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Effect of small-scale structure on the dynamics of cosmic strings
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The effective equation of state for a string with short-wavelength perturbations is shown to be

p T =po, where LM and T are the mass density and tension in the rest frame of the string and po is the
unperturbed string tension. The dynamics of "wiggly" strings in flat spacetime is discussed. The
conclusions are in agreement with the results obtained by Carter using different methods.

I. INTRODUCTION II. EQUATION OF STATE

pT=po=const, (1.2)

where po is the unperturbed string tension. p and T have
to be understood as mass per unit length and tension in
the local rest frame of the string and are, in general, func-
tions of position and time. Carter developed a formalism
for studying the dynamics of elastic strings with an arbi-
trary equation of state. In the nondispersive case (1.2)
the equations of motion considerably simplify, and he
was able to obtain their general solution.

In this paper we shall study the dynamics of wiggly
strings from a microscopic point of view. In the next sec-
tion the string equation of state will be derived from first
principles, starting with the Nambu equations of motion.
The dynamics of wiggly strings is discussed in Sec. III.
The conclusions are briefly stated in Sec. IV. They are in
full agreement with those of Carter.

Recent numerical simulations of cosmic-string evolu-
tion' have led to a surprising discovery that the strings
have a significant structure on scales much smaller than
their correlation length. This structure is due to the
kinks formed by intercommuting strings and contributes
nearly a half to the total energy.

The purpose of this paper is to study the effect of
small-scale wiggles on string dynamics. I shall disregard
the cosmological expansion and string intercommuting
and consider an idealized situation when the typical
wavelength of the wiggles is much smaller than the
characteristic scale of the string. To an observer who
cannot resolve the wiggles, the string will appear as
smooth, but the effective mass per unit length p and ten-
sion T of the string will be different from those of an un-
perturbed string.

The dynamics of strings with small-scale wiggles was
recently discussed by Carter. He argued that the string
equation of state should be "nondispersive" in the sense
that the speeds of propagation of transverse and longitu-
dinal waves along the string are the same. These speeds
are given by

Ur=(Tlp)'r', U& =( —dTldp, )' '

and the requirement Uz. = UL leads to a unique equation of
state:

We begin by reviewing the well-known formalism of
string dynamics. ' The spacetime trajectory of the string
can be described by a vector function x(o, t), where o is a
parameter along the string. The equations of motion for
x(o, t) can be written as

X X =0,
X X'=0, X +X' =1,

(2.1)

(2.2}

x(o, t) =
—,
' [a(o t)+b(cr + t )—], (2.4)

where the functions a(o ) and b(o ) satisfy the constraints

(2.5)

and are otherwise arbitrary.
A static straight string is represented by a(o )

=b(o )=no. , where n is a unit vector along the string.
We shall consider a perturbed string

a(o }=k,on+/, (o ),
b(cr ) = k2o n+ g2( o )

with k&, k2 =const and

n. g, (o }=n. (~(cr ) =0 .

(2.6)

(2.7)

The perturbations g, , gz represent the "wiggles" and can
be pictured as a superposition of waves propagating along
the string in opposite directions. The constraint equa-
tions (2.5) imply

(2.8}

and therefore

where overdots and primes stand for derivatives with
respect to t and 0., respectively. The last two equations
are the gauge conditions that fix the parametrization of
the string world sheet. In this gauge, the energy-
momentum tensor of the string is given by

T""(x,t)=pc fdo(x "x' x "x ')5—"'(x x(o, t))—, (2.3)

where x =t and po is the string tension. The general
solution of the string equations of motion (2.1) and (2.2)
has the form
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—1&k„k2 1 . (2.9)

Ti,'s (x, t) =8""5(y)5(z} . (2.10}

The quantities 8" can be found by averaging the micro-
scopic energy-momentum tensor (2.3) over a distance d
and a time interval ~ much greater than the typical wave-
length and the oscillation period of the wiggles, respec-
tively,

gr"=(rd) ' f T"'(x, t)d'x dt . (2.11)

Here, the spatial integration is over a region between two
parallel planes separated by a distance d (see Fig. 1) and
the time integration is over a time interval At =~.

