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Gauge symmetries in closed-string theory, and their relationship to world-sheet conformal invari-
ance, are investigated. By studying the deformations of conformal field theories in the operator for-
malism, it is proved that to every primary field of dimension one there corresponds a gauge transfor-
mation. An infinite class of such gauge transformations is constructed, most of which relate string
states of differing mass. It is argued that these symmetries are spontaneously broken by the space-
time metric, but that this breaking becomes unimportant for high-energy scattering, thus shedding

light on the results of Gross and Mende.

I. INTRODUCTION

It is a widely held view that the foundations of string
theory, as currently formulated, are unsatisfactory. The
physical picture of a string propagating through space-
time is intuitive and appealing, but as soon as we attempt
to introduce nontrivial dynamics the tension between uni-
tarity and relativistic invariance appears to be strong
enough to fix uniquely the interactions.! Precisely the
same situation holds for gauge field theories. In the
field-theoretic case, unitarity and Lorentz invariance are
reconciled by gauge invariance, a space-time symmetry of
the theory which facilitates the discard of ghostly states
in a consistent manner. In string theory it is a world-
sheet symmetry, conformal invariance, that performs the
analogous task, but it is natural to ask whether there is a
space-time symmetry, more closely analogous to field-
theoretic gauge invariance, that also effects the reconcili-
ation. If so, how is it related to world-sheet conformal in-
variance?

It seems likely that such a symmetry does indeed exist.
After all, garden-variety gauge invariances (including, of
course, general covariance) do appear miraculously from
string theory, and scattering at high energies®>® (where
one might expect symmetry breaking to be unimportant)
seems to yield universal behavior that is strongly sugges-
tive of a symmetry much larger than we yet know.*
Given the infinite number of states of a string, and its ex-
ponential growth with mass level, such a symmetry
would surely be immense. It might satisfy the frequently
expressed need for a new fundamental principle for string
theory.

A better understanding of symmetry can also be ex-
pected to yield important physical insights. Symmetry is
a powerful tool for probing the properties of a theory
with complicated dynamics. The reason is that sym-
metries are manifested in the classical theory, where they
can be analyzed with relative ease, but have consequences
which hold exactly (modulo anomalies) in the full quan-
tum theory. Most of our understanding of low-energy
QCD, for example, comes from our knowledge of approx-
imate global symmetries and the manner in which they
are realized. At shorter distances, much the same can be
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said about the standard model itself. What we ‘‘under-
stand’’ about the standard model are its symmetries and
the way in which they are realized. The action is the
most general one renormalizable and consistent with this
symmetry information, and so has a status somewhat
analogous to, say, current algebra for QCD.

In the same spirit, a better understanding of the sym-
metries of string theory may provide a useful guide to
solving one of its principal problems—choosing the
correct vacuum. By examining each symmetry in turn,
and asking how it should be realized for felicitous phe-
nomenology, many constraints will be placed on the vac-
uum. For gauge symmetries, this program is already
heavily used, but a more systematic understanding of
their origin must surely help. The large discrete symme-
try which the string appears to possess® (and about which
we shall say little in this paper) provides a potentially
rich additional source of information.

The problem of the symmetries of string theory has
usually been addressed in the context of string field
theory,®” a subject beset with technical obstacles that do
not have any obvious connection to the question of sym-
metry. In the first-quantized formulation, on the other
hand, there are no such problems of principle in comput-
ing tree amplitudes on shell. This, as we remarked above,
should provide enough information to deduce all the
symmetries of the theory. We shall therefore work ex-
clusively in the first-quantized formalism.

We shall argue that symmetries imply the existence of
physically indistinguishable solutions to the string equa-
tions of motion, which should correspond to isomorphic
conformal field theories. To understand such isomor-
phisms, we first study, in Sec. III, the deformation of con-
formal field theories in the operator formalism. In Sec.
IV we are then able to prove the main result of the paper,
that to every dimension-one primary field on the world
sheet there corresponds a gauge transformation of the
string theory. In Sec. V we explain that this is only a
subset of all possible gauge transformations, specifically
those preserving an analogue of the Landau gauge. In
Sec. VI we show that there is an infinite number of such
gauge symmetries, and argue that most of them mix exci-
tations at differing mass levels. These symmetries are
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broken by the existence of a space-time metric, but this
breaking becomes unimportant at high energies, shedding
light on the results of Refs. 2 and 4. Section VII is devot-
ed to a discussion of these results. Brief summaries of as-
pects of this work will appear elsewhere.?

II. THE PROBLEM

In previous papers”'® (related ideas have been dis-

cussed by others'!), we described a framework for prov-
ing the existence of symmetries in string theory. We shall
start by describing that method, although in a somewhat
different language.

