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Realistic calculations show that imperfection-spin-resonance strengths e; p can be corrected to
e; p(1, at 20 TeV, Superconducting Super Collider (SSC) energy. Statistical analysis agrees well

with the numerical calculation. The polarized proton must be accelerated through overlapping in-

trinsic and imperfection resonances. We found a correlation between the tolerable strengths of in-

trinsic and imperfection resonances e;„t and E''
p

that is, at smaller e;„„the tolerable E''
p becomes

larger, and vice versa. To obtain a larger tolerable e; p, we suggest that the number of snakes
should be chosen according to Ns ~ Se;„t. When a large number of snakes is used in the accelerator,
the tolerable deviation of the spin rotational angle from 180' for each snake becomes more stringent.
The error in the spin rotation angle gives rise to (1) an equivalent picket-fence imperfection reso-
nance dqp and (2) an energy-dependent spin tune v, . Both of these effects may cause depolarization.
Further, when the snake axis is not properly arranged, the spin tune deviates from half-integer. In

this case, depolarization may arise from the snake resonances. Our analysis indicates that accelera-
tion of polarized protons in the SSC is technically feasible if care is taken in constructing the snakes.

I. INTRODUCTION

Recently, studies were made of the possibilities to ob-
tain polarized proton beams in high-energy accelerators,
such as the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL), and the Super-
conducting Super Collider (SSC).' These high-energy ac-
celerators, which include the Tevatron at Fermilab and
the SPS at CERN, Geneva, undoubtedly need local spin
rotators known as snakes to maintain the beam polariza-
tion during acceleration. Analysis of snake config-
urations, including the allowable tolerance in errors, is
important in understanding the mechanism of depolariza-
tion during acceleration.

To obtain a polarized beam of protons at high energy,
we must first prepare an intense polarized beam and then
accelerate it through many depolarizing resonances in a
circular accelerator. Depolarization resonances arise ei-
ther from the vertical betatron motion or from vertical
closed-orbit errors. The polarization of the beam is pre-
cessed away from its vertical direction by the existing
horizontal field of the quadrupoles in the accelerator.
Normally, the horizontal fields in the quadrupoles give a
small kick to the direction of polarization, unless a reso-
nance condition is encountered. This resonance condi-
tion occurs when the spin-precession frequency y6
equals the frequency of the depolarization kick, where y
is the Lorentz factor and 6 = (g —2) /2 is the Pauli anom-
alous magnetic moment. At resonance, the depolariza-
tion kicks are coherently in phase each time particles
pass through the quadrupole. There are two types of
depolarization resonances: (I) intrinsic spin resonances
due to the vertical betatron motion, and (2) imperfection
spin resonances due to the vertical closed-orbit error.
The intrinsic resonances are located at K =kP +v„

where k is an integer, and P and v, are the superperiod
and vertical betatron tune of the machine, respectively.
The strengths of the important intrinsic resonances in-
crease with energy like +ye~, where e~ is the vertical
normalized emittance eN, the Courant-Snyder invariant.
For SSC, the intrinsic resonance strength is about 5 at 20
TeV and e&=10~ mmmrad.

Imperfection spin resonances, due to errors in aligning
the machine, are located at K =integer. The strength of
an imperfection spin resonance is, in general, proportion-
al to the closed-orbit error. The relative strength of these
resonances depends on the particular distribution of ran-
dom dipole errors in the machine. However, because of
the quasiharmonic betatron motion of particles in the cir-
cular accelerator, the closed-orbit distortion is more sen-
sitive to the error harmonic nearest to the vertical beta-
tron tune of the machine. Therefore, the important im-
perfection spin resonances are located next to the impor-
tant intrinsic resonances. Fortunately, these imperfection
resonances can be controlled by a scheme for proper
closed-orbit correction, which is needed for obtaining a
proper orbital dynamical aperture, within which particles
under the influence of higher multipoles can be confined
in the storage mode. The distribution of the imperfection
spin resonance will depend on the methods of closed-
orbit correction. Nevertheless, the important residual
imperfection resonances will still be located next to the
important intrinsic resonance (see Sec. II for details).

Since there are both important intrinsic and imperfec-
tion spin resonances in a circular accelerator, it is useful
to address the question of overlapping resonances.

