PHYSICAL REVIEW D

VOLUME 41, NUMBER 10

15 MAY 1990

Dynamical dimensional reduction induced by changing equation of state

Marek Demianski
Institute of Theoretical Physics, University of Warsaw, Warsaw, Poland
and International Center for Relativistic Astrophysics, Dipartimento di Fisica, Universita di Roma, Roma, Italy

Alexander Polnarev
Academy of Sciences of the Union of the Soviet Socialist Republics, Space Research Institute, Profsoyuznaja 84/32,
117810 Moscow, Union of the Soviet Socialist Republics
(Received 19 October 1989)

We study the dynamics of a homogeneous but in general anisotropic multidimensional cosmologi-
cal model assuming that space-time is a product of a physical space-time M and a compact space B.
We take the energy-momentum tensor in the form of a perfect fluid allowing, however, anisotropic
pressure. In this case the Einstein field equations can be reduced to a two-dimensional dynamical
system. We discuss the general behavior of this dynamical system and investigate conditions under
which dynamical dimensional reduction takes place. We also discuss the dynamics of our model
when the equation of state of matter is allowed to change. We consider slow and fast changes of the
equation of state. In both cases, when the final equation of state is appropriate, the dynamical di-
mensional reduction takes place. It turns out that slow changes of the equation of state for a certain
open set of initial conditions always create inflation in the final state. Rapid changes of the equation
of state always suppress inflation if it existed in the initial state.

I. INTRODUCTION

Successes of the Weinberg-Salam-Glashow! theory uni-
fying the electromagnetic and the weak interactions
strengthen the belief that gauge theories provide the
correct mathematical framework for the program of
unification of all elementary interactions. The fact that
multidimensional general relativity is capable of generat-
ing non-Abelian gauge theories places it in the focus of
interest of contemporary theoretical physics. There are
actually two classes of theories which use the concept of
multidimensional space-time. One class contains exten-
sions of the five-dimensional Kaluza-Klein theory which
was originally designed to unify gravity and elec-
tromagnetism. It was noticed by Witten? that the 11-
dimensional Kaluza-Klein theory seems to be almost
uniquely singled out by its interesting properties.
Eleven-dimensional space-time is the least dimensional
space-time which could incorporate a gauge group con-
taining SU(3) X SU(2) X U(1), and simultaneously the larg-
est dimensional space-time accommodating supergravity
theory with spins of basic fields not larger than two. The
heterotic superstring theories (for details, see the recent
monograph by Green, Schwarz, and Witten®) which de-
scribe bosonic and fermionic fields in ten-dimensional
space-time is an example of another class of multidimen-
sional theories. In both cases to obtain the physical
four-dimensional space-time from the multidimensional
space-time it is necessary to perform some kind of dimen-
sional reduction or compactification. By dimensional
reduction we mean a process of reduction of the multidi-
mensional space-time to a space-time of the form of a
product of a four-dimensional space-time M and a com-
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pact space of additional dimensions B (internal space)
with a typical size of B comparable to the Planck length.

Several mechanism of dimensional reduction have been
proposed in the literature (see, for example, Appelquist
and Chodos®) but none is really satisfactory.

These include among others the Freund-Rubin mecha-
nism,> the Casimir effect associated with matter fields or
zero-point gravitational energies,® and the effect of
higher-derivative terms in the gravitational action.” It
was pointed out by Chodos and Detweiler® that the dy-
namics of the gravitational field might provide a natural
mechanism of dimensional reduction. They considered
B(I)XS! space-time, where B (I) is Bianchi type-I space,
in the five-dimensional Kaluza-Klein theory and showed
that the initial conditions can be chosen in such a way
that during the evolution the fifth dimension shrinks to
arbitrarily small size while the physical dimensions iso-
tropically expand. Several authors have investigated
cosmological dimensional reduction in the classical case
and in the supergravity theory. Vacuum five-dimensional
spatially homogeneous models have been investigated by
Demaret and Hanquin.’ Lorenz-Petzold,!*!! Barrow
and Stein-Schabes,'? and independently Furusawa and
Hosoya!? have investigated the B (IX)X T> model (T° is
a three-dimensional torus). Bleyer and Liebsher'* investi-
gated the nonvacuum Friedmann-Robertson-Walker?
model. Spatially homogeneous world models in d =11
supergravity theory have been investigated by Demaret
et al.’’ and by Lorenz-Petzold.!® Systematic study of dy-
namics of multidimensional cosmological models has
been undertaken by Demianski et al.!’

