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Spinning test particles and the motion of a gyroscope according
to the nonsymmetric gravitation theory
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The motion of spinning test particles is derived in the nonsymmetric gravitation theory using the
Geld equations of matter and the methods of Papapetrou. The predictions for the precession of a
torque-free gyroscope in the gravitational field of the Earth, Jupiter, and the Sun are obtained and
compared with the predictions of Einstein's gravitation theory.

I. EQUATIONS OF MOTION OF
A SPINNING TEST PARTICLE

In previous work, ' we have derived the motion of a
test particle from the conservation laws of the nonsym-
metric gravitation theory (NGT), using the methods of
Fock and Papapetrou. ' The motion of extended bodies
with a finite mass has been derived from the NOT field
equations and the conservation laws in a post-Newtonian
approximation scheme, in which the field equations and
the motion of bodies was obtained by expanding in
powers of v/c. The conservation laws in NGT take the
form

(Ap)
(g(pp), v+g(pv), p g(pv), p)pv

and y'"P' is defined by

&(( t»g, =g)

Moreover, the tensor 8" is given by

is the Christoffel symbol in NGT, defined by

(1.4)

(1.5)

—,'(g„T""„+g „T""„)+[(Mv,p]T""+—,
' W'( „)S"=0,

~here the notation is the same as in Ref. 1.
T" =( g)'~ T"" and—T"" and S" are the test particle
sources, and they vanish outside a narrow tube in four-
dimensional space-time that surrounds the world line of
some point X"of the particle. The X"coordinates of the
particle are regarded as functions of the time X = t, or of
the proper time s along the world line of the test particle.

The motion of a monopole test particle was obtained
from the assumption that the dipole and higher Inoments
of T" and S)" vanish, and that only the integrals

m, = ' T~'x.
dt

For photons, I, =0, and they move along geodesics

Du"
Ds

(1.8)

(1.9)

where R(„„)(I')is the skew part of the NGT Ricci tensor
in Ref. 1. The constant z is given by v= l, /m, where l,
is the NGT "charge" of the test particle

l,'= fS'd'x

and m, is its mass given by

fT""d x, f S)'d x (1.2) where Dtt" /Ds is defined by

are nonvanishing along the world line of the particle. In
(1.2), the integrals extend over three-dimensional space
for t= const. The equation of motion obtained from (1.1)
for a monopole test particle takes the form

Du" du"
Ds ds tsP u u (1.10)

du" + ' 'u u~=aH"„u',
ds &13

where u"=dx "/ds is the four-velocity of the test parti-
cle,

Several important physical consequences of the motion
of test particles in the static, spherically symmetric field
of NGT have been studied in Ref. 1, using the line ele-
ment

ds =g~„)dx"dx
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8f ds =5f [(g(„„)u"u")' + ,'x W—„u"]ds =0 . (1.12)

We can now apply Papapetrou's methods to derive the
motion of a spinning test particle. The spin angular
momentum is defined by

The choice of the metric tensor g~„~, in (1.11), is the only
one consistent with the equations of motion derived from
the conservation laws. The equations of motion of parti-
cles, including those for extended massive bodies up to
the post-Newtonian order, can be derived from the varia-
tion of the action

DS"" Du
u +S" =0.

Ds Ds
(1.20)

With the condition (1.19) and using (1.20), the equa-
tions of motion for the spin (1.17}take the form

which leads to u'=0 in the rest frame of the test particle,
whereby S' =0 and X' is the center of mass in the parti-
cle rest frame. This supplementary condition removes
the ambiguity in the choice of the point X for the spin-
ning particle. We shall find it more convenient in what
follows to use the Pirani condition (1.19). From (1.19),
we get

S"'=f (x"—X")T d x —f (x"—X"}T"d'x, (1.13) DS"" Du
PSva u vSPa) (1.21)

which can be shown to have the transformation proper-
ties of a tensor. We assume that the test particle is a
pole-dipole particle, whereby the pole and dipole contri-
butions of the integrated test particle sources T""and S"
do not vanish. The equation of motion of the spin is
found to be

DSP „DS y „DSPy+u "uy —u "u

where we have used the equation

From (1.3) we have that

Du" =xH" u",
Ds

(1.22)

