P)( A oh(y)Vc(z) }2 P V
21 P V

y, z y, z

+pe 'i' '"+q'—(1—e ")(V„"(y)A'„'(z)}=0,
y, z

(3.1)

where

V'„(z)=2K P(z) y„U,(z)g(z+v)+)I)(z+v) y„U„(z)g(z)4 v v 4 v v

A„' (y) =2I(. )))(y) [A,', A,"I " U„(y)g(y+)(i) —P(y+)(() I V, A, "j " Ut (y))))(y)
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and f' ' are the structure constants of the fiavor group.
In the case of the continuum theory, the Jacobians associ-
ated with the axial transformation (2.2) give rise to the
chiral anomaly. ' However, in the lattice regularizatio,
the Jacobians become c numbers and can be discarded.

Now we consider Eq. (3.1) at the one-plaquette level.
As we show in the Appendix, a pseudoscalar —axial-
vector sector and a vector-tensor sector of the meson
propagator do not mix. Thus it is not diScult to con-
vince ourselves that the two-point functions in Eq. (3.1)
vanish. Therefore the equation

g e i ( kx—+Py +vz )( ( [P A a
( x } D a

(x }
X,P, Z

—2P'(x)] V„(y)V'„(z) ) =0 (3.2)

is obtained. Equation (3.2) can be checked directly by us-

ing the diagrammatic method proposed in Ref. 7, al-
though we do not perform it here. Next, taking into ac-
count Eqs. (2.27)—(2.29), we rewrite D„as

+(A), ~Va )

FIG. 2. Diagrams for the (A VV) correlation function.
These diagrams contain two meson propagators and contribute
to the pion-pole term. There also exist diagrams which are ob-
tained by exchanging the vector currents V„and V„, although
we do not depict them explicitly.

um one. Therefore we calculate the correlation function

DA DA (ZA 1)~LAX 2(1 ZAP)P y e
—i (kx+Py+ qz)( A a (X)Vb (y) Vc ( ) )

x,y, z

(4.1}

+Z„(2K) UV&Y& . (3.3)

IV. CALCULATION OF ( A VV) CORRELATION
FUNCTION

As we showed in Sec. II, the axial-vector current
Ak, „b defined by Eq. (2.28) corresponds to the continu-

Substituting Eq. (3.3) into Eq. (3.2), the following equa-
tion is obtained:

g e '""+ P+y''i(t[V&A&,„(bx) —2Z„pP'(x)
X,P, Z

D„'(x)]V„—(y) V'„(z) ) =0 . (3.4)

Although the operator Y& has the ambiguity, the opera-
tor A&,„b is the proper axial-vector current. At the
chiral limit, where the hopping parameter K takes its
critical value E, = —,'(1 —

—,', v) and p=0 is satisfied, D„
gives rise to a localized contact term. Of course, this
term must coincide with the chiral anomaly. But, be-
cause of the ambiguity of Yz, this term cannot be calcu-
lated uniquely.

at the chiral limit. Since we are interested in the chiral
anomaly, the terms with the factor d'bee&„„, where d' '
is the symmetric tensor of the flavor group, are derived at
the low-momentum limit. We calculate the correlation
function ( Ak V„V„) first and then the function
( 2E, ) U ( Yk V„V„).

A. Calculation of ( A z V„V„)

The diagrams which contribute to this correlation
function are depicted in Figs. 1-4. As we can see from
Eqs. (A12} and (A13), the vector-tensor sector does not
propagate and the pseudoscalar-axial-vector sector has a
massless pion pole. Thus the diagrams of Figs. 1 and 2
can yield the amplitude with the massless pion pole. On
the other hand, the diagrams shown in Figs. 3 and 4 do
not contain a massless pole. They give rise to contact
terms, i.e., polynomials with respect to the momentums p
and q.

As an illustration, we calculate the amplitude of the di-
agram depicted in Fig. 5, which is a part of the diagrams
in Fig. 1. From the diagrams shown in Fig. 6, the

t tAg

A),

L I l

+ (g~ y)

FIG. 1. Diagrams which contribute to the ( A VV) correla-
tion function and contain three meson propagators. A pair of
lines, i.e., a quark line and an antiquark line, represents a meson
propagator. The reason why the diagrams with a minus sign are
necessary is stated in Ref. 7.