To each solution of the string equations of motion
there corresponds a conformally invariant two-
dimensional field theory.!*!* This theory will be com-
pletely defined by specifying its energy-momentum tensor
as a local function of world-sheet fields and their canoni-
cal momenta. The space-time fields appear as the cou-
plings of this two-dimensional field theory. Thus the
space-time field configurations ® provide a system of lo-
cal coordinates on the space of conformal field theories,
and determine the two light-cone components of the
energy-momentum tensor, which we shall denote T4, and
T

If there is a transformation of the space-time fields that
is a string-theoretic symmetry, then to every solution of
the equations of motion there will be a new solution,
where the fields take their transformed values. Thus, to

[pn(a)py(b)]=[a+i[h,al,b+i[h,b]]
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every conformal field theory there will correspond anoth-
er conformal field theory with transformed couplings.
Furthermore, since they are related by a symmetry, these
two solutions should be physically indistinguishable. In
particular, this means that all physical scattering ampli-
tudes should be the same in the two backgrounds, so that
the corresponding conformal field theories are isomorph-
ic. Two conformal field theories are isomorphic if they
are isomorphic as operator algebras. That is, they are
isomorphic if there exists a bijective map

p: A —A,

between the operator algebras A ; and A, of the two con-
formal field theories that maps stress tensor to stress ten-
sor, and preserves the equal-time commutation relations.
That is, for any two operators a, b belonging to A |,

[pla),p(b)]=p([a,b]) .

Note that this is sufficient to preserve the equations of
motion, since time translation is generated by commuting
with the Hamiltonian.

For any algebra, we may construct another algebra,
isomorphic to the first by means of an infinitesimal inner
automorphism. That is, take A=A, and

(2.1

ppla)=a+i[h,a], (2.2)

where A is any fixed, infinitesimal operator. It is straight-
forward to check that Eq. (2.2) is indeed an automor-
phism, for

=[a,b]+i[[h,a],b]+i[a,[h,b]] [+O(h?)]

=[a,b]+i[h,[a,b]]=p,([a,b]) ,

where we used the Jacobi identity

la,[h,b]]+[h,[b,a]]+[b,[a,h]]=0

and so proved that the map defined by Eq. (2.2) does
indeed satisfy Eq. (2.1).

For any infinitesimal operator A, then, the conformal
field theories specified by T4 and by T +i[h, T4 ] are
isomorphic. Thus if

Tet+i[hTel=Teis0 (2.3)
for some 8P, it follows that
b >P+8P (2.4)

is a symmetry transformation of the space-time fields,
which we shall say is generated by the operator 4. Equa-
tion (2.3) should be thought of as a condition on the
operator h, and so the problem of finding such sym-
metries is reduced to finding those # which satisfy the
nontrivial condition

[h,T¢]:_l(T¢+5¢_T¢) . (2-5)

It is this problem that we shall address in this paper.

Finally, let us remark that while Eq. (2.2) always
defines an automorphism, not every automorphism is
necessarily of this form. In general, a operator algebra
will possess other, outer automorphisms, and it is quite
possible that these too can be interpreted as symmetry
transformations on the space-time fields. It seems likely
that the discrete symmetries of string theory can be un-
derstood in this way, although we shall have nothing
more to say on this subject here.

III. DEFORMATIONS OF CONFORMAL
FIELD THEORIES

We first have to understand the right-hand side of Eq.
(2.5). How does the stress tensor of the two-dimensional
world-sheet field theory change as we change the space-
time fields? Here, and throughout this paper, space-time
fields will be understood to be solutions of their equations
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of motion. Thus making such infinitesimal changes in the
space-time fields will produce infinitesimal changes in the
world-sheet theory that preserve the conformal invari-
ance. Having once understood such infinitesimal defor-
mations, it is possible, at least in principle, to iterate this
procedure and build up an entire family of connected
conformal field theories corresponding, roughly speaking,
to the family of conformal field theories with the same to-
pology as the starting theory.

A number of authors have studied the deformation of
two-dimensional field theories away from a conformal
fixed point, and have investigated the induced
renormalization-group flows.!* This, however, is not the
problem we wish to address. Since we wish to study
neighboring classical solutions of string theory, we must
consider deformations of the two-dimensional field theory
that preserve conformal invariance. Aspects of this ques-
tion have been discussed in the literature,!> but nobody
seems to have answered the question posed in the preced-
ing paragraph.

A two-dimensional field theory is conformally invari-
ant if the Hamiltonian can be extended to an energy-
momentum tensor, the two non-vanishing components
(TandD) of which satisfy the equal-time commutation re-
lations

[T(0), T(a")]=(—ic/24m)[8"' (0 —0')+ 8 (0 —0')]
+2iT(0")8'(0 —0')
—iT'(¢")0(c—0’) , (3.1

[T(0),T(a")]=(ic /24m)[8"" (0 —0')+8' (0 —0")]
—2iT(0")8' (0 —0a")
+iT'(a")8(0—0'),

[T(0),T(a")]1=0

(3.2)
(3.3)

and in terms of which H, the Hamiltonian, and P, the
generator of translations in o, may be written

H= [do[T(0)+T(o)],

- (3.4)
P= [do[T(0)-T(0)].

