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Pure SU(2) lattice gauge theory in three dimensions is studied by Monte Carlo simulation with a
determination of the potential between fundamental- and adjoint-representation sources as a major
goal. A 32' lattice is used and Wilson loops up to 16 by 16 are measured using a modification to the
standard multihit variance reduction which improves the statistics by at least a factor of 3 at P=6.0.
The integrated autocorrelation times measured for the loops show a peak for loops of size P by P.
The fundamental- and adjoint-representation potentials are seen to have the same functional form to
very high accuracy and their numerical values are in the ratio of their Casimir operators. The

string tension is extracted and scaling is seen to within a few percent over a range of couplings
which correspond to a factor of 2 change in the glueball mass. Correlated errors have been taken

into account in the extraction of the potentials from the Wilson-loop values.

I. INTRODUCTION

Non-Abelian gauge theories have been investigated pri-
marily through continuum perturbation theory, expan-
sions around semiclassical solutions of the field equations,
and both analytical and numerical analysis in the Eu-
clidean lattice formulation. Gauge theories in different
numbers of space-time dimensions have also been ex-
plored. Although no proof exists, 'it was widely expected
and is now supported by data from numerical simula-
tions' that non-Abelian gauge theories in both three
and four space-time dimensions are confining theories
with a mass gap.

In spite of the numerical evidence, no satisfactory ex-
planation has yet been given for why these theories exhib-
it this behavior. Many of the attempts to understand the
mechanisms responsible for producing confinement and a
mass gap have focused on the SU(2) model in three Eu-
clidean dimensions [denoted by SU(2)3 in this paper]. It
is hoped that this model may be easier to understand
than the four-dimensional version since it is superrenor-
malizable, with a dimensionful coupling constant.

Existing numerical studies for SU(2)3 have given strong
evidence for both a string tension and a mass gap.
However, the studies that measured the string tension
and parameters of the potential were all done using the
icosahedral subgroup of SU(2), which restricted them
from probing too far into the weak-coupling region, due
to the freezing of the icosahedral subgroup.

Because of the usefulness of SU(2)3 in eff'orts to under-

stand the nonperturbative physics of non-Abelian gauge
theories, an updated numerical simulation of this model
is warranted. The purpose of this paper is to provide
such a simulation, with the determination of the potential
and string tension as the main goal. Because of the corn-

puting power now available, we can work at weaker cou-
plings and with larger lattices than have been previously
studied. Now standard variance reduction techniques are

W, =(I/N)Tr gD, (Ut)
I el.

(4)

where D, ( U) is an irreducible representation of the gauge
group and X is the trace of the identity in that represen-
tation. As is well known the potential between an
infinitely massive quark-antiquark pair, which transform
according to the representation j, is given by

lnW (R, t)
V.(R)= —lim

T~oo T

incorporated along with a modification which further
reduces the variance. We can check for asymptotic scal-
ing at weaker couplings than previously used. (Given the
diSculty in observing scaling in four dimensions con-
sistent with the two-loop beta function it is interesting to
check the accuracy of scaling in this simpler model. ) We
have not devoted much effort to measuring the mass gap,
and have no results to report on this.

In this study we work with the SU(2)3 model on a cubic
lattice with periodic boundary conditions. A
configuration of the system is given by specifying an
SU(2) matrix for each link of the lattice. The partition
function is

Z = I [dU]exp(PS),

where [d U] is the product over all links on the lattice of
the Haar measure for each link,

S =—QTrg U,1

p 16p

and /3 is related to the continuum coupling constant g by

/3=1/2g a, P))1,
where a is the lattice spacing.

The Wilson loop is defined for any closed loop L and
any representation j by
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where the Wilson loop is defined on a rectangular path of
dimensions R by T. Since the expected (at least in the
fundamental representation) linear potential means the
Wilson loop behaves as exp( —o RT) (cr is the string ten-
sion for representation j) for large R and T, it is also con-
venient to discuss the behavior of the Cruetz ratio,
defined by

0't ~ Ups

U( ~ UIRgRgi~
Ug —+ UgRg

W (R, T)W' (R —1, T —1)
(6)

V4 ~ UgRg

V3 ~ U3Rg

For large R and T, the Creutz ratio gives the string ten-
sion, if there is one. Because the coupling constant has
dimensions, the string tension should scale as 1/p for
weak coupling (large P).