For the energy density component T, the spatial in-

tegration gives

f T (x, t)d x =gof dcr =poker (2.12)

and the time averaging replaces her by its average value
( b,cr ). With the aid of Eqs. (2.6) for a(o ) and b(cr ), the
distance d can also be expressed in terms of ( her ):

d= x der =
2 k]+k2 Acr (2.13)

Hence,

8~=2@0(k,+k~)

In a similar way we obtain

8"=—2@Ok, k2(k, +k2)

8 '=pa(k~ —k, )(k, +k~)

(2.14)

(2.15)

(2.16)

Physically, it is clear that all other components of 0"
should vanish. This is not difficult to verify. For exam-
ple, for I9

' with i =2, 3 we have

We shall assume that k& +k2%0 and that the direction of
n is chosen so that k, +k2)0. (For k, +k&=0 the
string lies entirely in a plane perpendicular to n.} The as-
sumption that k, and k2 are constant means that all

physical properties are uniform along the string when
averaged over the wiggles. A more general situation will

be discussed at the end of this section.
To an observer who cannot resolve the wiggles, the

string appears to be a straight line. It will be convenient
to use Cartesian coordinates with x ' axis along the string.
Then n=(1,0,0), g=gz=O, and the effective energy-
momentum tensor of the string has the form

gol dt d' l + t l

2%d
(2.17}

The rapidly oscillating functions f, and g2 average out to
zero, and thus 0 =0 =0. For 0'~ with i,j=2,3 we ob-
tain

8'= — '„f dt f do(g', P'+'P g",') . (2.18)

After a change of variables u =0.—t, U =a+ t, the double
integral of gg, splits into a product of integrals jgzdu
and f P, du, each of which is equal to zero.

From Eqs. (2.14) and (2.15) we see that the string ener-

gy density 8 can take any value in the range
IMO&8 & 00 and that —8 &8"&8 . The stress com-
ponent 8" represents tension when k, and k2 are both
positive and pressure when they have opposite signs. 8
and —8" can be identified with the proper mass density
p, and proper tension T only when k, =kz( =k), so that
8 '=0 and the string is at rest. In this case,

p=k 'po, T=kpo, (2.19)

2 —800811 (801)2 (2.20)

Substituting 8""from (2.14)—(2.16) into (2.20), we recover
Carter's equation of state (1.2):

pT —po (2.21)

It is easily verified that 0"'l„l ~0 with a null vector
I"= ( I, I, O, O). This implies

p T (2.22)

Until now we assumed that k, and kz in Eq. (2.6) are
constant. In a more general situation they are slowly
varying functions of 0.. Slow variations means that the
function changes very little on the characteristic length
and time scale of the wiggles. In fact, k, and k2 are the
magnitudes of a' and 1' averaged over the wiggles. It is
easily seen that the analysis of this section is directly
applicable to the case of slowly varying k& and k2. In
this case p and T are functions of 0 and t, and the equa-
tion of state (2.21) applies locally.

in agreement with the equation of state (1.2). In the gen-
eral case, in order to find p and T, one has to perform a
Lorentz transformation in the x direction. Alternatively,

p and —T can be invariantly defined as eigenvalues of
Their product is given by the Lorentz-invariant

determinant

6=0

FIG. 1. The string energy-momentum tensor is averaged over
a scale d much greater than the typical wavelength of the wig-

gles.

III. LOOP DYNAMICS

At the microscopic level, all possible loop trajectories
are described by Eqs. (2.4) and (2.5). These equations al-
low a simple geometric interpretation: the functions a(cr )

and b(cr) in Eq. (2.4) describe two arbitrary curves in
three dimensions with o. being the length parameter
along the curves. For a closed loop in its center-of-mass
frame, the functions a(o ) and b(o ) are periodic,
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a( a+L ) =a(a), b(o +L)=b(a), (3.1)

and thus the two curves have the same length L. It is
called the invariant length of the loop and is equal to
M/p, where M is the loop's mass.