Temporal evolution is generated by the Hamiltonian, Eq.
(3.4), and so operators need only be specified on some
spacelike slice, which we parametrize by the real coordi-
nate 0. A prime denotes differentiation with respect to
o. The algebra of Egs. (3.1)-(3.3) is essentially two
copies of the Virasoro algebra (or, at higher genus the
Krichever-Novikov algebrasm), as may be seen by taking
moments of T:
L,=[doT(0)e™, L,= [doT(c)e " (3.5)
It will be convenient for us to specify our conformal
field theory in a rather old-fashioned way, in that we as-
sume that the energy-momentum tensor is some local
function of elementary fields and their conjugate momen-
ta, which obey fixed, canonical commutation relations.
This completely specifies the conformal field theory, but
it is useful to define another set of operators, also con-
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structed from elementary fields and momenta, known as
the primary fields.”* By definition, a primary field y of di-
mension (d,d ) satisfies

[T(o),x(0')]=idx(0")8'(c—0")
—(i/V2)3x(a")8(o0—0") ,

[T(o),x(c")]=—idx(c")8'(c —0")
—(i/V2)3x(a")8(0 —0") .

(3.6)

We are interested in not just one, but a family of con-
formal field theories parametrized by the values of the
space-time fields. Changing these space-time fields
changes the conformal field theory, but preserves the
Virasoro algebra (including the value of the central exten-
sion), Egs. (3.1)=(3.3). Thus, to first order, the changes in
T and T must satisfy

[T(0),8T(0")]+[6T(0),T(c')]=2i8T(c")8' (0 —0")
—idT'(0")8(c—0") ,
[T(0),8T(0")]+[8T(0),T(a")]=—2i8T(c")8' (0 —0"')
+i8T'(c")8(oc—0") ,
_ _ (3.7)
[T(0),8T(6")]+[8T(0), T(c")]=0.

To solve Egs. (3.7) for 8T it is useful first to examine
some simple examples. Consider first the classical
energy-momentum tensor for the bosonic string with
massless background fields.

T(0)=3G""(X)3X 03X, ,

T(0)=1G*(X)3X,3X, , ey
where
3X,,(0)=(1/V2){m,+[G,,(X)+B,(X)1X"} , 59
3X,(0)=(1/V2){m,+[—G,(X)+B,(X)1X"} ;
[mu(0),X"(a")]=—i8}8(c—0") . (3.10)

Varying the space-time fields G and B, including the im-
plicit dependence described in Eq. (3.9), one finds that

8T(0)=8T(a)=—1[8G,,(X)+38B,,(X)]aX"3X" .
(3.11)

The reason that we must also vary the space-time fields
that appear in X and 9X is that it is the commutation re-
lations for 7 and X that are fixed, while those for dX and
0X change as the conformal field theory is deformed.
One may do a similar calculation for the heterotic string,
and these results are all consistent with the hypothesis
that both components of the energy-momentum tensor
change by the addition of the same infinitesimal primary
field of dimension (1,1). Since the physical space-time
fields of the string are in direct correspondence with the
primary fields of dimension (1,1), the only reasonable in-
terpretation of this ansatz is that the deformation results
from turning on the corresponding background field.
Using the definition of a primary field, Eq (3.6), it is
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straightforward to see that this ansatz does satisfy Eq.
(3.7), and so is indeed a conformal deformation. Also, the
fact that the changes in T and T are equal means that the
operator P [Eq. (3.4)] is unchanged, and so continues to
generate translations. This condition is both necessary
and nontrivial.

It is convenient to give this type of deformation a
name, and so let us define a canonical deformation of a
conformal field theory by

ST(U)ZST(U):X(I,I)(U) ) (3.12)

where x(; 1)(0) is a primary field of dimension (1,1).

In the literature'> one sometimes sees additional condi-
tions on the deformation, requirements on the commuta-
tor of the deformation with itself. We will therefore take
some time to explain why such conditions need not con-
cern us for the purposes of this paper. First, one can
demand that a finite deformation preserve conformal in-
variance, or, more restrictively, that one can add the de-
formation with an arbitrary coefficient (the latter case im-
plies that the B function vanishes order by order in per-
turbation theory, a much stronger condition than simply
vanishing). However, we are interested in infinitesimal de-
formations (because we are interested in infinitesimal
symmetries), and so may ignore these conditions.

The second way in which such a condition can occur is
when dealing with a compact conformal field theory. In
this case, the spectrum of primary fields is discrete, and
will deform continuously as the field theory is deformed.
It would then be possible (even likely) that a primary field
that had been (1,1) would cease to be so after deforma-
tion. The infinitesimal deformations corresponding to
such primary fields could not, therefore, be built up into
finite deformations. That is, they would not be inte-
grable. The requirement of integrability therefore im-
poses additional conditions on the deformations, which
are equivalent to the condition that space-time equations
of motion should admit solutions on compact manifolds
(integrable solutions are usually called moduli).

Since we are interested in the problem of local sym-
metries rather than the question of the existence of global
solutions, we avoid this problem by always considering
noncompact conformal field theories. Specifically, we al-
ways consider conformal field theories which correspond
to some number of space-time dimensions with the topol-
ogy of R". The result is a continuous spectrum of pri-
mary fields (e.g., of the form e’* X, which has arbitrary di-
mension k2/2), which means that the number of (1,1) pri-
mary fields is preserved under continuous deformation.
Thus, for us, there is no integrability problem.

Are all conformal deformations canonical? This is an
important question for the following reason. It is widely
believed that string theories have no continuous adjust-
able parameters. However, a string theory can be built
on any conformal field theory with the correct central ex-
tension. If string theories do indeed lack free parameters,
we must be able to interpret all conformal deformations
which preserve the central charge as changes in the
space-time fields of the theory. This strongly suggests
that all conformal deformations should be equivalent to a
canonical deformation. It is fairly easy to see that there
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are conformal deformations which are not canonical, but
we conjecture that all deformations are canonical up to
an algebra isomorphism. The reason is that, as we shall
see below, a canonical deformation preserves an analogue
of “Landau gauge.” It is plausible that all other defor-
mations correspond to the same physics in a different
gauge. We shall discuss other gauges below, but will not
attempt to prove this conjecture, which is not necessary
for the argument we present in this paper.

It is well known that we can add vertex operators cor-
responding to massless states to the action of a conformal
field theory in order to deform it.!” What we have just
shown is that adding any infinitesimal vertex operator to
both components of the energy-momentum tensor also
produces a deformation that preserves the conformal in-
variance. When dealing with massless space-time fields it
is easy to see in particular examples that these results are
equivalent, but when discussing massive fields the formal-
ism presented here avoids a number of pathologies. For
massive modes of the string the vertex operators contain
higher derivatives, or are not quadratic in first deriva-
tives. This makes it hard to interpret these actions in a
conventional way. Solving for momenta in terms of time
derivatives becomes much harder, the usual form of the
functional integral ceases to be related to a canonical
quantization in the usual way and the equations of
motion are higher-order differential equations which ad-
mit ghostly, exponentially growing solutions. Making a
conformal deformation of the energy-momentum tensor,
as described above, avoids these sicknesses since the
theory is already canonically quantized and temporal
evolution is generated by the Hamiltonian through a
first-order differential equation. The energy-momentum
tensor is not quadratic in the momenta, but this is no
more disturbing than the fact that it is not quadratic in
the fields. In this language, then, massive and massless
fields can be handled on an equal footing.

IV. GAUGE INVARIANCES OF THE STRING

We now know how the world-sheet energy-momentum
tensor deforms as we change the space-time fields (or, at
the least we know a set of deformations which do indeed
correspond to such changes). We have understood,
therefore, the right-hand side of Eq. (2.5), and must now
do the same for the left.

In a previous paper,'® we discussed the massless boson-
ic gauge invariances of the heterotic string, and found
that each symmetry was generated by an operator A that
was a field of (naive) dimension one integrated over the
world-sheet spatial coordinate o, so that A itself was di-
mensionless. The family of energy-momentum ten-
sors was the most general such consistent with
(super-)Poincaré invariance and constructed out of opera-
tors of dimension two. Commuting with an operator of
dimension zero preserves both these properties. Super-
Poincaré invariance is preserved because we are dealing
with an algebra automorphism, while the fact that 4 is di-
mensionless preserves the dimension of the terms in the
Hamiltonian. Thus all such operators & generate sym-
metries.
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In conformal field theory, the notion of the dimension
of an operator can be made a little more precise. What
the above discussion suggests is that any operator of the
form

h=[doWo), @.1)

8T(0)=—i [do'[T(0),¥(c")]
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where V¥ is a primary field of dimension (1,0) or (0,1), will
satisfy Eq. (2.5), and hence generate a symmetry.

We shall prove this result for ¥ a (1,0) primary opera-
tor, the proof for the (0,1) case follows straightforwardly,
mutatis mutandis:

=—i [do'iW(e")8'(0—0")—(i/V2)d¥(0")8(0 —0')

=¥'(0)—(1/V2)3¥(o)=—(1/V2)d¥(o) .

Similarly,

8T(0)=—i [do'[T(0),¥(o"))=—i [do'—(i/V2)dW(c")8(0 —0')=—(1/V2)3¥ (o) .