When the idea of a multidimensional space-time is in-
corporated into cosmological considerations a new
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scenario of the very early evolution of the Universe
emerges. At the very early state of evolution (at energies
comparable and higher than the Planck energy ~ 10"
GeV) it is assumed that all spacial dimensions are
equivalent and the Universe is expanding. At a certain
moment during the early evolution of the Universe a
spontaneous dimensional reduction takes place and the
space-time assumes a form of a product of a physical
four-dimensional space-time and a compact manifold of
additional dimensions. Typically the final size of the
compactified manifold of additional dimensions is be-
lieved to be comparable with the Planck length.

In this paper we would like to study evolution of mul-
tidimensional space-time filled with matter described by a
hydrodynamical energy-momentum tensor with aniso-
tropic pressure. Our aim is to investigate dynamics of
such space-times allowing for changes in the state of
matter and to see under what conditions the dynamics of
the gravitational field provides a natural mechanism of
dimensional reduction.

In the next section we specify our model and derive
equations governing its dynamics. We also study the gen-
eral properties of the dynamical system and specify a re-
gion of the parameter space which corresponds to solu-
tions in which dynamical dimensional reduction takes
place creating a four-dimensional space-time modeling
the observable Universe. In Sec. III we discuss dynamics
of multidimensional models taking into account changes
of the equation of state of the matter induced by physical
processes in the early Universe. The last section contains
summary of our main results and discussion of possible
applications of multidimensional cosmological models.

II. MODEL OF A MULTIDIMENSIONAL UNIVERSE

For the sake of generality let us consider an (n +1)-
dimensional space-time which is a product of a (k +1)-
dimensional space-time M and (k'=n —k)-dimensional,
compact if necessary, space B.

The line element assumes the form

ds?=dt’—g,,(x,t)dx “dx —g,(x*,t)dx'dx/ 2.1

where a,b =1,2,...,k; i,j=k+1,...,n (we set c =1).
We write the Einstein field equations in the form
R,, =87G

1
T‘“,— ;———lg“VT s (2.2)

where u,v=0,1,2,...,n,
Tt =Diagl|le,—p,—p,...,—p,—p,—p's...,—p'l
2.3)

is the hydrodynamical energy-momentum tensor, € the
energy density, p and p' are, respectively, the pressure in
the physical space and in the space of additional dimen-
sions, G the generalized gravitational constant, and T is
the trace of the energy-momentum tensor. We assume
that the matter content of the multidimensional space-
time can be described by a hydrodynamical energy-
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momentum tensor and that

p=ae, p'=dade, (2.4)

where a and a’ are constants such that |a| <1, |a'| < 1.
We restrict our considerations to a simple model as-

suming that the space-time M and the space B are homo-

geneous and isotropic and the line element has the form

ds?=dt>*—R*t)dL*—r¥(t)dl? , (2.5)

where dL? and dI? are, respectively, Euclidean line ele-
ments of k- and k’-dimensional spaces. In general, be-
cause a7 a’, this multidimensional space-time as a whole
is homogeneous but anisotropic.
The Einstein field equations are conveniently written
down with the help of Hubble parameters defined by
P S

R (2.6)

~ [~

and they assume the form

H+H(KH +k'h)=ke

’

a+—1—(1—ka—k‘a')
n—1

2.7

1

h+h(kH +k'h)=xe @' +———(1—ka—k'a')

»

(2.8)

where k=87G. H, h, and € are related by a constraint
equation [00 component of the Eq. (2.2)]

(kH +k'h)*—kH*—k'h*=2ke . (2.9)
Assuming that the expansion is adiabatic we have
— S =(+akH +(1+a)k'h . (2.10)

When a and a’ are constants Eqgs. (2.7)—(2.9) describe
two-dimensional dynamical system. General properties
of this system can be studied in detail. It turns out that
such analysis is very useful for qualitative investigation of
behavior of more general and more realistic models with
a and o' allowed to change in time according to physical
processes taking place in the early Universe (see Sec. III).