FIG. 3. Diagrams for the ( A VV) correlation function.
These diagrams contain two meson propagators and contribute
to the contact term.
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A)'
I

I/

PA

+ (g + v)
g Yp,Y5 ~Y

~ 4

FIG. 4. Diagrams which contribute tc the ( A VV) correla-
tion function and contain one meson propagator. The dashed
line represents the axial-vector current and the wavy line means
the vector current.

FIG. 6. Diagrams which contribute to g, e '~~V„(y) and

g„e '""Aq{x). The dotted line represents (r„)/4 for V„and
(ygyg)/4 for Ag.

Fourier-transformed forms of the operators V„and Az
are

sion for the two-point function with the currents V„and
V

ge '~~V„(y)-[(2K, ) +3(2E, ) v —6(2K, ) u]5& ~
p, loc F( Vq V i„)— 5„ (4.6)

+~2(2E, ) v g p 5s T
a

(Qp)

' "Ag(x)- —kg[(2K, ) +3(2E, ) v

X

(4.2) where I' means Fourier transformation and E is defined
by Eq. (All). In the same way, by using Eqs. (4.2), (4.3),
(A12), and (A13), the following expressions are obtained
at the low-momentum limit:

where

—6(2K, ) u]5„P

+ [(2E, ) —6(2K, ) u ]5„„ (4.3)

F(A~As)„)- q
—— 6(2K, ) u

kxks 1 A 4 1

~~a
[—,

' —3(2E, ) v], (4.7)

(4.4) F( V„T „)— (5„q„—5„„q )[—,'+(2K, ) v], (4.8)

and localized currents are defined as

V„...(x) =q(x)-,'r„y(x),
A„.,(x)=q(x) ,'r„rsvp(x-) .

(4.5) —&2[—,'+7(2E, ) v]es z„. (4.9)

where A, B, and C are presented in the Appendix. The
vertex part, which is represented by the blob in Fig. 5,
can be calculated from the diagrams in Fig. 1 as

Using Eqs. (4.2) and (A13), we find the following expres- Using Eqs. (4.6)—(4.9) and the momentum-conservation
relation k+p+q =0, the diagram of Fig. 5 gives rise to
the amplitude

[1+28(2E,) u][ —,'+(2E, ) u]

1 A ~ 4
c ) pvsKpsqK

+ ——3(2E, ) u ez„„q„
1 4 (4.10)

FIG. 5. One of the diagrams which is contained in Fig. 1.
The diagram with the A I

- V„,-T vertex is picked out.

where the color factor N, and the Savor factor
tr(A, '[A, , A, ') )=4d' 'are neglected. In Eq. (4.10), the first
term has a massless pion pole and the second term is a
contact term. The calculation of all the diagrams is very
lengthy. At 0 ( u ), by using the critical value
E, = —,'(1—

—,', u ), we obtain
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e
i—(kx+Py+qz)( A a(X}Vb(y)V (Z})

x,y, z

k~
c ( )g gg4 2 izvapPaqpk

—( —g'+ (92u )ei„„(p q)—

B. Calculation of (2K, }'u ( Yz V„V„)

(4.11)

of the diagrams in Figs. 7(b) and 7(c) becomes

e
—i(kx+py+qz)(2K }4 ( Ya( ) Vb(y) V (Z) )

Z, y, z

21=4iN, d' '
u e„, @ q&c 64 k 2 pva a

9 uei„(p —
q } (4.14)

X(k) = iki [3ik—i Gpp(k) 12iGq p—(k)] . (4.12)

From Eqs. (2.17) and (4.12), we obtain

ye '""(Y'(x}y(0}zbr„y(0}&

N, 5' [3ik—iGpq(k) —12iGq q(k)], (4.13)

where I „and the propagators Gzz are given in the Ap-
pendix. Using Eqs. (4.6), (4.8), and (4.13), the amplitude

As we pointed out in Sec. II, the operator Yz is not
determined uniquely. This fact implies that the contribu-
tion of (2K, ) u Yi to the contact term is not calculable.
To understand the reason, let us recall the operators Y&&,