(4.2)

(4.3)

Thus we have a canonical deformation if dW is a primary field of dimension (1,1). That this is indeed the case we

show as follows. By definition
V(o' )=(iV2)[L,y,¥(o")]
so that

[T(0),d%(0")]=(iV2)[T(0),[ Lo, ¥(c)]]

(4.4)

=—(iV2){[Ly,[¥(a"), T(0)]]+[¥(0"),[T(0),L,y1]}
=(iV2)[Ly,i¥(c")]8' (0 —0")+(iV2)[ Ly, — (i /V2)8¥(0"))8(0 —0")

=id¥(0")8' (0 —a')—(i /V2)0d%(a")8(0 —0") ,

where we used the Jacobi identity and the definition of a
(1,0) primary field, Eq. (3.6). We also used the fact that

90W¥(0)=03d¥(0) (4.6)

which follows from the Jacobi identity and the fact that
L, and L, commute. The result, Eq. (4.5), proves that
oV is primary and of dimension one with respect to T [as
defined by Eq. (3.6)].

A similar argument proves that d¥ is primary and of
dimension one with respect to 7. From Eq. (4.4) and the
Jacobi identity we find that

[T(0),0¥(c")]=—(iV2){[L,,[¥(o")T(c)]]
+[W(e"),[T(0),Ly1]} -

4.7)

Now using Eq. (3.6) for ¥ a (1,0) primary field and the
fact that

[T(0),Ly]=—iT" (o)
which comes from integrating Eq. (3.2), Eq. (4.7) becomes
[T(c),d¥(c’')]=—id¥(c')8'(c —0"')
—(i/V2)33%(a")8(0 —0")

which completes the proof that d¥ is a (1,1) primary
field. Thus every primary field of dimension (1,0) or (0,1)

(4.5)

f

generates a symmetry. Note that adding 3V to a vertex
operator does not change the values of S-matrix ampli-
tudes.'®

Let us summarize the argument.

(i) The conformal field theories with energy-
momentum tensors 7(o) and T(o)+i[h,T(0o)] are iso-
morphic for any operator A.

(i) The conformal field theories with energy-
momentum tensors T(o) and T(o)+x(o) differ by an
infinitesimal change in the space-time field that corre-
sponds to the (1,1) primary field y(o).

(iii) If A is the integral of a (1,0) or (0,1) primary field,
then [A,T(o)] is a (1,1) primary field and, by (ii) is inter-
pretable as a change in the space-time fields. By (i) this
change is a symmetry transformation of the theory.

V. GAUGES

We stated above that the symmetries we have been dis-
cussing preserve an analogue of Landau gauge and it is
time to explain that remark. For simplicity, consider the
case of the bosonic string in a flat 26-dimensional space-
time, so that the appropriate conformal field theory is
free. The energy-momentum tensor is given by

T(0)=17™0X,0X,(0) ,
T(o)=17""0X,3X (o),

where

(5.1)
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3X,(0)=(1/V2)[m,(0)+7,X"(0)],

_ _ (5.2)
0X,(0)=(1/V2)[m,0)—1,X"0o)].

The vertex operator corresponding to the graviton is

x(o)=h*"(X)dX ,0X,(0) . (5.3)
It is primary and of dimension (1,1) only if

an#v=0, (5.4)

9,h*"=0 . (5.5)

Equation (5.4) is an equation of motion for the gravi-
ton, something that we expect to be unavoidable for con-
formal invariance. However, Eq. (5.5) is a gauge condi-
tion, the appearance of which is a little surprising since
we would expect to be able to make sense of a conformal
field theory with the space-time fields in any gauge. We
shall refer to the gauge of Eq. (5.5) as the Landau gauge,
since it is similar to the condition

3,4"=0 (5.6)

which appears in the same way in, for example, the
heterotic string.
The operators which generate coordinate transforma-

tions and two-form gauge transformations are'®
hy=[do g4X)ax, (5.7

h,= [do §"X)3X,, . (5.8)

Again, for the integrands to be primary and of dimension
(1,0) and (0,1) we need & and § to satisfy

Dgﬂ:[]é‘# =0 R
a#é‘/‘ =a}t§# =0.

(5.9
(5.10)

Since £ and { are the parameters of gauge transforma-
tions, Egs. (5.9) and (5.10) are not equations of motion.
Rather they preserve the Landau-gauge condition, Eq.
(5.5), and the tracelessness of the graviton.

How are we to make sense of string theory in other
gauges? (This question has been addressed from other
points of view.!”) We can give a partial answer to this
question. Recall that

T(o)—>T(o)+i[h,T(o)] (5.11)
is an algebra automorphism (and hence does not change
the physics) for arbitrary operators h. This is a conse-
quence solely of the Jacobi identity. We imposed restric-
tions on the form of & merely to ensure our ability to in-
terpret the changes in the energy-momentum tensor
straightforwardly as changes in the space-time fields.

Equation (5.9) is necessary to make the integrand in
Egs. (5.7) and (5.8) operators of dimension one. Relaxing
this condition makes the integrand a superposition of pri-
mary fields of varying dimension, but leaves the operators
h perfectly well behaved. Such operators generate sym-
metries, which clearly correspond to a more general set
of gauge transformations.

Such gauge transformations induce deformations of the
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conformal field theory which are not canonical, but
which are isomorphic to a canonical deformation (after
all, one example of a canonical deformation is no defor-
mation at all). This motivates the conjecture that all de-
formations are isomorphic to some canonical deforma-
tion.

These observations suggest a more refined interpreta-
tion of the results of this paper: the integrals of primary
fields of dimension one generate the transformations
which preserve Landau gauge. The full gauge invariance
of string theory is some larger set of inner automor-
phisms, possibly those generated by all primary fields.

VI. HIGHER SYMMETRIES

So far, we have discussed only examples involving un-
broken symmetries and massless particles, but the
methods of this paper apply equally well to spontaneous-
ly broken symmetries involving massive particles.
Indeed, we shall see that there is a very large spontane-
ously broken symmetry in string theory. All we need to
do is exhibit the relevant primary fields of dimension one.
Equations (5.7) and (5.8) were the simplest examples
where the full quantum-mechanical dimension coincided
with the naive classical result [this was ensured by the
conditions of Egs. (5.9) and (5.10)]. However it is possible
to construct an infinite class of fields with large naive di-
mension, but with a quantum-mechanical dimension that
is unity. This is not unfamiliar, since exactly the same
mechanism permits the construction of an infinite num-
ber of vertex operators, primary fields of dimension (1,1).

Once again, let us consider the simple example of the
free bosonic conformal field theory specified by Egs. (5.1)
and (5.2). The first massive level corresponds to a four in-
dex tensor field that is symmetric on both the first and
second pairs of indices.! We shall exhibit a symmetry
transformation that mixes this and massless fields. We
therefore need to understand the vertex operator corre-
sponding to the first mass level, as well as primary fields
of dimension one that yield operators of this form when
commuted with the energy-momentum tensor.!® To this
end consider first the operator

O(c)=6,,(X)aX X"+ a#ef;(X)aZXv . (6.1)
It is primary of dimension (2 —a, —a) if

6/,+23,0,6/"=0, (6.2)

06,,=2aé,, . (6.3)

From this information it is straightforward to con-
struct the vertex operator for the field at the first mass
level of the bosonic string. The (1,1) primary field is
given by

D(0) =@, (X)dX*IX X X"
+0,¢" 2 X)X X X"
+0,0,, (X)X HIX 32X~
+9,0,¢* (X132 X 32X~ , (6.4)

where
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¢“P}»K + Za#av¢m’kx =0, (6.5)
¢pvkk+2alax¢yv)"(=0 ’ (66)
D¢‘uv}m:2¢yv}»x . (6.7)

From our experience with the massless fields we conjec-
ture that Egs. (6.5) and (6.6) are gauge conditions, while
Eq. (6.7) is the linearized equation of motion in that
gauge.

In similar vein we may construct operators of dimen-
sion one:

W(o)=¥,,, (X)X X 0X"+3 ¥ ,(X)3*X"3X*  (6.8)

J

8T(0)=—i [do’[T(0),¥(c")]
=—(1/v2)3¥(0)
=—(1/V2)3,¥

Comparing Egs. (6.12) and (6.4) and using Egs.
(6.9)-(6.11) we see that this change in the energy-
momentum tensor corresponds to adding the vertex
operator for a first mass level state, with the change in
the space-time field given by

86 ,uae=(1/V2)(3¥ 0+, ¥,,,,) - (6.13)
The (0,1) operator generates the transformation
86 i =(1/V2)(3, ¥, +3,%,5,) - (6.14)

Clearly an infinite number of symmetries can be con-
structed in similar vein. For example, generalizing Egs.
(6.8)—(6.11), there is a class of (1,0) operators that may be
written schematically:

Y(o)=W(X)dX)(dX)" ',
h=[doWo).

(6.15)
(6.16)

Here ¥ is a (2n —1)-index space-time field that is sym-
metric on the first » and last n —1 indices. It must be
divergence-free on each index (by the symmetry proper-
ties of W this is just two independent conditions), and
traceless on any pair of the first n, or any pair of the
second n —1, indices (again, two conditions). Equation
(6.15) is not the most general (1,0) primary field; when
n =2, for example, it produces only a subset of the opera-
tors of Eq. (6.8), but it is an infinite class and so demon-
strates the existence of an infinite class of symmetry
transformations.

The interpretation of these higher symmetries is com-
plicated by the fact that we are presumably preserving a
gauge condition, and by our ability to consider only one
particularly tractable conformal field theory that corre-
sponds to one configuration of the space-time fields. To
clarify the situation let us make some general remarks.
Recall that in Sec. III we described how turning on each

¥, 0XOX "aX X+, 0X*OX "3’ X +3,9, W+, 02X *OX *OX *+03, W+ ,3°X "0’ X ) .
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is primary and of dimension (1,0) if
WE , +23,3,¥4, =0 , (6.9)
9,%,,r=0, (6.10)
OV, =2¥,, - (6.11)

Drawing once again on our experience with the massless
fields, Eqs. (6.9)-(6.11) presumably preserve the gauge
condition of Egs. (6.5)-(6.7). An operator of dimension
(0,1) may be constructed by everywhere interchanging d
and 9.

With these primary fields we may construct the sym-
metry transformation. From Eq. (4.2),

(6.12)

f

space-time field corresponded to adding a term to the
two-dimensional stress tensor. Thus there is a correspon-
dence between space-time fields and terms in 7. Under a
symmetry transformation, the change in a space-time
field will depend upon other fields in the same multiplet,
and it is natural to ask which fields appear. Since

8T=i[h,T] (6.17)

the fields that enter the transformation on the right-hand
side of Eq. (6.17) are those for which the corresponding
terms in T do not commute with A, the generator of the
symmetry.

Note that this means that if we are seeking a classical
vacuum for string theory in which a certain gauge sym-
metry is not spontaneously broken, the corresponding
two-dimensional field theory will also exhibit a symmetry,
since the condition for an unbroken symmetry is §&;,=0,
where @ are the vacuum values for the fields ®. Thus,

5 Tq,o =0
which implies that

i[h, T, 1=0

and we see that 4, the generator of the space-time sym-
metry, also generates a two-dimensional symmetry of the
vacuum conformal field theory. This fact has been much
discussed in the context of unbroken supersymmetry in
four dimensions.?’ Correspondingly, if the space-time
symmetry is spontaneously broken by the expectation
values of some fields, the world-sheet symmetry will be
broken explicitly, by precisely the terms in the stress ten-
sor corresponding to these fields.

In the example discussed in the beginning of this sec-
tion, h failed to commute with the term in T that corre-
sponds to the flat metric for space-time. Thus this sym-
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metry has the change in a field at the first mass level, ¢,
depending on massless fields (in this case the space-time
metric).

More generally, the energy-momentum tensor corre-
sponding to arbitrary metric and torsion is

T=1G"(X)dX 03X, , (6.18)
where
3X,=(1/V2){m,+[G,(X)+B, (X)X} (6.19

and, of course, G and B satisfy some equation of motion
and Landau-gauge condition. Equation (6.18) consists
purely of terms of naive dimension two. Commuting T
with a dimension-one operator that contains terms of
naive dimension 2n —2 [as in Eq. (6.16)] yields terms, at
least some of which are of naive dimension 2n, and which
depend on G and B. These terms cannot correspond to
the vertex operator for a massless field (which have naive
dimension two), and so must include massive vertices,
presumably of mass level 2n —2. Once again, this implies
that the variation of a massive field is depending on the
massless fields, placing these fields in the same multiplet.

In principle, we can repeat the arguments leading to
the transformations of Egs. (6.13) and (6.14), but this time
with the stress tensor given by Eq. (6.18) and the genera-
tor given by the corresponding deformation of the (1,0)
primary field of Eq. (6.8). The transformations of Egs.
(6.13) and (6.14) will be altered, and, on the basis of gen-
eral covariance, must be of the form

8¢uv}m=(l/‘/§ )(Z)KW#VA+$AW#VK)+ S,

3 (6.20)
80, =(1/V 2D,V DY 0+ -

where D, is the covariant derivative constructed from
G, B,, and we have neglected possible terms propor-
tional to the curvature and torsion. The dependence of
the covariant derivative on the metric and two form ex-
plicitly demonstrates that the variation of a mass level
one field depends upon massless fields.

We may also imagine turning on backgrounds at mass
level k, by adding a vertex operator of naive dimension
2k +2 to the stress tensor. Again commuting with an
operator of naive dimension 2n —2 yields the vertex for a
field at mass level k +n —1, implying that the transfor-
mation of a mass level (kK +n —1) field depends on mass
level k fields. All of this suggests that the symmetry alge-
bra that we are discussing may be graded by the integers,
the grading being associated with the naive dimension of
the operator that generates the transformation. A gen-
erator of grade r would have fields at mass level k rotat-
ing into fields at mass level k +r.

The higher symmetries that we are discussing relate
fields of different mass, and so they must be spontaneous-
ly broken. We are also dealing with gauge symmetries, so
no Goldstone bosons appear in the physical spectrum be-
cause they can be gauged away. Presumably the Higgs
mechanism is operating, and the Goldstone bosons be-
come the longitudinal components of (higher spin) gauge
fields which acquire mass. Indeed, it is an attractively
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economical hypothesis that all the states of the string are
gauge fields for the infinite gauge symmetry that we are
discussing in this paper.