In order to simplify the system of Egs. (2.7), (2.8), and

(2.10) we substitute for & a new variable s defined by
h =sH . (2.11)

Then Egs. (2.7), (2.8), and (2.10) can be rewritten in the
form

H+ Bk +5k) ==K xea =), 2.12)
s——H k@' —B)+(k — )’ —By)]
2(n —1) ! 2
Xk'(k'—1)(s —s4 Ns —s_)=0, (2.13)
2
Ke——z—k’(k’—l)(s s s —s_), (2.14)
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where B=[1+(k'—1)al/k’, B,=(ka—1)/(k —1), and
s4 are the roots of the equation €=0 and they are equal
to

k _
=——=—(1Fy),

S4 o —1 (1+y)
where y=V(n —1)/kk’. We notice that for k'>1,
¥ <1, and therefore s _ <s, <0. Our attention will con-
centrate on Eq. (2.13) which can be conveniently rewrit-
ten in the form

(2.15)

2

s _ (I—y)a'—B)(s —so)s—s,)

L[k
dr 2

Y
X(s—s_),

(2.16)

where we have introduced a new time variable 7 related
to t by
— a2 —
P E LS
y k'—1

2.17)

and

k—1 a5

. 2.18
P (2.18)

SO=

Equation (2.16) can be explicitly integrated and we ob-
tain

ls—s+|q+|s—s_\q’]s—SOI_ZqOZCe’, (2.19)
where
_ 1Ey
9+ =, ) (2.20)
a'—By
a' —B,;
= , 2.21
D™ (=B Na—B_) 2.21)
Y B
Bi= PR (2.22)

and C is a constant of integration. Now returning to Eq.
(2.12) and replacing ¢ by 7 according to (2.17) and using
(2.16) we obtain

dinH _ 1
ds (a’'—B)s —sg)
_ 2(n—1) k +sk’
k’z(k’—l) (S _SO)(S S5 )(S —Ss _ ) ’
(2.23)
This equation leads to
H=C'ls —s0|_2p°|s —s Prls—=s_1"", (2.24)
where C' is an integration constant and
_ 2(n —1) k+k'sy
P+= + 1201 ’ _ — ’
kK'Yk'—1)a'—B) (54 —so)s4—5_)
(2.25)
- k+k's
2po=1+ n—1 o
K'2k'—1)a'—B;) (s_ —50)(s4 —5p)
(2.26)
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Combining (2.16), (2.17), and (2.24) we obtain the follow-
ing relation between ¢ and s:

T A e S SR
n k12(1_,},2)2 n—1 (a’_ﬁl) C’

2pn—1 - —1
[ s s
n

X|s'—s, | P~ lds', (2.27)

where t;, is an arbitrary constant of integration and
Sm=S (tin ).

The general behavior of our system depends on rela-
tions between the roots sqy,s, of the right-hand side of
Eq. (2.16) and the sign of (a'—p3,;). Straightforward cal-
culation leads to

a'—B.
o —B, (2.28)

For a given k and k' relations between roots and the
sign of s are determined by values of the parameters a
and a’. The physically acceptable values of a and a' are
restricted to a square |a| <1, |@’| <1. This square can be
divided into separate regions corresponding to different
behavior of solutions of Eq. (2.16) (see Fig. 1). From Eq.
(2.28) we see that relations between s, and s, are deter-
mined by relations between 3, 3,, and 5. Let us notice
that from the definitions of the parameters 3, 3,, and 3,
we have (k > 1,k'> 1),

st—s(,:i—y\s_tI

Bi=B,=B.=B_-=1 when a=1, (2.29)
and in general

_g=_n=l s

B,—B, k'(k—l)(l a)z0, (2.30)

Bl—/3+=1—_7—y(1—31)zo , 2.31)
B =—_Y (1—-Bg)<

Bi—B- 147 (1-B)=0, (2.32)
_p _U=—a)l—y)

B—B Kk —1) >0. (2.33)

From (2.29)-(2.33) it follows that for all Kk > 1, k'>1,
andalla =<1,

B_>B>B,>B, .