Section II explains how additional variance reduction
can be achieved in addition to the standard multihit vari-
ance reduction commonly used in gauge theories. Section
III is devoted to a discussion of the details of the simula-
tion. Section IV contains information about how the er-
rors were handled, Sec. V gives the final results and Sec.
VI contains the summary and conclusions.

is of the form

(0)=—f [dU]exp(PS)Tr(U, X) .
1

(10)

Make the substitution

FIG. 1. The configuration used in deriving the double vari-
ance reduction [showing the substitution of Eqs. (11)and (12)].

II. VARIANCE REDUCTION

I2(pk()

I, (Pk()
(8)

As is well known, it is advantageous in numerical simu-
lations to be able to replace an observable with another
quantity which averages to the same value as the original,
but which has a smaller variance. In the case of lattice
gauge theory the usual choice when the observable is a
Wilson or Polyakov loop is to replace each link UI in the
loop by

f dU&exp(Pk&TrU&/2)UI V&

f d U~ exp(Pk~ Tr U~ /2)

where k& Vt is the sum of the staples which, with UI, form
plaquettes and ki is a positive number determined by the
condition that V& be an SU(2) matrix. For SU(2) the in-

tegral can be done to give

Ut U(R iR2,

U~URz, i =1,4 (12)

in (10), where R, and Rz are arbitrary SU(2) matrices.
Using the invariance of the Haar measure, integrating
over R, and R2 and dividing by two factors of the group
volume U gives

(0)= f [dU]exp(PS') fdR, dR2exp(PS")

XTr( U(R
&
R 2X), (13)

XTr(V, 'V 'X), (14)

where S" is the contribution to the action of all pla-
quettes drawn in Fig. 1 and S' is the contribution from all
other plaquettes in the lattice. The integrals over R, and
R 2 are decoupled and are easily done to give

(0)= f [dU]exp(PS')I2(Pk&)I2(Pkz)
1

ZU

For large p, k& becomes very close to the number of sta-
ples which, with U~, form plaquettes (four in three dimen-
sions). Using the asymptotic expansions for the Bessel
functions gives

where

ki V] = U]+ U~+ U3+ U4,

kq V2 —T, + T2+ T3+ T4 .

(15)

(16)
U(~(1 —3/8P+ . .

) V(

Whereas the original quantity could take values between
+1, the new quantity takes values between +(1—3/
8P+ - )

In this work we have extended this idea to add a
second variance reduction step in each link. To see how
this is done, consider Fig. 1. It shows the four primary
plaquettes containing UI as well as 12 secondary pla-
quettes which border the initial four. To make the
derivation transparent, we have chosen a gauge where the
matrices on all links without arrows have been set to uni-
ty. The expectation value of an observable containing UI

T, is the sum of the three staples connected to U; which
do not contain UI. k, and kz are determined by the re-
quirements that they are positive and V, and V2 are
SU(2) matrices. Note that the k's and V's are indepen-
dent of UI.

In (14) insert into the integrand the factor

fdR, dR2exp(PS")
1= (17)I, (pk, )I~(pk2)

Using the inverse of the transformation given by (11) and
(12) and then doing the trivial integrals over R, and R-,
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gives

1 I~(pk, )I2(pk~)
( 0 ) =—f [dU]exp(PS )z

XTr(V V X) . (18)

For large P, k, -4 and k2 —12 so the ratio of the Bessel
functions becomes

(1—3/8/3+ )(1—3/24P+ ) . (19)

The second variance reduction reduces the variance by
roughly the cube root of the amount that the initial
reduction does.

Repeating the analysis above with the Wilson loop in
the adjoint representation changes (18) to

(0„)= —j[dU]e px(PS)f, f2TrD„(V, 'V, 'X), (20)

where

4 Iz(Pk; )

Pk, I, (Pk, )

1 —4/Pk, + (Pk, »1) . (21)

Here we also see that the second variance reduction
reduces the variance by the cube root of the first, al-
though since the first is larger for the adjoint representa-
tion than the fundamental, the second is also larger. In
Sec. IV we will check these estimates and discuss the use-
fulness of this addition.

III. THE SIMULATION

The simulation was done on a 32 lattice with periodic
boundary conditions. A standard heat-bath algorithm
was used to do the updating. All Wilson loops smaller
than 16 by 16 were measured, except for adjoint loops at
P=6.0. Here the largest loops are too small to measure
accurately, so no time was spent on them. All loops with
one dimension greater than or equal to four were mea-
sured using the double variance reduction described in
Sec. II, while the loops with one dimension less than or
equal to four (except the single plaquette) were measured
using single variance reduction. Since loops with one di-
mension equal to four were measured both ways, the
effect of the second variance reduction can be deter-
rnined.

For a single lattice, before measuring the loops, the
necessary reduced variables (the V's and ratios of Bessel
functions) were calculated for all links in the lattice. The
calculation was organized so that all the staples calculat-
ed for the first variance reduction were used in calculat-
ing the reduced variables for the second variance reduc-
tion. In this way a lattice of singly reduced variables and
a lattice of doubly reduced variables was produced. If
the comparison between the single and double variance
reduction were not of interest, all small loops could be
measured on an unreduced lattice and only the doubly re-
duced lattice would need to be generated. Since each lat-
tice is of size 0.4 megawords, for this problem both the

singly and doubly reduced lattices could be kept (along
with the original). (To reduce charges for fast memory
usage, they were actually kept on the solid-state storage
device of the Cray-XMP and were read in plane by plane
when needed. )

Loops were measured in both lattices of reduced vari-
ables; small loops in the singly reduced lattice, large loops
in the doubly reduced lattice. To measure loops, a plane
was chosen and all links in one direction in that plane
were gauged to unity. The links in the other direction
were appropriately modified by multiplying with links
from the unreduced lattice so that when all the parallel
transporters were collected to form a loop, unreduced
variables were used in the corners of the loops. (The
derivation in Sec. II assumed that the R integrals are
decoupled for neighboring links, which is true except
near the corners).

Three values of I3 were used in this study: 6.0, 10.0, and
12.0. Previous studies have used values as large as 6.5
and found scaling at the 10%%uo level for the string tension.
[These P values are well above the crossover from strong
to weak coupling which occurs for P-2. 5 (Ref. 6).]
Table I shows the number of sweeps for each lattice. One
sweep of the lattice took about 0.8 sec and one measure-
ment of all loops on the lattice using the double variance
reduction took about 9.5 sec. (Of this 9.5 sec, slightly less
than 1 sec was needed to calculate the reduced variables
for the secondary variance reduction from the already
calculated quantities used in the primary variance reduc-
tion. ) Initially measurements were performed only on
fundamental representation loops.

During the 1000 sweeps shown in the autocorrelation
column all square loops were measured after each sweep
so that an estimate of the autocorrelation time could be
used to determine a reasonable separation between mea-
surements (given in the last column of Table I). For an
observable 0, whose average is obtained from a time
series, the integrated autocorrelation time is found as fol-
lows. (See Ref. 7, and references therein for a more de-
tailed derivation. ) Define the correlation function for an
observable 0 as

g[O(i) —O][O(i +t) 0]—
p(t) =

g[O (i) —O][O (i)—0]
(22)

where the sums are over all measurements and 0 is the
average value of 0. The integrated autocorrelation time
is found by summing p(t) over t and equating this value
with the sum over t of exp( —~t~/r;„, ). The sum over t of
p(t) must be cut off at some value to keep the poor statis-
tics in the tail of p(t) from making the answer meaning-
less. (The cutoff' used is discussed in Sec. IV.)

Table II gives the integrated autocorrelation times for
square loops. For each value of P, two autocorrelation
times are shown. The preliminary estimate based on
1000 measurements is shown in the column marked ini-
tial. These times were used only to help determine the
number of sweeps between measurements given in Table
I. The column marked final is based on all the measure-
ments of the loops, where the separation between mea-
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TABLE I. The number of sweeps and measurements used in the simulation.

Sweeps used for

6.0
10.0
12.0

Thermalization

5600
7700

10200

Autocorrelation

1000
1000
1000

Fundamental

5000
3000
2500

Measurement
Adjoint

2000
1000
500

Separation

10
20
20

surements is given in Table I. The errors on the times in
the column marked final are between 5 and 10% [found
through formulas similar to (27)], while the times in the
initial column are rough estimates due to the limited
number of sweeps involved. For P=10.0 the initial esti-
mate is much larger than the final result. To check that
this was just the result of poor statistics in the initial esti-
mate, the measurements used to calculate the final result
were broken into small groups of the same size as the ini-
tial measurement and the groups displayed sufhcient vari-
ance to account for the largeness of the initial estimate.
An interesting feature of the autocorrelation times is that
they peak for loops of size very near P by P.

IV. STATISTICAL CONSIDERATIONS

gxr(t)= gf(t —+i)P(i)1

l

for the data sample where

X(i ) =X(i ) X, —

(23)

Since this work is motivated by the goal of providing
an accurate determination of the potential for this model,
particular care has been taken in the statistical analysis of
the data. For two observables X and Y, both sirnultane-
ously measured from the same sequence of lattice
configurations, the full covariance matrix can be estimat-
ed from the measured values. The estimate for the co-
variance matrix is found by first calculating

X is the number of measurements, and X is the sample
mean. [The sum in (23) is actually over at most X—t
measurements, where the normalization is also changed
appropriately. We will use the simple notation of (23) for
convenience. ] The covariance matrix is then given by

C

Cxr =
& X Ex'(t)X

C

(2&)

ri»»(t, r', t")= QX(t—+r'+i )X(t'+i )X(r +t"+i)S,,

XX(t"+i) . (26)

where T, is a cutoff that must be determined. If T, is
taken as large as allowed by the number of measure-
ments, it can be shown that the variance of the estimate
for the covariance matrix does not go to zero as the num-
ber of measurements of the observables goes to infinity.
Taking T, smaller than the sample limit introduces a sys-
tematic error in the estimate of the covariance matrix.
However, if T, is a few times larger than the measurable
decay of (xr(t) (assuming gxr falls exponentially for
large enough t) the systematic error can be kept on the
order of a few percent while 1eaving an estimator that has
a variance which decreases in the large sample-size limit.

In this work, T, has been determined as follows. The
appropriate estimator for the error in g x(xt) is found by
first calculating

TABLE II. Integrated autocorrelation times for square loops.

Loop

1X1
2X2
3X3
4x4
5X5
6x6
7X7
Sx8
9X9

10x10
11 X 11
12x12
13x13
14X 14
15 x15
16x16

Initial

0.6
1.9
2.9
4.0
4.8
4.8
4.4
3.4
2.4
1.8
1.6
1.4
1.1

1.0
0.8
0.8

P=6.0
Final

0.51
0.58
0.63
0.71
0.78
0.82
0.77
0.65
0.56
0.53
0.51
0.51
0.50
0.51
0.51
0.54

Initial

0.8
1.9
4.1

8.8
14.9
19.6
28.0
34.4
38.1

38.6
33.9
19.6
11.2
8.3
7.0
5.7

P=10.0
Final

0.52
0.51
0.55
0.64
0.78
0.84
0.89
0.93
0.96
0.96
0.94
0.90
0.84
0.79
0.74
0.70

Initial

0.6
1.6
3.5
5.4
8.4

10.0
10.9
12.1
13.9
16.8
20. 1

22.9
23.7
21.8
18.2
13.1

P=12.0
Final

0.44
0.50
0.56
0.64
0.78
0.86
1.01
1.11
1.21
1 ~ 37
1.42
1.41
1.38
1.24
1.15
1.02
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The variance of gxx(t) can be estimated from

1
vaCxx(~)= 2 g i)xxxx(& &' r"} kxx(r) .

N tlat

(27)

X [ —ln W(R, T2) —(aT2+b)] .

The covariance matrix for the logarithm of the %'ilson

loops can be easily gotten from the covariance matrix of
the Wilson loops.

It is important to remember that we do not have the
actual covariance matrix, but only an estimate of it. In
particular we find that because of the strong correlation
between loops whose dimensions differ by only a few lat-
tice spacings, the estimator for the covariance matrix for
the logarithm of the Wilson loops can have negative ei-
genvalues. This means that the y can be negative, which
is clearly not desired. We chose to circumvent this prob-
lem by decorrelating our data slightly. To show how we
do this, consider the %ilson loop averages for 5 by 5 and
6 by 6 loops. If we generate X lattices and measure both
loops on all lattices, the results will be highly correlated.
However, if we measure the 5 by 5 loops on the first X/2
lattices, and the 6 by 6 loops on the remaining lattices,
the results will be completely decorrelated, although the
standard deviations of the individual loops wi11 be larger
in the second method since there are only half as many
measurements of each. Of course if the 5 by 5 loops are
measured on the first 3%/4 lattices and the 6 by 6 loops
on the last 3'/4 lattices, the results will be somewhat
correlated.