(1.23}

+u~u, (ar.C". H".C-")

u"u (a»—C" H" Cr —}=0, (1.14)

or

Du~
KB~pv~ u

Ds
(1.24)

where

C""=u f 5x "S"d x . (1.15}

DS"" dS"" V
+ ' 'S "u~+ ' 'S" u~. (1.16)

Ds ds &P rsvp

Here 5x"=x"—X" and 5x0=0. It follows from (1.15)
that C "=0. Moreover, in (1.14) we have

where

Du„du„p
Ds ds PI3

Substituting (1.24) into (1.21), we get

DS""
( u PS va u vS gaga )f

Ds

(1.25)

(1.26)

The equation of motion of the test particle will be a
modification of (1.3) up to terms of order S"". The effect
of the spin on the orbital motion of the particle will be
negligible and will not be of current interest in experi-
mental physics. If we set v=O in (1.14) and multiply by
u "/uo, and then set p=O in (1.14) and multiply by
u "/u, then add the resulting two equations and substi-
tute into (1.14), we get the noncovariant form of the
equations of spin motion

where

fa =KH(ar)u (1.27)

u f =0. (1.28)

and we understand that f'=y'"'f„. From (1.27) it fol-

lows that

DS"" u" DS u" DS"+ =0.
Ds uo Ds uo Ds

(1.17)

If we set IJ, =i,v=O in (1.17), where i,j =1,2,3 denote
the spatial coordinates, then we obtain a trivial identity,
so only three of the six equations (1.17}are independent.
We must therefore impose a supplementary condition.
The Corinaldesi-Papapetrou condition is

We see that in NGT, the new NGT tensor force, pro-
portional to the skew part of the Ricci tensor R~„~, acts
as an external force that makes DS" /Ds nonvanishing.
Since we expect that the NGT "charge density, "S, will
be nonvanishing for the test particle, such as a gyroscope
orbiting the Earth, and that this force cannot be removed
by shielding, we must include the contribution of f in
our calculations.

Sio 0 (1.18)

in the rest frame of the central body, so that in this sys-
tem the X' is the center of mass. The Pirani condition is

II. EXPERIMENTA, I.PREDICTION
FOR THE GYROSCOPE

S""u =0, (1.19)
We shall be concerned with the equation of motion for

the spin tensor S'1 obtained from (1.26):
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DS'~ =(u'Sl —u JS' )f. .
Ds

Following Schiff's approach, we can define the purely
spatial vector S in rectangular coordinates:

where

2m
F00

2m, l4'+ '
r4

S—(S S S )
—(S23 S31 S12) (2.2}

(2.11)

Since T' is the momentum density in the i direction, it
follows from (1.13) that S is the spin angular momentum
vector with respect to the point r=(X',X,X ). An al-
ternate approach is to construct the vector density

7
(ik)'00 =—

—,r g(00), k

0
00

70 2 r g(00), i

The nonvanishing Christoff'e1 symbols are

(2.12)

Sp —1 +viLTu
v AT (2.3) (ql)J

2 Y (g(il), k +g(lk), i g(ik), l )

DS =S(v.f)—f(v S) .
Dt

(2.4)

The line element associated with the static, spherically
symmetric solution, in NGT, has the form'

I4
ds = 1+—

r4

' —1

2m
2 2dr dQ

2ms
1 — dt 1——

and define S=(S ',S,S ). In the rest frame of the gyro-
scope (u'=0) both approaches are equivalent. We choose
Schiff's approach so that we may make use of the trans-
formation properties discussed in detail in Ref. 8.

Now, from (1.28) it follows that u f0= —(u 'f,
+u f2+u f3 }, and, therefore, the terms in (2.1) involv-

ing f, are of order UiSiifi, while the f0 terms in (2.1}are
of order 0 ~Mi f0 = v iS[ ~

f i
and hence can be neglected.

Also, we have that f; = f'. Thu—s, using (2.2), we can
write (2.1) for a slowly moving gyroscope

From (1.3), we have

Q
Q Q~+KH Q

ds lz13

A straightforward calculation now yields

dv
dt

m,

r 3

21, 2l, 1, I,'+
r mr

From (1.16), we have

DS
dt

dS 2m m
(r v)S — (rXv)XS

dt r

+ ' 's"tu "+ ' 's'"u
Ds Ds Pv Pv

which gives

(2.13)

(2.14)

(2.15}

where

d f12—y2d 82+ r2sjn28 dy2

(2.5)
m,

r

where we define

2I,'
(rXM),

r
(2.16)

and I, denotes the NGT "charge" of the central singular-
ity and m, its mass. In isotropic coordinates, for large
values of r, the line element takes the form

M —(S10 S20 S30)

In (2.16), we have that

(2.17)

ds= 1—2 2m, 14
+—dt

r r4

(rXv)XS=v(r S)—r(v S) . (2.18)

The supplementary condition (1.19) can be written as

2ms1+ '
(dx +dy +dz ), (2.7)

or

u~g( „)S""=0, (2.19)

where r =(x +y +z }' . The skew tensor g(„„}has the
nonvanishing components 4m,s"= &+

(4
(U S,—US~) .

r
(2.20)

I x'
S

g[i0] 3r
(2.8)

From this result, we obtain

A calculation of the components of the skew Ricci tensor
in isotropic coordinates gives'

21, m, x'
(lJ) gp

[j0] r

4m,M= 1+

It now follows that

~4

(vXS}=vXS .
r4

(2.21)

2l, m, x'
V ~ [Oi] r

(2.10)
rXM=rX(vXS)=v(r S}—S(r v) .

We now find that, to this order of approximation,

(2.22)



3114 J. W. MOFFAT AND J. R. BROWNSTEIN 41

DS dS ms
[S(r.v)+2v(r. S)—r(v S)]

dt dt r3

214
+ [v(r S)—S(r.v)] .

P6
(2.23)

rest

dt

3m

2r

l$ mrna (r Xv) XS„„,
r

or

Equation (2.28} can be written in the form

(2.30)

Finally, we obtain from (2.4) and (2.23), to this order of
approximation, the result

dS ms
[S(r.v)+2v(r S}—r(v.S)]

dt r3

2I4
[v(r S)—S(r v)]+S(v.f)—f(v S) . (2.24)

r6

=QXS„„.
dt

We have

3m, L,
(rXv),

2r r

(2.31)

(2.32)

2m,
S, (SL„), t= 1—

r
(2.25)

We must now transform to the rest frame of the gyro-
scope. First, we must rescale the spatial basis vectors us-

ing the metric to maintain orthonormality, and second,
we perform a Lorentz transformation. These two
changes in S are given respectively by

where

I.,=l,'am, . (2.33)

Let us take the gyroscope's orbit to be a circle of radius
r with unit normal orbital angular momentum vector J,
then the gyroscope's velocity can be calulated from (2.14)
to be

where

Sj„=S—v(v S) . (2.26)

21, 2l, l, m,+ rXJ.
r m, r

(2.34)

S„„denotes the rest-frame value of the spin vector S.
Thus, the combined change in S is

2m@
S— [S—v(v S}]

r 2

We have that

rX(rXJ)=(r J)r —(r r)J
= —(r.r)J= rJ . —2 (2.35)

2m vS— S+—'v(v S)
r 2 2

(2.27) The precession rate, averaged over a revolution, is given
to lowest order by

DifFerentiating this, and using (2.14}, we obtain the
desired result for the time dependence of the spin vector
in the rest frame of the gyroscope to lowest order:

3/2
' 5/2 )/r2

' ' l 1/2

sn
S S

(2.36)

d Srest 3m
[v(r S„„)—r(v S„„}]dt 2r3

I,'m, a
[v(r S„„)—r(v S„„)],

r

where a is given by

a= +

(2.28)

(2.29)

where R, is the radius of the central source.
Until now, we have ignored the Lense-Thirring effect,

which is the precession due to the rotation of the Earth
on its axis. We provide a treatment here to show that
the NOT Lense-Thirring result is identical to that of Ein-
stein gravitation theory (EGT). In EGT, we can include
the effect of the Earth's rotation, to Grst order, in the
metric in rectangular isotropic coordinates as was shown
by Lense and Thirring:

EGT
g (p~)

—(1+2m, /r)

—2J,y /r

—(1+2m, /r)

2J,x lr

—(1+2m, /r)

—2J,y /r

2J,x/r3

1 —2m, /r

(2.37)

where the off-diagonal elements g(Q ) account for the rotation of the Earth with angular rnomenturn J, aligned along the
z axis.
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The solution of the first post-Newtonian approximation to NGT is given in Ref. 4. The NGT metric can be shown to
be

NGT
g(j V)

—( 1+2m, /r )

2J,y—Ir'

—(1+2m, Ir)

2J,x/r

—(1+2m, Ir)

—2J,y ir
2J,x /r

1 —2m, /r+I, /r

(2.38)

3(J, r)r J,
X SreSt

r
(2.39)

on the right side of (2.30}. We see from (2.31) that the
Lense-Thirring contribution to the precession rate is

3(J, r)r J,
r' r' (2.40}

As we are interested in observing how NGT corrects
EGT predictions of precession rates, and as there are no
NGT corrections to the Lense-Thirring effect, we drop
this and return to (2.36). We can write

& + &EGT+ & + &NGT ' (2.41)

So we can separate the EGT and NGT contributions in
(2.36) as follows:

To post-Newtonian order, we find that the corrections
to the off-diagonal metric elements g~o;i are identical to
the above EGT case. The corrections to the skew metric

g(0;) are not relevant because the calculation of dS„„/dt
involves only the symmetric parts of the metric. Thus,
the precession due to the Lense-Thirring effect, which
arises from the off-diagonal elements of the metric g~„„i,
is identical in NGT and EGT. Moreover, the inclusion of
the Earth's rotation has no effect (to post-Newtonian or-
der) on the diagonal elements of the metric. The diagonal
elements lead to geodetic precession, which was calculat-
ed above.

It is straightforward to include the off-diagonal metric
elements into the above calculation [(2.12) to (2.30}],
yielding an additional term,

To estimate the NGT contribution to the precession, we
need an upper bound on I. A bound for l has been ob-
tained, in Ref. 4, using the LAGEOS artificial satellite
data and the Lunar Laser Ranging data. ' The result is
l~ =(3+3) km. We know from the results of the Pound,
Rebka, and Snyder experiment for the redshift of a pho-
ton in the Earth's gravitational field that I &6 km. " If
we use 1~ = 5 km, and estimate a =2l ~ /m ~ based on the
consideration that the constituents of the Earth and the
gyroscope rotor are of a similar substance, then (2.43)
yields

& IIII &QGT o 0037 a«se«yr (2.46)

as the expected maximum correction to the gyroscope
rate of precession due to NGT.

However, we are able to calculate a particle model
value of l by making some basic assumptions. In gen-
eral, we have, from NGT, '

l 2 =f2Z +f2Z +f2Q +f~+ +f2Q (2 47}

where f2, f,2, f2, f2, and f, are the universal coupling

constants of protons, electrons, neutrons, neutrinos, and

cosmions, respectively. Z, N, N„, and N, denote the

number of protons, neutrons, neutrinos, and cosmions.
In (2.47}, we have explicitly included the electron cou-

pling and taken into account the charge neutrality of the
source: Z =N, . Now, for bodies within the solar system,
N-Z)&N„. Thus, we are justified in neglecting the

neutrino contribution in (2.47} above. Moreover,
N =m, /2m, where m is the proton mass. Thus, for the

central source, we can write (2.47) as

&ifIi&EGT—

' l l/2

GT=
S

For the Earth, we have

(2.42)

(2.43)

l2 — (f2+f2+f2+2f 2
)

where we define

N,

rn, /m

(2.48)

(2.49)

& If)'I &EG,——8.45

' 5/2

arcsec/yr . (2.44)
For the gyroscope rotor, we assume no cosmion con-

tent, and by similar arguments that precede (2.48), we ob-
tain

& Inl &EGT 6.75 a«s«/yr . (2.45)

For a drag-free satellite at a height of h=600 km above
the Earth, we get from EGT the predicted gyroscope pre-
cession

m

f2+f2+f 2

2m'
(2.50)

An upper bound on the neutron coupling constant, f2,

was derived from stability conditions on neutron-star
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solutions, ' where it was found that f„&5 X 10 cm .
Moreover, a value of f, =(8.7+s 7)X10 cm has been

recently obtained by an NOT fit to the pulse time-of-
arrival observations of the binary pulsar PSR 1913+16, '

where it was assumed that f =f„. In what follows, we

shall neglect f„and f~, and treat the value of

f, =8.7X10 cm as an upper bound. The value of 1.„
in (2.43), can be determined by substituting (2.50) and
(2.29) into (2.33). This yields

L, =l, am,

lJ ~32.3 km, (2.57)

which, by application of (2.43), corresponds to a maximal
NGT correction of

' 1l/2

( ~Q~ &~oT & 1.92X10 arcsec/yr .
T

(2.58)

It is therefore of interest to ask whether a gyroscope
experiment in orbit about Jupiter would provide an NGT
effect within our ability to detect. From (2.48), we obtain

&l,"+(3.545X10 cm)m, l, . (2.51) For Jupiter, the EGT contribution is determined from
(2.42) to be

Now, in the case of the Earth, we initially neglect the
cosmion contribution in (2.48). Then, we have

' 5/2

( ~Q~ &«T=1.21X10 arcsec/yr . (2.59)

M~f,
l~ =

2m'

which yields

(2.52) For the Sun, if we choose g, =10 ",' and substitute

this value into (2.48), we get

l ~0.40 km . (2.53}
lo +3230 k (2.60}

We now have, from (2.43),
' 11/2

&IQI&goT&243X10 '
T

arcsec/yr . (2.54) Ro
(2.61)arcsec/yr .

This value of lo yields a value of the quadrupole moment
of the Sun: J2=5.3X10 . By applying (2.43), we have

' 11/2

l ~0.69 km . (2.55}

Substitution of this value into (2.43) gives an upper limit
to the NGT correction to the gyroscope precession:

R~
(iQi & „&1.45x 10-'

11/2

arcsec/yr . (2.56)

The projected experimental precision of the Stanford
gyroscope is approximately 0.0005 arcsec. ' Thus, if
there are no cosmions in the Earth, then the NGT
correction to the precession rate would be unobservable
at any altitude.

To consider the effect of cosmions in the Earth on
gyroscope precession, we require at least an upper bound
for the number of cosmions contained in the Earth.
From an NGT fit to the data of the eclipsing binary sys-

tems DI Herculis, and AS Cam, and the solar system, a
value of f, =8.75X10 cm (Refs. 12 and 16) and

&10 ' (Ref. 16) were predicted. We find from (2.48)

that the inclusion of cosmions yields at most a value of

From (2.42), we obtain

( ~Q~ &«,——1.30x 10'
T

' 5/2

arcsec/yr . (2.62)

III. DISCUSSION OF THE RESULTS

The precession of the gyroscope will be affected by
higher-order factors neglected in the above treatment.
For an experiment in orbit about the Earth, the projected
experimental precision of the Stanford gyroscope experi-
ment is =0.0005 arcsec. ' This is about five times the
approximate size of the terms predicted by EGT in the
next higher order, which are down from the first-order
terms by a factor of u. The effects of the Earth's oblate-
ness and the ellipticity of the satellite orbit has been es-
timated by Wilkins, ' Barker and O' Connell, ' Hoots
and Fitzpatrick, and more recently by Breakwell. '

Breakwell obtained for a polar orbit the result

(Q&E,„h „„„„,„=—0.007 arcsec/yr . (3.1)

This is also below our ability to detect.
It has been suggested by Krisher that Jupiter provides

a useful testing ground for NGT. ' Krisher suggests us-
ing radiometric observational data of spacecraft Aybys.
To obtain a reasonable estimate of the cosmion content,
Krisher took into account accretion during body forma-
tion and subsequent trapping, but did not consider the
possible greater rate of cosmion evaporation in Jupiter
than in the Sun, due to the higher density of the core of
the planet than that of the Sun. The value quoted by
Krisher, g, = 10 ', should be treated as an upper

bound.

%'ilkins' has estimated the effect of the moon and the
other planets and found that

( ~Q~ &EoT „„&2X10 arcsec/yr,

( ~Q~ &Eor ~»„«, &4X 10 arcsec/yr .

(3.2}

(3.3)

The effect of the Sun was estimated by de Sitter and
Roy to be

( ~Q ~ &«T s„„-—0.019 arcsec/yr . (3.4)

The effect of the other stars of the Milky Way is well
below detection
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& I &I )Eor M;s,y vvgy & lo ' a«s«iyr . (3.5) for, since the plane of the ecliptic will not coincide with
the plane of the satellite orbit.

The largest corrections to the gyroscope precession
that we should concern oursevles with, caused by the el-

lipticity of the satellites orbit, the oblateness of the
Earth, and the gravitational field of the Sun, can be
corrected for in the gyroscope experiment. The value ob-
tained by Breakwell ' for the former two effects can be
subtracted from the experimentally observed precession,
while the latter effect due to the Sun is easily accounted
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