Yz&, and Y&&, which are defined by Eqs. (2.19), (2.21), and
(2.24), respectively. Since the operator Y)i is nonlocal,
there is the contribution of the diagram depicted in Fig.
7(a) with Y&= Y)& [As. we are considering the operator
(2E, } u Yi at O(u), it is not necessary to consider dia-
grams with quark-antiquark separation. ] This diagram
contributes to the contact term. On the other hand, as
the operators Y2& and Y3& are composed of local opera-
tors, these operators do not contribute to the diagram of
Fig. 7(a). Although the operator Yz can be constructed
by the linear combination of Y», Y2&, and Y3&, its
coefBcients are not determined uniquely. Thus the con-
tribution of the operator Y& to the contact term is not
calculable.

Next we consider the diagrams depicted in Figs. 7(b)
and 7(c). The amplitude of these diagrams has the mass-
less pion pole. Even if the operator Yz has the uncertain-

ty, the condition (2.17) makes it possible to calculate the
above diagrams. As we are interested in the low-
momentum limit, we take the limit k ~0 in Eq. (2.13):

V. SUMMARY AND DISCUSSION

In this paper, we studied the ( A VV ) correlation func-
tion at the one-plaquette level. Based on previous work,
we defined the properly normalized axial-vector current
Ai, „~ given by Eqs. (2.28) and (2.29). We must be care-
ful that the operator Yi, which satisfies Eq. (2.17},is not
constructed uniquely. Next we calculated the correlation
function

+"'( A ' (x)V'(y) V'(z) )
x,y, z

e
—i (kx+Py+qz)( A a (X)Vb (y) Vc (Z) )

z,y, z

—g e '""+PP+q'(2K ) u( Y'(x)V (y)V'(z)),
x,y, z

(5.1)

at the chiral limit. At O(u), the first term of Eq. (5.1) be-
comes Eq. (4.11) and the second term yields Eq. (4.14).
However the contact term of Eq. (4.14}has the uncertain-
ty, because the operator Y& is not determined uniquely.
On the contrary, the term with the massless pion pole is
calculated without ambiguity.

It is well known that the ( A VV) vertex must have
physical intermediate states of zero mass. " These zero
mass states play an important role in understanding
't Hooft's anomaly condition. ' Our random-walk ap-
proach is useful so long as we calculate the contribution
of the zero-mass states.

Next we compare our result with that of Ref. 8. At the
strong-coupling limit, as v =0, A&,„b= A& holds. There-
fore from Eq. (4.11), we obtain

e
—i(kx+py+qz)( A a (x)Vb(y}Vc (z) )

x,y, z

,b, 5 k
l=4lNcd

16
'2 e&vappaqp hei)cva p q )a

16 k

~uI +() ~.) (5.2)

On the other hand, by using the effective action at
g = ~, the authors of Ref. 8 obtained

(b) (c) (5.3)b4iN, d' ' 7 e„„~q& 2ei„(p —q)—
24

FIG. 7. Diagrams for the ( YVV) correlation function. (h)

and (c) yield the amplitude with the massless pion-pole whereas
(a) produces the contact term.

in our notation. [See Eqs. (3.16), (3.17), and (3.21) in Ref.
8.] The random-walk approach with u =0 is equivalent
to the effective action method with g =Do. Therefore
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these methods must give the same result.
In terms of the random-walk approach, Eq. (5.3) is ob-

tained only from the diagrams in Fig. 1. The diagrams
depicted in Figs. 2 —4 are not included. Especially the
amplitude obtained from the diagrams in Fig. 2 contains

I

the massless pion-pole term.
We can understand the discrepancy between Eq. (5.2)

and Eq. (S.3) in terms of the effective action also. We first
write down the currents V„and 3„ in their low-
momentum forms:

V„'(x)-(2K) V„'„,(x)— f' 'P (x)d„P'(x) —f'"'P (x)A„'„,(x)
C C

d' 'E„„&Ap i«(x)T'„z(x)+
C

(5.4)

A„'(x)-(2K) A„' 1«(x)+ —,'B„P'(x)— d' 'e„„~V i„(x)T'„~( x)+
2l gb

C

(5.5)

(2N, )
f' 'V'i«P A'i«+e„~„g' '

a b c i a b c~ v, lac A, , locTPV+ 4
~ TaA, TPv (5.6}

where we wrote down the terms which may yield the am-
plitude with the massless pion pole. Using the vertex

APPENDIX

To calculate the ( A VV) correlation function at the
chiral limit, we need meson propagators at this limit. In
this appendix, the meson propagators are given at O(v).