Recently we made an extensive study of the e8'ects of
the snake configurations on the spin resonances. %e de-
rived some simple analytic formulas for the strength and
location of the dominant spin resonances which depend
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on the lattice design of the accelerator, the beam size, and
the beam energy. A statistical analysis of the strength of
the imperfection spin resonance was made. In this paper
we address the question of some basic features of the im-
perfection resonance after closed-orbit corrections are
made.

We also analyzed the snake configuration and the scal-
ing law of the minimum number of snakes versus the spin
resonance strength as defined in Ref. 4. For a single in-
trinsic resonance the maximum strength of spin reso-
nance ( e, ) that can be suppressed by a properly chosen
snake configuration (away from low-order snake reso-
nances), follows the simple scaling law

arcsin(~cosmv, ~'~ )
(e, )= Ns

7T

where v, and Ns are the vertical betatron tune of the
machine and the number of snakes, respectively. The
physics of this scaling law is simple: when the spin reso-
nance strength approaches (e, ), the spread of the spin
tune overlaps the resonance position. Depolarization
occurs because of the multiple crossing of the resonance.
Numerical tracking results agree with Eq. (1). For a
given accelerator, the resonance strength is known, and
one can use Eq. (1} to obtain the minimum number of
snakes required. However, in a preliminary study we
showed that overlapping intrinsic/imperfection spin
resonances would easily cause depolarization at
e;„,= (e, ), that is, at the critical resonance strength, the
polarization will be easily lost if there is an imperfection
resonance nearby. Further studies of the overlapping in-
trinsic and imperfection resonances are needed.

Besides overlapping intrinsic and imperfection reso-
nances, the tolerance of snake imperfections is an impor-
tant issue. There are two types of snake imperfections:
(1) the precession angle is not exactly 180'; and (2) the
precession axes of the snake is not in the proper orienta-
tion. The first type of imperfection, is equivalent to the
imperfection resonance at each integer. Vfe thus expect
to obtain similar results as those of the overlapping in-
trinsic and imperfection resonances. In addition, both
types of imperfections give rise to a deviation of spin tune
v, from the desired —,'. Thus, high-order snake resonances
may appear.

This paper addresses the tolerance of such imperfec-
tions: (1) the imperfection spin resonances, due to error
in the particle closed orbit, (2) the error in the spin-
rotation angle of each snake, and (3) the error in the
spin-rotation axis of each snake. We organize our paper
as follows. In Sec. II we evaluate the strength of the im-

perfection spin resonance before and after the closed-
orbit correction. In Sec. III, we study the overlapping in-
trinsic and imperfection resonances, and discuss the scal-
ing property. In Sec. IV, we explore the tolerance on the
snake imperfections. The conclusion is given in Sec. V.

II. THE IMPKRFKinON SPIN RESONANCES

2f ikg(z)

zco(s)=p,' (s) g 2
k = integers z

with

(3)

tp(s) = J
Vz z

J 2rrRpi/2
5B

o
z (5)

where p, (s ) and tP(s ) are the vertical betatron amplitude
function and the betatron phase. 68 is the dipole error
in the accelerator. The closed orbit zco(s) in Eq. (3) is
more sensitive to the harmonic at k =+[v, ], the nearest
integer to the vertical tune v, of the accelerator.

Substituting Eq. (3}into Eq. (2), we obtain

Following Eq. (3.1) of Ref. 4 (see also Ref. 2}, the spin
resonance strength is given by

yG 2~g M, /t}x
~a=

2
ze'~eds, (2)

2m o Bp
where z is the vertical displacement from the center of a
quadrupole and BB,/t}x is the quadrupole gradient. Bp
is the magnetic rigidity of the particles in the accelerator
and yG is the precession frequency of the spin about the
vertical axis in one turn around the accelerator in the
coordinate system defined in Ref. 4. 2mR is the cir-
cumference of the accelerator. ex is the resonance
strength of the harmonic K, and 8=s/p is the particle's
rotational angle around the accelerator.

The vertical displacement z of a particle is composed of
two parts: (1) the closed-orbit displacement zco due to
error in dipole field or to misalignment of the quadrupole
and (2) the betatron oscillation displacement. The in-
tegral due to the betatron displacernent gives the strength
of the intrinsic spin resonance, located at K =kP kv„
where P and v, are the superperiod and the vertical spin
tune of the machine, respectively. The integral due to the
closed-orbit displacement gives the strength of the imper-
fection spin resonance. Because of the betatron motion
in the particle accelerator, the closed-orbit distortion zcQ
is given by

2
yG vfk .P —1

ek = g 2exp t' (K+k)m
21T k =integers z

0M

T

K + it vg /v~
IgDp, (D) gp, (F)exp[i(K+—kv /v, )n. /MP])1/2 1/2

Vg
Xexp i K+A

vx
~iP +&,
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Equation (6) is based on the following assumptions. (1)
The accelerator is composed of P superperiods, and M
FODO cells per superperiod. (2) The dipole magnets are
located only in the FODO cell. The vertical betatron
phase advance is 2n.p, and the total betatron tune accu-
mulated through these dipole cells is vz =—MPp.
P, (D ), P, (F), gD, and gz are the vertical betatron ampli-
tude functions, and the corresponding inverse focal
length for the defocusing and focusing quadrupole, re-
spectively. (3) The insertion consists of no dipoles. The
contribution of the insertion is given by XI, which de-
pends on the P value at the interaction point and other
special properties of the insertions.

The enhancement function gz(x ) describes the
coherency of the repeated structure in the circular ac-
celerator: i.e.,

sinmXxg~(x)—: . ~N (at x=integer) .
sinmx

Therefore, the resonance strength in Eq. (6} is enhanced P
times, due to g~[(K+k )/P), at

Ii =mP+k,
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where m is an integer. At the resonance condition of Eq.
(8a), each superperiod contributes additively to the total
resonance strength. Similarly, the resonance strength is
enhanced M times at

I5—
!
I

I

I

~N- IO rnrn rnrad

I

Vg
K =rnPM+ k

V
m =integer, (gb)

where each FODO cell accumulates. In a high-energy
accelerator, there are many more FODO cells than super-
periods, i.e., M)&P. For example, M=183, P=2 in
SSC, while in RHIC M=24, P=3. The enhancement
due to Eq. (8b) is, therefore, more important than Eq.
(8a). When m is an odd integer in Eq. (8b), the effect is
even more important, due to the additive kicks of the de-
focusing and focusing quadrupoles in each FODO cell.
When m =even the contributions from the defocusing
and focusing quadrupoles in each FODO cells cancel
each other out. Thus, there are two distinct enhance-
ment peaks corresponding to m =odd, and two less pro-
nounced peaks for m =even.

Because of the betatron motion, the dominant closed-
orbit harmonic k will center around the vertical betatron
tune in Eqs. (8). The displacement of the closed orbit due
to harmonics k that are far away from the betatron tune
shall behave like 1/(k —v, ). The resonance strength,
therefore would be smaller. Figure 1 shows the
imperfection-resonance strength for SSC before and after
the closed-orbit correction by a MIcADO correction
method. In the lower part of Fig. 1 we show the
strength of the intrinsic resonance calculated with a nor-
malized emittance e&=10m mmmrad for comparison.
Note that the closed-orbit correction can reduce the
strength of the imperfection resonance by 2 orders of
magnitude, while the displacement of the closed orbit is
reduced by 1 order of magnitude. This difference means

o Jk= =Ai==~M-
5I 500 52 000 32500

yG

FIG. 1. The imperfection resonance strengths calculated for
SSC lattice with quadrupole misalignment rms error of 0.1 mm.
The top figure displays the imperfection resonance strength be-
fore the closed-orbit correction. The middle figure shows the
imperfection resonance strength after the closed-orbit correc-
tion to the rms closed-orbit error of 0.3 mm. The important res-
onance positions are given by Eq. (Sb). The corresponding in-

trinsic resonance for the normalized emittance
e„=10m mmmrad is shown in the bottom figure for compar-
isons.

that the closed-orbit correction scheme that was used is
more effective for certain harmonics than the others.

%'e can thus classify the imperfection resonances into
two categories: (1) resonance around the betatron tune re-
gion and (2) resonances in the background. The dipole
error harmonic fk, near the betatron tune region k —[v, ]
gives a large orbital distortion. Thus, the resonance
strength would be very large (see the upper part of Fig.
1}. Particles may not be stable in an accelerator with
such a large closed-orbit distortion because of the non-
linearity in the magnets. When closed-orbit schemes are
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applied, the harmonic around the betatron tune region is
minimized, that is, Eq. (3) becomes

z P)/2(s ) g Z e+q(s)
k =integers

where the pole structure of Eq. (3) has disappeared. Sta-
tistically, Zk should be nearly equal around the betatron
tune. The harmonic k far away from v„Zk should still
behave like 1/k, because of the quasiharmonic motion
of the particle. Thus, after the closed-orbit correction,
we would still expect that the harmonics k near to v, to
have a larger amplitude, Zk in Eq. (9) than those harmon-
ics far away from v, . The closed-orbit correction can de-

I

13,
' (s )Mv Zk m,„. (10)

The resonance strength generated from the closed orbit
of Eq. (9) is given by

crease markedly the resonance strength at harmonic
k —v, but cannot change the strength at harmonic k far
away from v, . Therefore, background resonances will

not be affected by the closed-orbit correction. Using a
statistical argument, we expect the rms closed-orbit dis-
placement to be given by

(z 2 ) 1/2 —pl /2(& )v/v( z 2 ) 1/2

yG P —1 I( +k
+Zkexp im (k+1(. )

k

E +kv 2/)v,
MP gD13,

' '(D) gt;P—,' '(F)exp 1' K+k
vz

n /MP

Vg
Xexp i E+k

vx

Using the estimate of Eq. (10) we obtain

r G +2(Zco ) gD
M +— 1+

(12)

A. Review on the isolated spin resonance

The spin motion can be solved analytically for a single
isolated resonance. Following the notation of Ref. 4, the
spin-transfer matrix, defined as the matrix transforming
the initial two-component spinor f(8; ) at orbital angle 8;
to a final spinor g(Of ) at Of as

For SSC, eK,„=2X10 (zco)' [m], when gD
=0.01 m ', M=183,y=20000, and v=80 are used for
the estimate. For example, when the closed orbit is
corrected to a residual error of aco=(Z&, )' =0.3

mrn, i.e., the maximum closed orbit can be as high as
4' cp —1 .2 mm, then the maximum strength of the spin
resonance is expected to be about e~,„=0.6 at 20 TeV.

The above estimate agrees will with the result from a
realistic closed-orbit correction shown in Fig. 1. On the
other hand, the background contribution should be an or-
der of magnitude smaller, i.e., ez ——0. 1 for E far away
from the conditions given in Eq. (8b). The question is the
following. What will happen to the polarization when a
bunch of imperfection resonances of the order of 0.6 are
located near to an important intrinsic resonance with
strength @=5 or more? We discuss this question in the
next section.

t21(Of 8' } t ]2(Bf 8; )

t22(Of, O, )=t;1(Of 8')

with

A, (8 —8, )f (1 a 2)1/2

A, (Of —8; )
c =arctan —tan

2
d=arge* .

Q(Of ) =t(Of, O, )f(8, ),
where the components of the matrix t(Of, O; ) are

i [c—K(()f —(), )/2]t„Of,O; =ae
[d (K+( ()f +)/()2]

(13)

(14)

(15)

III. OVERLAPPING INTRINSIC AND IMPERFECTION
SPIN RESONANCES

Since the important imperfection spin resonance is lo-
cated near the important intrinsic spin resonance, it is
worthwhile to understand the effect of overlapping reso-
nances. Let us review the essential physics on the critical
resonance strength (e, ) of Eq. (1}.

The polarization of the particle is obtained from the ex-
pectation value of the Pauli matrix o.

3 in the spinor wave
function, i.e., S=(flcrltP) and P=S3=( ([lo' )l)f)3. The
off-diagional matrix element t, 2 is the depolarization
driving term, which is proportional to b. The parameter
b oscillates with an amplitude lel/A, . For smaller reso-
nance strength, the perturbing kicks will be correspond-
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ingly smaller.
When a snake is introduced in the accelerator, the spi-

nor is transformed locally as

where b =( ~e~/A, )sin(mA /2), 4=E80+EC~+d —y„and
the quantities c and d are defined in Eq. (15). The spin
motion can then be obtained iteratively from the OTM as

P(8+)=e ' g(8 )=—&(Ibs)f(8 ), (16) T(8„+,) =t(8„~i,8„)T(8„), (19)

where the snake rotates the spin by an angle P around an
axis ns =(cosiI)s, sin(bs, 0) on the horizontal plane.
o =(o,o,oi) are the Pauli spin matrices. The coordi-
nates for the planar accelerator x, s, and z are, respec-
tively, the planar outward, the longitudinal axis, and the
vertical axis. For a fully excited snake, /=180', i.e., the
direction of spin is reversed in passing through the snake.