If the symmetry is broken, it is natural to ask what or-
der parameter does the breaking. We explained earlier in
this section that the fields which break a symmetry are
those for which the corresponding terms in the world-
sheet stress tensor fail to commute with the generator of
the symmetry A. The energy-momentum tensor that de-
scribes a string propagating on a flat manifold contains
only one term, corresponding to the space-time metric.
It is this term which fails to commute with the generators
of the higher symmetries [given by Eq. (6.16)], and so we
may say that the symmetry is spontaneously broken by
the metric for space-time. There is no value for the
metric which restores these higher symmetries, indicating
that there is no space-time interpretation for the sym-
metric phase of string theory (if such a phase exists). The
Coleman-Mandula theorem?! (if it can be generalized to
string theory) forbids having these higher symmetries,
which relate fields of very different spin, as symmetries of
the S matrix. The fact that a symmetric phase of string
theory would not correspond to a space-time (and so has
no associated S matrix) thus neatly avoids any incon-
sistency.

The absence of a field configuration invariant under all
the symmetries of a theory may, at first sight, seem
bizarre, but there are well-known field-theoretic ana-
logues. For example, a nonlinear sigma model with an
n-sphere for its target manifold has an obvious O(n +1)
symmetry, but no classical configuration is invariant un-
der the whole group. Nevertheless, above a critical tem-
perature the system demagnetizes, and symmetry is re-
stored. It would be nice to understand a similar process
in string theory, and perhaps make contact with the work
of Atick and Witten.??

Other authors have attempted to shed light on the
higher symmetries of string theory by investigating high-
energy collisions.?”* In particular, Gross and Mende in-
vestigated fixed angle, high-momentum collisions, and
found that as the momentum exceeded all relevant scales
in the problem (Planck and particle masses) the scattering
amplitude came to be dominated by one Riemann surface
at each genus. This universality, and linear relations be-
tween S-matrix elements that hold in the high-energy lim-
it,* are taken to be an indication that some symmetry is
being restored at high energy.

We may argue that the higher symmetries that we have
been discussing in this paper are indeed being restored.
The high-momentum limit is the limit a’— o, where a’
is the slope parameter of the Regge trajectories. Howev-
er the world-sheet stress tensor has as its coefficient (here-
tofore suppressed) a factor of 1/a’. Thus a’'— o is
equivalent to the stress tensor T—0. Recall from the
discussion surrounding Eq. (6.17) that the condition for a
symmetry to be unbroken by a given configuration of the
space-time fields is that the generator of the symmetry, 4,
commute with the energy-momentum tensor of the corre-
sponding conformal field theory. T=T=0 clearly
satisfies this condition for any operator A, indicating the
restoration of all symmetries in the high-energy limit.
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What are we to make of the two-dimensional field

theory T=T =0? Since
T,;=8S /8¢,

where g and S are the world-sheet metric and action, re-
spectively, we see that the world-sheet action must be in-
dependent of the world-sheet metric; it is a topological
field theory,”® a result suggested by Witten on other
grounds.?*

VII. DISCUSSION

Let us summarize what we have done in this paper.
We have discussed the deformation of conformal field
theories, and used the understanding gained to give a
fairly general discussion of the gauge invariances of
closed strings (while we have always worked with the bo-
sonic string, only trivial changes are needed to discuss
any other closed-string theory). In particular, we have
proved that to each primary field of dimension one there
corresponds a gauge transformation. This includes
known gauge symmetries as well as an infinite class of
symmetries that, we argued, relate fields of differing mass
level. These symmetries appear to be broken by the
space-time metric, but the symmetry breaking becomes
unimportant at high energies.

This discussion raises many questions. Perhaps
foremost is the question, what is the gauge algebra? It is
certainly infinite, and, as we suggested above, possibly in-
teger graded. The number of generators appears to grow
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with the grading, unlike the case of such simple infinite
examples as the Kac-Moody and Virasoro algebras. Fur-
ther understanding would seem to require the
classification of all dimension-one primary fields, which
may prove to be a formidable task. We would also like to
understand this symmetry outside the Landau gauge.
This requires an understanding of precisely what condi-
tions on the operators 4 can be relaxed without spoiling
the interpretation of the change in the stress tensor as a
change of the space-time fields.

We have not shown that we have exhibited all the
gauge symmetries of the string, although it is plausible
that we have. If so, are all the states of the string gauge
fields? It would be interesting to understand the connec-
tion with string field theory. There is no universally ac-
cepted version of closed-string field theory, and so com-
parison with the work of this paper would necessarily be
rather tentative, but the methods described here should
apply equally well to open strings, and in that case a
direct comparison should be possible.”?*

We hope that some of these issues will soon be
clarified.
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