Let us now discuss the qualitative behavior of solutions
of Eq. (2.16) for different values of the parameters a and
a’. Inregion Ion Fig. 1 (a¢'>f_),

(2.34)

s_<sg<s, <0, (2.35)

and the qualitative behavior of solutions of Eq. (2.16) is
shown in Fig. 2(a). If initially the Universe expands in all
directions then s(¢;,)=s;,>0. Solutions for which
Sin >s 4 correspond to the Universe which is asymptoti-
cally, for t— o0, expanding in all directions even if ini-
tially  additional dimensions were  contracting
(s <s5,<0). If 5;,,=s. then s always remains equal to
s4 and these solutions describe empty space-time (€=0).
The region s _ <s <s is physically forbidden since there



3006

FIG. 1. Physically acceptable values of a and a’. The square
lal <1, la’| <1 is divided into five regions corresponding to
different behavior of the dynamical system representing the
multidimensional Universe. In region I B_(a)<a’'<1; in re-
gion II Bi(a) <a’'<B_(a); in region III By(a) <a’' < B,(a); in re-
gion IV B, (a)=<a'<B,(a); and in region V B,(a)<a’'<—1.
The intersection points a ., as, ay, and ', are given by

( 1k 172
n— ’
2 X 1—k
a,= k'—1 »
a=—k=2 o __k—2
* k ’ * k, ’
( Dk’ s
n—
_— + — k!
“ ( Dk’ i
n—
TR sk
k )

It turns out that for k' > 1 always a, > a, and a’, > aj.

€<0. Solutions for which s;, <s_ correspond to a
Universe in which additional dimensions contract all the
time. These solutions describe reduction of additional di-
mensions but without an epoch when all directions were
equivalent. For this reason such solutions are not in-
teresting from the point of view of the program of
dynamical dimensional reduction which assumes that ini-
tially all spacial directions were equivalent. Therefore we
will disregard them in our further considerations.
In region II (B_ > a'> f3)),

so<s_<s, <0, (2.36)

and the qualitative behavior of solutions of Eq. (2.16) is

shown on Fig. 2(b). In this region the behavior of physi-

cally acceptable solutions is similar to the previous case.
In the region III (B, > a’' > f3,),

s_<s,<0<sg, (2.37)
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and the qualitative behavior of solutions of Eq. (2.16) is
shown in Fig. 2(c). Solutions for which s;, >s, including
the region s >0 asymptotically, for ¢t —0, describe the
Universe expanding in all directions in which the ratio of
the Hubble constants tends to a fixed positive value s.
Solutions which initially satisfy our requirement of
equivalence of all directions do not describe subsequent
dimensional reduction.
In region IV (B,>a’>B,),

s_ <5, <s50<0, (2.38)

and the qualitative behavior of solutions of Eq. (2.16) is
shown in Fig. 2(d). This region is very interesting from
our point of view. Solutions for which s;, > s, asymptoti-
cally, for t — 0, describe the Universe which is expand-
ing in physical dimensions and contracting in all addi-
tional dimensions. Asymptotically the ratio of the Hub-
ble constants approaches a constant negative value So-
The energy density is positive and asymptotically

GNHZ(SO—S+)(SO—S_)~I—12 . (2.39)
Solutions for which s,, >0 possess the required properties
and they describe dynamical dimensional reduction. For
such solutions, from (2.16), (2.17), and (2.23), when s —s,
we derive the asymptotic behavior

H~(s—sq) 7o (2.40)
and

t~(s—s)7° (2.41)
SO

H~ % (2.42)
and

h—sogH~Hge %, (2.43)

where g is a positive constant given by Eq. (2.21).

Finally, let us investigate the possibility of the ex-
istence of an inflationary stage. Inflation in the physical
sector of space-time occurs when H =R /R =const >0
so the scale factor R ~ef". From Egs. (2.7) and (2.9) it
follows that 4 is also constant which implies that s =h /H
is also constant. In other words, s =s; is a necessary but
not a sufficient condition for inflation. From the previous
discussion we see that when s =const the only physically
acceptable solution is s =s;,. From Eqgs. (2.12)-(2.14) we
derive

H(k +k's)(s —s4)=0, (2.44)

so when s =s,, the value of H can be arbitrary and it is
specified by initial conditions. When a and o’ are con-
stants and a#a'# —1 inflation in the physical space is
possible but this solution is unstable and solutions with
initial conditions only slightly deviating from s =s; do
not lead to inflation. See the asymptotic behavior (2.42)
and (2.43).
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FIG. 2. Qualitative behavior of s =h /H for different fixed equations of state and initial conditions. On all figures ¢t =0 corre-
sponds to the initial singularity. Physically interesting solutions correspond to curves with s;, =s(t =0)2=0 and s,=s(t— )<0
and 5,75, (asymptotically the Universe is not the Milne universe). The region of s between s and s_ (s, >s >s_) is not physically
allowed since in this region € <0. (a) Values of a and a’ are confined to region I on Fig. 1. There are no physically acceptable solu-
tions. (b) Values of a and o’ are confined to region II. There are no physically acceptable solutions. (c) Values of a and a’ are
confined to region III. There are no physically acceptable solutions. (d) Values of @ and a’ are confined to region IV. There are solu-
tions describing dynamical dimensional reduction in initially expanding multidimensional Universe. (e) Values of a and a’' are
confined to region V. There are solutions which describe dynamical dimensional reduction in the initially expanding multidimension-
al universe but asymptotically they tend to the Milne universe.
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FIG. 2. (Continued).