The meson propagator is defined as

(g(x)I „g(x)f(0)I g(0) ) = N, f e'P—"G„(p), (Al)

where A, B=(S,P, A, V, T ). I A's are given by

the diagrams depicted in Figs. 8(a) and 8(b) are obtained.
The first term of Eq. (S.4) and the first and the second
terms of Eq. (5.5} contribute to these diagrams. The cal-
culation of these diagrams leads to Eq. (5.3). Next we
consider the diagram shown in Fig. 8(c). The AT term in
Eq. (5.4) gives rise to this diagram. Since the propagators
( A A ) and ( AdP ) contain the pion pole, this diagram
must contribute to the massless pion-pole term in the
( A VV) correlation function. Including this diagram
and contact terms, we can obtain Eq. (5.2} in the effective
action method. (We note here that this diagram corre-
sponds to the diagrams in Fig. 2 in the random-walk
method. ) Thus the result of Ref. 8 is incomplete.

As in Ref. 8, the pion-pole term of the ( A VV) correla-
tion function can be used to determine Zz, because this
term has no ambiguity. However, as we have shown ex-
plicitly, its coefficient acquires a correction. Namely, the
Adler-Bardeen theorem for %ilson fermions is a require-
ment to be satisfied.

1I q=-,'1, I =-,'yq, I q
=—y y5,

P

I v =-'y, ITP' p~

2
8. (rp r.) .
81,

Although the inverse propagator D„s=(G ')„s is a
16X 16 matrix, this matrix decomposes as follows:

Dss

Dw~D

DvvDvT

DTvDTT

(A2)

tr(I „I~ ) =5„s=(1,1,5,5,—,'(5 5p
—5 5p )),

Now, as an example, we consider Dpp(p). The dia-
grams which contribute to the inverse propagator D at
O(v) are given in Ref. 7. Using the normalization condi-
tion

f A, -ap

A

I A. z&P

P

we obtain

Dpp(p)=1 —(2IC) g cosp„—3v(2E) g cosp„

A, -ap
——(2E) g cosp„cosp„+12v(2K)

p~v
(A3)

FIG. 8. Diagrams which contribute to the ( A VV} correla-
tion function in the e8'ective action method. CT means contact
terms.

At the low-momentum limit, Eq. (A3) becomes

Dpp(p }-1—4(2E) —6v(2K) +—,'[(2E) +6v(2K) ]p

(A4)
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Next we take the chiral limit K ~K, =—,'(1 —3u i16). At
this limit, since the factor p vanishes, the following ex-
pression is satisfied:

—p Ap
A

P p cr

(A6)—Ap B5
1 —4(2K, )

—6v(2K, ) =0.
where

Then Eq. (A4) reduces to
& =(2K, ) +6v(2E, ) —

—,'+ —,', u,

B= 1 —(2K, ) + 18u (2K, ) —
—,
' (1+—", v ) .

(A7)

Dpp(p ) ——,'[(2K, )'+6v(2K, )4]p' . (A5) (A8)

In the same manner, the inverse meson propagator for
the vector-tensor sector becomes

In this way, we obtain the following inverse propagator
for the pseudoscalar —axial-vector sector:

A(5 ~g —5 ~„)2
D DVVVT~

(A9)v'2
A(5 g„—5 ~„)D D

p,v rr p, v K)L
C

where

C= 1 —2(2K ) —4v(2K ) ———4 1 U

C 2 16' (A 10)

E= 1 —3(2K, ) ——+1 9U

4 32
(Al 1)

2 Pp

2A+B p2
2B 1

(2A+B)A p~GPP G
P

GA~P GA~A
(A12)

1 2A P&p
B P (2A +B)B

(5 g, —5 ~„)

(5„„5),„—5„„5g„)
1

2 Px
2A+B p2

1

E pG GV V V T „
GT V GT T

KA, p KA. pv

(A13)
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By inverting Eqs. (A6) and (A9), the following propagators with momentum p are obtained:


