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Secondary structure of a general multiloop amplitude in open-bosonic-string theory
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We investigate the structure of a general multiloop amplitude in open-bosonic-string theory. We
show that any connected part of the S matrix can be constructed from three kinds of multiloop tad-

pole, one-loop nonplanar self-energy, and trees due to duality. A separate cbscussion for the uncon-
nected part is also given. Some rules for calculating a general multiloop amplitude and explicit re-

sults for the nonorientable and nonplanar multiloop amplitudes are given in the framework of the
Becchi-Rouet-Stora- Tyutin-invariant operator formalism.

It is a well-known fact that any Feynman-like diagram
in string theory can be described as a combination of
several primitive diagrams and trees due to duality. '
Such a structure can be called a primitive structure. In
the open-bosonic-string theory, the primitive diagrams
are the following four diagrams: one-loop planar and
nonorientable tadpoles, one-loop nonplanar self-energy,
and two-loop nonplanar tadpole. The development of the
Becchi-Rouet-Stora-Tyutin- (BRST-) invariant operator
formalism makes it possible to realize this rigorously
in terms of operators. In previous papers we complet-
ed the calculation of these operators and confirmed this
fact in the planar case (Ref. 8 see also Refs. 9 and 10).
Here we will go on in this program to general cases. For
this purpose, we will make clear how these primitive
operators appear in general amplitudes and show that
there is a structure which may be called a secondary
structure. Some rules for calculating general amplitudes
will also be discussed.

We will show first that, due to duality, in general the
connected part of the string S matrix is made from the
following five secondary building blocks: three kinds of
multiloop tadpoles (Fig. 1), one-loop nonplanar self-
energy, and trees. Each of these three kinds of multiloop
tadpoles is constructed from only one of the three primi-
tive tadpoles: one-loop planar, one-loop nonorientable,
and two-loop nonplanar tadpoles. Such a structure fol-
lows the next five lemmas.

Lemma 1. Three primitive tadpoles are mutually com-
mutable.

Lemma 2. The product of two nonplanar self-energy
diagrams is dual to the product of one nonplanar self-
energy and one planar tadpole (Fig. 2).

Lemma 3. The nonplanar self-energy diagram is com-
mutable with a tadpole which is made by multiloop tad-
poles with another nonplanar self-energy on its external
leg (Fig. 3).

Lemma 4. The orientable tadpole can pass through the
nonplanar self-energy, while the nonorientable part can-
not (Fig. 4).

Corollary 4. The product of the orientable tadpole and
the nonplanar self-energy is dual to the product of that

tadpole and a planar tadpole (Fig. 5).
Lemma 5. The product of the one-loop nonorientable

tadpole and the two-loop nonplanar tadpole is reduced to
a product of three one-loop nonorientable tadpoles (Fig.
6). (In Ref. 11, one can also find similar statements to
our lemmas except for lemmas 3 and 4.)

These lemmas can be proved by using the duality of the
four-point vertex in the orientable cases and also by using
the relation illustrated in Fig. 7 in the nonorientable case
(see, for example, Fig. 8, the proof of lemma 3). In the
context of the BRST-invariant operator formalism, the
four-point duality has already been shown by us, and is
satisfied off the mass shell. As for the last relation, we
can however argue that it is only satisfied in the on-
mass-shell amplitude. The reason for this is the follow-
ing. The left-hand side of Fig. 7 is given by (the notations
and conventions follow the ones in Ref. 6—8)

~ V12E ~

U'" «F3411~EF ~ T

FIG. 1. (a) Planar multiloop tadpole, (b) nonorientable mul-

tiloop tadpole, (c) nonplanar multiloop tadpole.
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FIG. 2. The product of two nonplanar self-energies is dual to
the product of one nonplanar self-energy and one planar tad-
pole.

where U =0 T, 0=—Qe '. Using the relation
( V]$3 ~ g —] 2 3Q ( V]3$ ~, we can show that ( I) turns
out to be

( V ]z2~T' '[( V~43~0' ' exp(L', ') exp(L', ')~RzF)]U' ' .

(2)

To make (2) match the right-hand side of Fig. 7, one
must set the extra factors exp(LI']), r =F,4 to one. This
is however possible only in the on-shell amplitude. The
factor Qt on the third leg means that the third leg is
twisted when it passes through the twisted line as one can
easily see in Fig. 7, and does not afFect any proofs because
we always use that relation twice in any proof of the lem-
mas and Qt =1. All the lemmas thus can be proved in
the on-shell amplitudes.

From lemma 1, a general multiloop tadpole, which is
made by mixing three primitive tadpoles, can be decom-
posed to the three parts, each of which is made from only
one of the primitive tadpoles. From lemma 2, we do not
have to consider the product of more than two nonplanar
self-energy insertions. From lemma 3 and corollary 4, in

I

FIG. 3. Nonplanar self-energy is commutable with a tadpole
made by multiloop tadpoles with another nonplanar self-energy
on its external leg. The shadowed tadpole means a general mul-

tiloop tadpole made from three primitive tadpoles.

the orientable case the nonplanar self-energy does not ap-
pear except for the case in which at least one of the legs is
contracted by the tree of the external particles. In the
nonorientabe case, from lemmas 1, 3, 4, and 5, we do not
have to consider the nonplanar two-loop tadpole.

As a result of these properties, we conclude that any
connected part of the S matrix in the open-bosonic-string
theory can be constructed from the three types of mul-

tiloop tadpoles, one-loop nonplanar self-energy and trees
with the simplification mentioned above. One may call
such a structure a secondary structure.

Let us next consider some typical cases and realize
them in terms of operators. In these cases, we can make
a rule which indicates what kinds of factor one should
add to the on-shell amplitudes.

Let us first consider the product of two tadpoles. In
general, a tadpole-type operator with I loops is given by
the form

1

(7'"~= f r] d k; f dn'"F"'[G"] ,
F' '[G"'] (0 q =3~~ exptn'")(b, ho+A'"bo), — (3)

F"[G'"]—= g ' g [I ]]](r)"]
r / G(1) n =s

E (1) E{l)x+ E ( 1) gh

(4)

a 00

E[" = —
—,
' g k k(2m lm~);, —g g 3'k, — g Q„

i j =1 i=] n=] nm=]

FIG. 4. Only the orientable part of tadpole can pass through
nonplanar self-energy. The shadowed square and triangle tad-
poles mean orientable and nonorientable multiloop tadpoles, re-
spectively.

FIG. 5. The product of orientable tadpole and nonplanar

self-energy is dual to the one of that tadpole and planar tadpole.
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FIG. 6. Two-loop nonplanar tadpole coupled with nonorient-
able tadpole is dual to three nonorientable tadpoles.

FIG. 7. The third leg can move to the left of the twist accom-
panying the extra twist.

E(l) sh y g b
n, m ~2

where k, are loop momenta. F"[6'"]are the partition functions associated with the Schottky group 6'" generated by
I projective transformations P,'". F"' and F' ' correspond to the orbital and ghost contributions, respectively. It is
worthwhile to note the similarity of F"with the Selberg zeta function Z(s) (Ref. 12). The projective transformations
P,'" are defined recursively from the ones appearing in the primitive tadpoles [see, for example, the rules (9)]. The
measure of moduli dp, '" and the coefficient A'" are also defined recursively from the primitive ones [see, for example, (8}
and (10}-(12)]. The coefficients A„,Q„,B„are as usual the differential coefficients of the first Abelian integral
P' )(y, x), the logarithm of the prime form E (x,y) divided by x —y, and the automorphic form 9„'" of weight 2 in x and
—1 iny, all of which are defined in terms of the Schottky generators. ' ' ' '

Note that expression (3) is adaptable to orientable planar, nonorientable, orientable nonplanar and their mixed mul-
tiloop tadpoles with suitable G'", dp'", and A'". The reason why their expressions are superficially the same is the fact
that their Riemann doubles' are the same, if they have the same number of loops. They are distinguished by the
differences in the locations of the isometric circles and the signs of the multipliers associated with the Schottky genera-
tors.

Now the product of two tadpole-type operators are evaluated as

&
&'" 'll=& &"I,(b,'-b', ) f ' " /t'"(x)&7'"Is(bo &) )f /t' '(&)& I'LFrll)It/el. &~~EF ~

1 I + I'

gd k; to gd k

A'" to A'"A"'

G&1] t G(I+I']

1 —y

Here the l+I' generators of the new Schottky groupG"+' ' are given in terms of the old ones P " and P,." ',
which belong to G'" and G" ', as follows:

The resultant expression is given by applying the follow-
ing rule to (3): adding factors dp" ),dx/x2, dy/y, and
changes

Here P', ",a')", and PI" are given by

+CO(1)—
P1 O

1
~() ) — p() ) —~

1 —(+co) '

P"+' '=0/t(x) 'P'"[0/t(x) ']

&' +''=[0/t(x) '](aI"), etc. , i =1,2, . . . , $,

PII+I') f1+(~)
—1P(l')[Q (y) )]—)

a"+' '=[0/t(y) '](a" '), etc. ,

i = I + 1,1 +2, . . . , 1 +1' .

where plus and minus correspond to the planar and the
nonorientable cases, respectively. As examples, the mea-
sure factors of the three kinds of multiloop tadpole in
Fig. 1 are evaluated as

FIG. 8. Lemma 3 is proved by making repated use of duality
of the four-point vertex.

dtU;(1 —w;) ) —i dx dyd~'"= ll, ' ll
i=1 W; J —

1 X.y.
2
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FIG. 9. Another typical combination.

1 1 —1

A'"o= rl( —
) II

1 —x; 1 —y;

'2

dw; dg;
W2

r

dp, ;dv;(1 —p;v;) I —1 dx dy.

2

1

d) NP II
1 1 —1

A(2I) g g2 g 1 —x; 1 —y;

pi vi
NI

1 —p;v;

dw;(1+w;) I —1 dx dyd~'"o=rr ', '
rr
J=1

FIG. 10. General diagram with insertion of some particle
states.

and change

(b 1 bp+A bp) to (b 1 bp+—WNpbp)

G(I) to G( I + 1)

Here the new Schottky group 6' + ' is generated by the
following I + 1 projective transformations:

P"+"=[/c(x)r ] 'P'"[/4{ )r ],I &wp ~we

(12)

where we used a nonorientable tadpole in Ref. 6 and a
nonplanar two-loop tadpole in Ref. 7 with a gauge
transformed measure d)MNP' and b, NP' by S(f). (We have
also used the new notation p,„v, instead of x;y; in Ref. 7.)

Next consider another typical combination appearing
in the nonorientable case (see lemmas 3 and 4), the com-
bination of a nonplanar self-energy operator with a
tadpole-type operator (Fig. 9):

~1+1 ~NP
(1+1)

with fixed points

(I+1) p(x)r ] 1(~(l))

p(1+1) p(X)r ]
—1(p(l))

i =1,2, . . . , I, (16)

(17)

( 7 I+1)~ —( g l)~ (bE bE)

X X XNP Fl REF

(13)

dx dw (NP ( I )

2 2 WNP
X WNP gNP

'2

(14)

In this case the resultant tadpole is given by applying
the following rule to (3): add the factors

(1+1) &1+1)+1+1 +NP I I+1 ~NP

respectively. Here the quantities with subscripts NP
mean that they come from the nonplanar self-energy
operator. ' The more complicated case, for example, is
illustrated in Fig. 10, which is also easily constructed in
an analogous way, and is left to the reader to verify.

Now we present the general expression of an amplitude
with on-shell external ground-state tachyons, which is
evaluated by attaching the desired particle states to the
external legs of the operators:

(+ I (b b) f —p' '( )(V, , )~R ) g ~p, ; —)
i =1(WF)

dzi

=fdP f ' F'"[G'"] ' '[6'"] (det2m 1m') ' g E(z„z„)exp —m. f 'd(();(Imr), ' f 'dP.
abc r(s r r

(18)

where
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N+1
& V(, 2, . . . , F, . . . , Iv+1 I g lp

i =1(WF)

N+1
dz

i=1 ZF+ 1 ZF —1

F&0 0, I exp
dVabc (ZF+1 Z—„)(ZF ZF —1}

N+1
(a Izr) (b, b—

) ): exp((2 IUF —1I(2 ): .
r = 1(WF)

(19)

Here & 7 "I is a general tadpole operator constructed by
using the rules discussed above. The measure dp, is also
constructed recursively by using (10)-(12}and (14). In
particular, in the cases where & 7 "I are constructed from
the three tadpoles in Fig. 1, the variables x;,y;,
i = 1,2, . . . , / —1, z and zF in the measures dp can be ex-
pressed by the fixed points a ,

'",P ';" of

dco;(1+Ql. ) da )dP .= T7PNO Pw 2
( ~ (I) (I) )2i=1 COi ~i i

dco, (1—co;) dg; dp, , dv;(1 —((4;v;)
dPNP g 2

co'; g; I(c,'v;(1 —
p, ; )(1—v; )

(22)

dco;(1 —co ) da'"dP("
-(I) 2 '

c0, (P, —a,. )
(21)

P(l)=Q(z}UF] 'P p'k(z)U F, i =1,2, . . . , I

1n the same way as the planar case' ' (in the nonplanar
case, one should choose 1 projective transformations,
each of which corresponds to the nonplanar self-energy
part in it )

F+1 F —1} F d d idy'

(zF+1—zF)(zF —zF 1) z;-1 x;y;
da(I)dp(I)(1+II) )

(a, —P, }
(,) „, , (20)

where one should choose plus or minus according to
whether co; corresponds to the orientable or nonorient-
able loops. Thus the measures dp in these cases are given
by

d a ( l)d p ( I)
l

(P (I) a(l) )2
(23)

Next let us consider the vacuum amplitudes. Because
of the lack of a BRST-invariant physical vacuum state in
the formalism, the lowest-order vacuum amplitudes illus-
trated in Fig. 11 should be considered separately from the
higher-order ones

Lemma 6. Any vacuum amplitudes except for the
lowest-order ones in the planar, nonorientable and non-
planar cases can be obtained by gluing two tadpoles,
which are made from primitive tadpoles and nonplanar
self-energy.

The proof follows the fact that from any vacuum dia-
gram one can obtain a self-energy-type diagram by cut-
ting one of the internal lines and using lemmas 1-5.

The general expression of the l +l'-loop vacuum am-
plitude is thus obtained as

Z'(I+I')
& +l)I (bE bE) +(E)(x)&gl )I g )'

E 0 1 (1 )
F EF

'2

(24)

x;
& V)231& l 4'36 I g (bo' —b', ) f0 x;(1—x;)

f d (I) x
d (I')(det2 lm )

—13F(1)[g (I + I')
]
—26@(2)[g(I + I') ]2 1 A(l)A(l')

x 1 x

where the new Schottky group g"+' ' is generated by the new 1+I' projective transformations such as (9).
Because of lemma 6, it is meaningful to calculate a nonplanar two-loop vacuum amplitude [Fig. 11(c)]. The calcula-

tion is performed as

d(0;(1 —(0; )
(det2~ (mr) P( '[g ] F' [g' ']

2 o i=1 l

(25)

P1=
X1X2 0

P2=
X3(1—X2 ) —X3

where the two Schottky generators are given by

1 —X2(1—X, ) —1

(26}
rI

(a) (b) (c)

with X,:—xi —1/x; +0. The new variables co;, i =1,2, 3
are the multipliers of P„P2, and P3 =P, 'P2 de5ned by

FIG. 11. Three lowest-order vacuum amplitudes in the pla-
nar, nonorientable, and nonplanar cases.
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the equations

N X.X;+ I
2' l =12 3

(1+to, ) [1—X, ~,(1—X;)]
(27)

Expression (25) is superficially the same as in the planar
case. However, in contrast with that case, it can be
shown that the three multipliers in it cannot simultane-

ously reach one. This property is consistent with the
view that three tubes corresponding to a closed-string
propagation cannot be simultaneously pulled out in Fig.
11(c). It is also interesting that the integration region of
ZPfz is exactly determined as 0~ co; ~ 1, i =1,2, 3 as in

the planar case. The relation of this to the fundamental
region of the modular group is however not clear at this
stage.

According to the properties of duality, we have given a

classification of the open-bosonic-string amplitudes based
on the primitive diagrams. As sample calculations, we
have given expressions for nonorientable and nonplanar
multiloop amplitudes with on-shell tachyons and the non-
planar two-loop vacuum amplitude.

Recently, some discussions which support the finite-
ness of the open-bosonic-string amplitude with SO(2' )

internal gauge symmetry have appeared. ' ' We believe
that our results will be useful for confirming such a prop-
erty in the higher-order perturbation. The analysis of
singularity structure in any amplitudes is now under in-

vestlgatlon.
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