In the region V (B_>a'),

5_<sp<s, <0 (2.45)

and the qualitative behavior of solutions of Eq. (2.16) is
shown in Fig. 2(e). Solutions for which s;, >s, are very
similar to the previous case but there is one very impor-
tant difference. Asymptotically such solutions describe
an empty universe (Milne universe) in a sense that the
density parameter Q=¢/€_;,—0 where €., =3H?/87G
while in the previous case {— const.

We see therefore that when equations of state are fixed
and they do not change during the evolution of our mod-
els dynamical dimensional reduction is possible only
when 3,>a’ >, and s;, > 0.

III. MODELS DESCRIBING MULTIDIMENSIONAL
UNIVERSE WITH CHANGING EQUATION OF STATE

In the previous section we considered the dynamics of
multidimensional cosmological models assuming that the
equation of state of matter is fixed and does not change in
time. In the real Universe the effective equation of state
is changing because the Universe is filled with different
kinds of matter and phase transitions are allowed. These
physical processes and their influence on the dynamics of
the real Universe can be qualitatively described by allow-
ing the parameters a and a' to depend on time. Our gen-
eral equations (2.7)-(2.9) are valid also in this case.
Strictly speaking, our equations describe only slow
changes of the equation of state when the time scale of
change of parameters a and «' is longer than the Hubble
time (H ™). Such slow changes in « and o’ imply conser-
vation of entropy. But even in the case when entropy is
not conserved and a and a’ are changing rapidly in com-
parison with the time scale of the expansion of the
Universe and our Egs. (2.7)-(2.9) fail to describe this
transition, they are still valid in the asymptotic regions

before and after the transition where a and a’ are con-
stants. The intermediate case when the time scale of
change of a and a’ is comparable with the Hubble time
cannot be described by our model and it requires different
treatment, for example, a numerical analysis. Let us no-
tice that since s, does not depend on a and a’ only s,
will be altered by changes in the values of a and a’.

Now we will discuss only two limiting cases of slow
and fast changes of the equation of state. Following the
general philosophy of this paper we will consider only
such changes of the equation of state which lead to di-
mensional reduction. It means that the final values of pa-
rameters a and a’ should be confined to region IV on Fig.
1. Since inflation seems to solve so many problems of the
standard scenario of the evolution of the Universe it is in-
teresting to investigate when an inflationary phase of the
evolution could be created by allowing changes in the
equation of state.

When the equation of state changes slowly we still have
several possibilities (see Fig. 3). Let the initial values of
and o’ be confined to region I or II in Fig. 1 and the final
values to region IV [Fig. 3(a)]. Since we assume that the
changes of a and o’ are slow in comparison with the time
scale of expansion, in this case if initially
s(t,)>solalt,),a'(t,))) then always s(¢) > sqo(a(t),a’(t))
and the character of the solution does not change. It
means that during this transition it is not possible to
create inflation which requires that s =s,(a,a’). Howev-
er the dimensional reduction is possible. All physically
reasonable solutions (s,, >0) describe multidimensional
Universe which is initially expanding in all directions but
later the additional dimensions start to contract but in a
nonexponential way.

If the values of a and a’ move from region III to re-
gion IV on Fig. 1 then sy(a(t),a’(t)) decreases and be-
comes negative [Fig. 3(b)]. Let us at first consider solu-
tions for which s(¢;,)>sy(a(t,,),a’(t;,)) which describe
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(a) (b)

-~

/i
——
\__, ________ ' S -"—-""Q\ g

/]