We have solved the problem of negative eigenvalues of
the covariance matrix in just this manner. We have not
used all measurements of a given loop in the average, so

This sum must also be cut off and we use a cutoff which

only includes terms with t'=t". This just assumes that
the dominant contribution comes when the terms cluster
and that the true value should be larger than this esti-

mate. This procedure gives a rough estimate of the vari-

ance gxx(t} and we use this to estimate where the signal

in gxx(r) for large r falls into the noise. We call this value

To. We then use the behavior of gxx(t) up to To to
determine an exponential decay constant rd for gxx(t)
and take T, =4~d. This means we make a fractional sys-

tematic error of exp( —4} in our estimate of Cxx. When

calculating the o8'-diagonal elements of the covariance
matrix, we use as a cutofF the maximum of the two

relevant T, 's.
The full covariance matrix is necessary to extract the

value of V(R). V(R) can be found by fitting the negative
logarithm of R by T %ilson loops to the function aT+6
for T )R with fixed R. However, this simple linear form
is only expected asymptotically and in order to judge
whether the fits for any finite values are reasonable a reli-
able g is needed. If the %'ilson loops are highly correlat-
ed (as they are in this simulation) a weighted least-squares
fit with the full covariance matrix must be used to get a
reliable g . The quantity to be minimized by fitting is

g [—lnW(R, T, }—(aT, +b}]C:~„ii,
l' 2

0.5700—

0.5675—

0.5650—

0.5625—
E

0.5600—
a5

~ p+I

V
0 5575—0

0.5550—

0 5525 chi —Sq 50 7.0 3.5 1.5 1.7 2.0 2.4 O.S 0.9

0.5500 -—
20

t I l

B.O 6 D 1D.D
Minimum T used in fit

I

12 D

FIG. 2. Extracting the potential from linear fits to the loga-
rithm of Wilson loops.

that the average values obtained are somewhat decorre-
lated. (The number of measurements left out is 250 out
of 5000 for P=6.0). After excluding some measurements
the resulting covariance matrix is checked to see if it has
any negative eigenvalues. In addition, the covariance
matrix is also checked for negative eigenvalues when the
off diagonal elements are randomly changed by 3—5%.
(This is roughly the standard deviation of the covariance
matrix elements for a sample of this size. ) When the
linear fits are done, the parameters and g are checked to
make sure their dependence on small errors in the covari-
ance matrix is small. [Because of the inverse appearing in
(28), the computed g fluctuates wildly if an eigenvalue
crosses through zero and becomes negative. ]

Now that a reliable y has been calculated, one must
still decide which T's are large enough that the asymp-
totic form is being reliably seen. Since the errors are
becoming larger for large loops one would like to pick
values for T which are bigger than R, but for which the
statistics still give meaningful results. The values used
for the potentials were determined from graphs such as
Fig. 2 for each R. At fixed R, the logarithm of the Wil-
son loops was fit to a straight line from T to the max-
imum T measured (usually 16) and the uncertainty in the
slope was calculated along with the y . The y per degree
of freedom (reduced y ) is also shown in Fig. 2. One
generically sees the values of V(R) level off when the re-
duced g enters the range 0.5-2.0 and this helps to deter-
mine which T to use. For the plot in Fig. 2 the value of
V(R ) was chosen from the data point where T =8.

The errors for the Creutz ratios can also be calculated
using the known covariance matrix, but a more reliable
procedure, which does not require the subtraction of
large numbers to get a small result, is binning. The mea-
surernents were broken into groups of 100 measurements
each and the Creutz ratios were found for each group.
The groups are now independent and the standard devia-
tions can be easily calculated.
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TABLE III. Creu
re

reutz ratios for en a and adjoint

R P=6.0 P=10.0 P= 12.0

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

4.388 (1)
3.293 (2)
2.827 (5)
2.617 (5)
2.500 (9)
2.433 (18)
2.421 (53)

'

2.356 (144)
2.674 (610)

p CF(R R)
6.106 (1)
4.122 (3)
3.274 (6)
2.846 (5)
2.614 (7)
2.469 (10)
2.385 (13)
2.317 (20)
2.257 (34)
2.244 (47)
2.202 (67)
2.332 (150)
2.218 (300)

7.027 (2)
4.621 (3)
3.570 (9)
3.051 (4)
2.749 (7)
2.563 (11)
2.438 (13)
2.354 (18)
2.289 (26)
2.262 (30)
2 205 (44)
2.226 (67)
2.183 (120)
2.191 (190)
2.137 (260)

are from P=6.0 100
co

. , or 12.0. A
ome from breakin

. . As mentioned, the
a ing t e measurements'

dent.
reating these groroups as bein s

ents into groups of 100

The Creutz r t'

'
g statistically ind

ver ed
z ratios for lar e 1 con-

ge and the large loo
ge oops are well con-

with scalin .
e oop values are in

Th
''

1oops show similar chc aracteris-

1.0—
dF-M~i i

3.0
I

50 7.0 11.0 15.0
I

17.0

FIG. 3. The valuesa ues of r =var( Wr(4 Tr 4, T)), /var( Wr(4, T))2.

3
4
5

6
7
8
9

8.68 (1}
7.34 {12)
6.81 {12)
7.54 {77)

P C„(R,R)
10.99 (2)
8.69 {2)
7.52 (5)
6.82 {8)
6.30 {10)
6.35 {40)

12.33 (1)
9.50 (9)
8.17 (4)
7.38 (5)
6.83 {9)
6.94 (23)
6.55 {42)
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8.0—

7.0—

60—

2 5.0—

40—

3.0—
CQ

8.0—

XO~vga

R=2
R=3
R=4
R=5
R=6
R-7
R=8
R=9
R=io
R=11
R=12
R=13
R=14
R=15
R=16

X
x 00

v
m)~"++a ~~ ~&mmgf

VF(R) V„(R) V, (R)/V, (R)

1

2
3
4
5

6
7
8
9

10

0.160
0.263
0.345
0.419
0.488
0.555
0.620
0.683
0.752
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2.653 (6)
2.649 (3)
2.636 (12)
2.636 (8)
2.620 (23)
2.660 (36)
2.649 (70)

TABLE IV. Values of V(R) for the fundamental and adjoint
representations.
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FIG. 5. The Creutz ratios for the fundamental representa-
tion, P'CF(R, R).
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ties, although the statistics were worse.
Table IV gives the values for the potential for different

R at each of the three p values. The errors are statistical,
although a systematic error of about the size of the sta-
tistical errors could easily be present for the largest R's
for each potential due to the ambiguity of extracting the
true asymptotic form. The last column in the table gives
the ratio of the adjoint potential to the fundamental po-
tential for each of the different P's studied. One can easi-
ly see that the functional form of the potentials is ex-
tremely close and also that the ratio given is equal to the
ratio of the Casimir operators for the two representa-
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0.133 62 (8)
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0.173 48 (21)
0.191 02 (31)
0.207 60 (42)
0.223 34 (67)
0.239 01 (87)
0.253 73 (136)
0.270 12 (169)
0.284 53 (224}

P= 10.0
0.230 5 (1)
0.357 3 (2)
0.448 1 (5)
0.523 8 (8)
0.592 7 (16)
0.652 6 (40)
0.721 1 (56)
0.773 7 (109)
0.821 1 (208)

P= 12.0
0.187 1 (2)
0.287 3 (3)
0.357 0 (4)
0.413 1 (8)
0.464 3 (13)
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0.554 2 (34)
0.596 4 (114)
0.626 5 (93)
0.668 9 (193)
0.718 6 (702)
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2.660 (8}
2.664 (17)
2.662 (21)
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2.597 (66)
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2.670 (52)
2.621 (40)
2.636 (77)
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FIG. 6. The Creutz ratios for the adjoint representation,

P C„(R,R).

tions, 8/3. This has been seen previously in the string
tensions and is seen here to be the case for the potential
as a whole. This is precisely the ratio predicted perturba-
tively, although here it clearly persists into the region
where the potential is linear, as seen in Figs. 7 and 8.

The string tensions from Atting the potentials to a
straight line for various ranges of R are given in Table V.
A conventional weighted least-squares fit has been used
here, since it would be extremely difficult to estimate the
correlation between the values of the potential at different
R's. (The smallness of the y for larger R's is an indica-
tion of correlations. ) The errors given are statistical, but
one can see systematic effects from fits to different ranges
of R that are roughly twice the size of the statistical er-
rors. The string tensions as determined from the poten-
tials have similar statistical errors to those determined
from the Creutz ratios. However, since the string ten-
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TABLE V. Fundamental- and adjoint-representation string
tensions from fits to the potentials.
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FIG. 7. The potential for the fundamental representation.
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4-7
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5-9
6-9
5-11
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6.53 (25)
6.55 (10)
6.15 (20)
6.13 (42)
6.26 (18)
5.88 (32)
5.40 (56)

0.3
1.9
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sions extracted from the potentials involve two asymptot-
ic fits to straight lines, they are subject to systematic er-
rors.

Figure 9 is a plot of P VF(R) and —,'P V„(R) for each of
the couplings used. The very similar functional form of
the fundamental and adjoint potentials is evident. The
visual evidence for scaling is quite strong as can be seen
by the similar slopes for large R for each of the different

s.
Table VI gives a single result for the string tension at

each p, where the errors reQect an estimate of the range
in which the true value should lie. This estimated error
covers the range of results from both the Creutz ratios

—8~(P}lnR +8~(P), (30)

where the 8's are parameters. 8,(p) is the string tension
and 81(P) is expected to be m/24, the coefficient of the

and the potentials.
In Ref. 2 the authors have used a simple string model

to argue that Wilson loops with T & R could be expected
to behave (for p greater than about 3.0) as

—lnW(R, T)= 8, ( P)RT +8z( P)(R+T) 83(P)T/R—
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FIG. 8. The potential for the adjoint representation. FIG. 9. The scaled potentials P VF(R) and (3/8)P Vz(R, R).
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6.0
10.0
12.0

2.35 (8)
2.25 (4)
2.23 (4)

6.0
10.0
12.0

6.7 (3)
6.2 (2)
6.2 (7)

TABLE VI. Final results for the fundamental- and adjoint-
representation string tensions.

2.2 8.6
2

(31)

most a few percent. Our results are in agreement with
earlier studies done for P=6.0, which is the only cou-
pling in common. We find the functional form of the po-
tentials for the fundamental and adjoint representations
is the same to high accuracy.

We have seen no sign of the expected departure of the
adjoint potential from linearity at large R. This is
reasonable as seen by using the mass values from Ref. 3.
There the mass is given as 8.6/p, so the value of R needed
to have enough energy in the string to form two glueballs
1s

universal Coulomb potential. They find that the form
(30) well represents their data.

An advantage of using fitting to (30) is that many of the
loops measured at a given /3 are used simultaneously to
determine the string tension, with a resulting decrease in
the statistical errors. However, there are diSculties in
using (30) to extract the string tension and other 8's. The
main problem is the high correlation between the mea-
sured loops. We find that the covariance matrix for al-
most all groups of loops has negative eigenvalues and
moderate decorrelating as discussed in Sec. IV is inade-
quate to cure the problem. (The loops can always be fully
decorrelated by measuring one size loop on the first 100
lattices, another on the second 100, etc. , but the errors
for the individual loops would increase enormously. ) If
one proceeds and neglects correlations, the resulting sta-
tistical errors on the 8's are extremely small (as small as
0.2%), while the values of the 8's are only stable to a few
percent when the range of fitting is varied. (Our P=6.0
results are in agreement with Ref. 2.) Without a reliable

there is no criteria for determining which range for R
and T to use, nor how good the fits are. Hence, it ap-
pears that although (30) is a good representation of the
general form of the Wilson loops, it is dificult to make
this statement exact or take advantage of the reduced sta-
tistical error from such a fit.

VI. CONCLUSIONS

We have done an updated simulation of SU(2)& and
have seen a scaling string tension in both the fundamental
and adjoint representations. The fundamental represen-
tation string tension shows deviations from sealing of at

R —SP . (32)
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At this value the string would be completely broken and
it is not surprising that no trace of this is seen for R's
eight times smaller.

The double variance reduction has improved the statis-
tics for 4 by T loops by up to a factor of -3 (for the 4 by
16 loop in the adjoint representation at p= 10.0). Larger
loops should show even greater reduction, although we
have not explicitly measured the reduction. This reduc-
tion costs only slightly more computer time, although it
does increase the complexity of the measurement algo-
rithm substantially. Although not a long simulation by
current standards, the 80 h of Cray-XMP time used
would have gone up by at least a factor of 10 without the
second variance reduction, if comparable statistics were
desired.

At fixed p, the peak in the autocorrelation times for
loops of size p by p is an unexpected and interesting re-
sult. One possible explanation for this peak is the ex-
istence of field configurations on the lattice of roughly
volume p which have structure which the heat-bath al-
gorithm cannot easily modify. We are currently investi-
gating this possibility.
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