We consider the situation when the curves a(a) and
b(o } have small-scale wiggles of wavelength much small-
er than L. We are interested in the motion of a smoothed
loop described by the a and b curves averaged over the
wiggles. The averaged functions

A(a)=(a(a)&, B(a)=(b(a)& (3.2)

do not satisfy the constraint equations (2.5}. Instead, we
have

I
A'(a)l &1, IB'(a)l &1 . (3.3)

The averaging here is over a scale large compared to the
typical wavelength of the wiggles, but small compared to
the characteristic scale of the smoothed loop. The quan-
tities I

A'I and IB'I are similar to lk, I
and Ikzl of Sec. II.

Their values are determined by the density and the size of
the wiggles. In the most general case, A(o ) and B(a)
can be arbitrary periodic functions satisfying Eq. (3.3},
and the formula

with R „,Rz & L /2m. It is easily shown that the radius
of the loop described by these functions changes in time
according to

1/2

R „+R~+2R„R~cos2 2 4m. t
2 L

(3.8)

It oscillates in the range

—,'IR~ —Rsl &r & ,'(Rg+Rt-t) (3.9)

and it is easily seen that the shape of the loop does not
change in time. When B(a) shrinks to a point, B'(a)
also vanishes. This corresponds to k2 =0 in the case of a
"wiggly straight string" discussed in Sec. II. From Eq.
(2.15) we see that for k&=0 the tension vanishes. This
explains why the loop with B(a)=0 remains static.

Finally, we consider a more specific example when
A(a) and B(a) are two concentric circles:

r

2%0 ~ . 27767A(a)=R„e,cos +ezsin

(3.7)
2770 ~ . 2 IToB(a)=Rz e,cos +ezsin

(x(a, t) &
=

—,'[ A(o t)+8(—+at)] (3.4) with a period ht=L/2. For R„=Rtt =R, Eq. (3.8)
reduces to

represents the motion of some wiggly loop. The variety
of possible motions for wiggly strings is much richer than
that for Nambu strings, since

I

A'I and B'I are no longer
constrained to lie on a unit sphere. In a generic case, the
curves A'(a ) and —B'(o ) do not intersect, and the loops
do not develop cusps. (Of course, the cusps do occur at
the microscopic level, but their scale is determined by the
size of the wiggles. ) As I already mentioned in the Intro-
duction, these results coincide with the conclusions
reached by Carter using quite different methods.

Let us now consider some interesting special cases. If
the wiggles are statistically the same on a and b curves
and are uniformly distributed along each curve, then

I
A'( a ) I

=
I
8'( o. ) =k =const. (3.5)

These equations are quite similar to the constraint equa-
tions for the Nambu strings, Eq. (2.5). Given a solution
of Eq. (2.5), we can obtain a solution of (3.5) as

A(a)=a(ka), B(a)=b(ka) . (3.6)

Hence, in this case the motion of wiggly strings is the
same as that of Nambu strings, except it is slowed down
by a factor of k (1.

Another interesting case is when one of the curves, say,
B(a), shrinks to a point. We can choose the coordinates
so that this point is at x=O. Then (x(a, t) &

=
—,
' A(a —t),

r =R cos(2m t /L ) .

In the case of a Nambu string, the motion of a circular
loop is given by r =R cos(t/R). It has the same form as
(3.10), but its period is b, t =nR & L/2. In the case when
R&~0, Eq. (3.9) gives r=R&/2=const, and the loop is
static.

pT po (4. 1)

where p is the mass per unit length and T is the tension
in the local rest frame of the string, and po is the unper-
turbed string tension.

The motion of the string averaged over small-scale wig-
gles is described by

(x(a, t) &
=

—,'[ A(a t )+B(a+t )],— (4.2)

where A(a) and B(a) are arbitrary functions satisfying

I
A.'(a)l & 1, (4.3)

These conclusions are in full agreement with the results
obtained by Carter using different methods.

IV. CONCLUSiONS

We have shown that the effective equation of state for
strings with small-scale structure is
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