FIG. 3. Qualitative behavior of s =h/H when the equation
of state changes slowly. Only physically acceptable solutions
are shown. Equation of state changes during the time interval
tm,ty and it is fixed at the earlier and later epochs. The final
values of parameters a and o’ are confined to region IV on Fig.
1. On all figures the dashed line corresponds to s =sy(a,a’). (a)
Initial values of a and o' lie in region I or II. Final state for all
solutions is not inflationary. (b) Initial values of a and &’ lie in
region III. Solutions for which s(z,)>s, do not lead to
inflation. When 0<s(t;,)<so(t;,) solutions which initially
behaved nonexponentially at a certain moment change their be-
havior and describe inflation in the physical space and anti-
inflation in the space of additional dimensions. (c) and (d) Ini-
tial and final values of a and «’ lie in region IV; (c) corresponds
to increasing sy(a,a’) and (d) to decreasing sy(a,a’). In both
cases there are solutions describing nonexponential behavior of
the model (solid line) and solutions which from a certain mo-
ment describe inflation [this is possible only in (c)]. (e) Initial
values of a and a’ lie in region V. In this case there are also two
kinds of solutions. Transition to inflation is possible as in the
previous case.
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multidimensional space-time expanding in all directions.
When s, is confined to the region 0> sy(a,a’)>s then
there are solutions which describe a universe with ex-
panding physical space and contracting space of addi-
tional dimensions but inflation in the physical space and
anti-inflation in the space of additional dimension is not
possible. When s(t;,)=sq(alt;,),a’(t;,)) initially we
have inflation in all dimensions but when sy(a(?),a’(t))
becomes less than zero, inflation in the space of addition-
al dimensions is replaced by anti-inflation (the scale fac-
tor decreases exponentially) while the physical space con-
tinues to expand exponentially. If sy(a(t;,),a’(t;,))
>s(t;,)>0 then initially the Universe expands but not
exponentially in all directions and at a certain moment ¢*
which is determined by initial conditions s(¢*)
=sola(t*),a’(t*))>0 inflation sets in all directions.
When s, becomes negative, inflation in the space of addi-
tional dimensions is replaced by anti-inflation while the
physical space continues to expand exponentially.

When initially a and a’ are confined to region IV in
Fig. 1 then final values of a and &’ remain also in this re-
gion. In this case the physically reasonable solutions de-
scribe an initially nonexponential expansion which at the
moment t* when s(t*)=s,(a(t*),a'(t*)) is replaced by
inflation in the physical space and anti-inflation in the
space of additional dimensions [Figs. 3(c) and 3(d)].

When the initial values of a and a’ are confined to re-
gion V and the final values lie in region IV the behavior
of the physically reasonable solutions is similar to the
previous case. The only difference is that now there exist
solutions which begin to inflate when they are in an
asymptotically Milne stage [Fig. 3(e)].

We see therefore that slow changes of the parameters a
and a’ from regions III or V to region IV or changes
within region IV in Fig. 1 always assure dimensional
reduction and they also can create inflation in the physi-
cal space. Slow changes of the parameters @ and o' can
maintain inflation or create it but they cannot stop
inflation. In our model, inflation in the physical space is
always accompanied by inflation or anti-inflation of the
additional dimensions.

Let us now discuss how rapid changes of a and o'
influence the behavior of our system. We will consider
only sudden jumps of a and a’ (see Fig. 4). When the
values of parameters a and a’ jump from region I and 1I
to region IV [Fig. 4(a)] there exist solutions which de-
scribe initial expansion of the multidimensional universe
followed by expansion of the physical space and contrac-
tion of additional dimensions after the jump. Initially
inflation is not possible. There is one particular solution
wit‘h Sin =Sin¢ Such that s;,c=sq(ay,a}). This solution de-
scribes a multidimensional universe in which initially di-
mensional reduction takes place with the physical space
expanding and the space of additional dimensions con-
tracting nonexponentially. Let us notice that this solu-
tion does not satisfy our requirement that initially the
multidimensional universe should expand in all direc-
tions. After the jump in o and a’ inflation sets in the
physical space and anti-inflation in the space of addition-
al dimensions. This property is not generic and rapid
changes of the parameters ¢ and «a’' cannot create
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(e),

FIG. 4. Qualitative behavior of s =h /H when the equation
of state changes rapidly. The rapid transition is approximated
by a jump in a and a'. The dashed line corresponds to
s =spla,a’). In all cases rapid changes of the equation of state
do not create inflation except the unique solution for which at
the moment of the jump s =So,- (a) Transition from regions I

or II to region IV. No inflation. (b) Transition from region III
to region IV. Initial inflation is possible (s =soin) but the jump

in a in @’ turns it into a nonexponential behavior. In this case
inflation in the final state is not possible. (c) and (d) Transition
is confined to region IV. When s, increases (c) inflation is im-
possible except the unique solution mentioned above. When s,
is decreasing inflation is never possible. (e) Transition from re-
gion V to region IV. Behavior of solutions is similar to (c).
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inflation.

A jump of a and a’ from region III to region IV [Fig.
4(b)] produces physically reasonable dimensional reduc-
tion. Let us notice that in this case there exists a solution
describing initial inflation of all directions. This is possi-
ble only when s;, =sq(a;,,a;,). After the jump of a and
o' this solution describes dimensional reduction with the
physical space expanding and the additional dimensions
contracting nonexponentially. As in the previous case
there is only one particular nonphysical value of s,
which in the final state leads to inflation of the physical
space and anti-inflation of the space of additional dimen-
sions.

As expected rapid changes of the parameters « and o’
within region IV [Figs. 4(c) and 4(d)] preserve the dynam-
ical dimensional reduction. There is however one unique
solution with a special choice of physically reasonable ini-
tial conditions which after the jump of a and a’ describes
inflation of the physical space and anti-inflation of the
space of additional dimensions. A jump of a¢ and a’ from
region V to region IV leads qualitatively to the same be-
havior of solutions as in the previous cases. In this case
there are solutions which pass through an asymptotically
Milne stage before they reach another asymptotic region
of nonexponential expansion of the physical space and
nonexponential contraction of additional dimension.
There is also one unique solution describing final inflation
of the physical space and anti-inflation of the space of ad-
ditional dimensions. This solution always emerges from
physically reasonable conditions.

We see therefore that in general a rapid change of the
equation of state cannot create inflation but can ter-
minate inflation. To create a physically reasonable solu-
tion in the process of a rapid change of the equation of
state the final values of @ and @’ have to be confined to re-
gion IV.

IV. CONCLUSIONS

The behavior of the multidimensional cosmological
models which we have investigated in this paper allows
for several scenarios of the very early evolution of the
Universe. The model considered in this paper is compati-
ble with either the symmetric beginning of expansion in
the sense that all dimensions are equivalent or asym-
metric initial expansion. However from the point of view
of the dynamical dimensional reduction it is natural to
assume that the initial state of the Universe was very
symmetric. Symmetric initial expansion corresponds to
a=a’ so the initial state is represented by a point lying
on the diagonal in Fig. 1 which always is contained in re-
gion III. As it was shown in our previous discussion
physically reasonable solutions with appropriate dimen-
sional reduction are represented by a and a’ confined to
region IV. Since inflation solves so many problems of the
standard scenario we are interested mostly in those solu-
tions of our model which allow inflation. However there
are many acceptable solutions without inflation.

If we assume the initial equivalence of all dimensions
and the existence of inflation then we are left with two
basically different possibilities of the early evolution of
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the Universe corresponding to a different type of changes
of the equation of state. Let us stress that now we want
to focus our attention on those changes of the equation of
state which break the initial equivalence of all dimen-
sions. In fact just this breaking of symmetry makes some
of the dimensions physical. In our model the number of
physical dimensions can be arbitrary and in particular it
can coincide with the number of spatial dimensions of the
observable Universe.

If the equation of state changes slowly then it is impos-
sible to stop inflation; but in this case for a certain range
of initial conditions inflation is always created regardless
of whether or not the initial state of expansion was
inflationary. We want to stress that when the equation of
state changes slowly reduction of additional dimensions
at the stage of inflation in the physical space is accom-
plished by anti-inflation. To stop inflation in physical
space when it is already three dimensional another
change of the equation of state is required. The decay of
a vacuum is just one example of such a change.

If the equation of state changes rapidly then it is im-
possible to create inflation but it is always possible to
suppress inflation. Therefore no matter what was the ini-
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tial character of expansion, reduction of additional di-
mensions is accomplished by nonexponential contraction
while the physical dimensions also expand nonexponen-
tially. So inflation could have either existed from the
very beginning of the expansion of the multidimensional
universe or it had to be created by some physical process-
es at the stage when the universe was already three di-
mensional.

It is interesting to notice that there is a test which en-
ables us in principle to distinguish between those two
different possibilities. The idea of this test was presented
at the Centennial Friedmann Conference.!'® Detailed
analysis of this test will be presented elsewhere.
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