The snakes can be arranged in the accelerator in many
different configurations. For an accelerator with Nz
snakes, these snakes should be arranged with the condi-
tions

s
k, k+1

k =odd

Ns

X 8k, k+1
k =even

(17a)

Ns

nv, = g (
—)"yk =(j + —,

' )n, j =integer,
k=1

(17b)

—i( c —Km+ Ip2)t,2(80+2m, 80) = 2iabe- cos4, (18b)

where Ok k+, is the orbit-bending angle between the kth
and (k+1)th snakes, and ipk is the rotational axis of the
kth snake. The condition in Eq. (17a) ensures that the
spin tune v, is independent of the spin-precision frequen-
cy yG. The condition in Eq. (17b) is used to define the
spin tune v, ~

For an example with two snakes, their axes should be
chosen to be y2

—p&=n/2 The o.ne-turn spin transfer
matrix t(80+2m, 80) [called one-turn map (OTM)] is
given by

t„(8o+2m., 80) = —e ' ' (1—2b e' cos4), (18a)

1. The perturbed spin tune Q,

The perturbed spin tune Q, is given by the trace of the
OTM as

cosmQ, = —cos(y2 —y, }+2b cos(4+y, —y2}cos4

=b sin(24 ), (20)

wher e 4=K Op+ K 7T +d +1 is a characteristic of
betatron phase for intrinsic spin resonance with

y, =~/2, E—=kP+v, . When K=integer, the im-
perfection resonance, Ci is a constant (modulo 2n'). The
tune spread becomes

where 8„+,=8„+4m/Ws. Equation (19) can be solved
iteratively in powers of the strength parameter b: i.e.,

T„=T ' + T('~+ T('~+
11 11 11 11

12 12 +T12 + 12 +(1) (2) (3)

where T", ,'=O(b ') and TI'z'=O(abz' '). A set of itera-
tive hierarchy equations shown in Ref. 4 can be used to
solve Eq. (19) perturbatively. In Appendix A we describe
the iterative solution for different configuration of snakes.

Depolarization would occur when the off-diagonal ele-
ment in the spin transfer matrix T(8„) becomes large
after passing through the resonances. There are two lead-
ing sources of depolarization: (1) spread on the spin tune
and (2) the snake resonances, which are discussed below.
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1
Q, —

—,
' =—arcsinb (21)

IO
INTRINSIC +
I MPERFECTION

Figure 2 shows the spin-tune spread as the particle being
accelerated through the resonance for X&=2 and

Ns = 16. [For Ns = 16, the parameter b becomes
b=(~e~IA, )sin(nA, /Ns). ] The spin tune oscillates within
the envelope of Eq. (21). For Ns =16, the sin24 in Eq.
(20) should be replaced by Eq. (A10) shown in Appendix
A. On the other hand, the perturbed spin tune for an im-
perfection resonance is a smooth function of yG due ta
E=integer and sin24=const in the OTM.

We expect that depolarization would occur when the
perturbed spin tune overlaps with the resonance frequen-
cy at integer kv, . In such a case, the spin tune may cross
the resonance and cause depolarization. Based on the
condition of perturbed spin tune, we obtain Eq. (1), which
agrees very well with numerical tracking calculations
(Fig. 23 of Ref. 4).

2. The envelope function (S }

IO

IO 2

IO
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+ ~ 0
0 ~~

~ y ~ ~ ~ ~
0 ~ ~

~ ~

~ = eo
~

~ ~

(S)=1—8a b (22)

The polarization is obtained from the expectation value
of a3 in the spinor wave function, i.e., S= 1 —

2~&&z~ .
From Eqs. (18) and (19), polarization shall fall within the
envelope of

I04
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FIG. 3. An example of overlapping intrinsic and imperfec-
tion resonances used in the present study.

The lower part of Fig. 2 compares the tracking result
with the envelope function. The nodal location, where
t&2 of the spin transfer matrix in Eq. (12) becomes zero,
corresponds to the spin-matching condition with the
snakes.

3. The snake resonances

The tolerable resonance is considerably smaller than
(e, ) of Eq. (21},when the following conditions of snake
resonances are met: ' '

m v, klE = integer, m, l =odd integers . (23)

At the snake-resonance condition, the perturbing kicks to
the spin in the spin-tracking equation [Eq. (19)] add up
collectively, resulting in depolarization.

We note that the snake-resonance condition Eq. (23)
does not include even integer m, I, which is due to cancel-
lation of the linear driving term ( ~ ab ) (Refs. 4, 6, and 7).
When v, A —,', the cancellation disappears. The even order
of Eq. (23}, where m, i=even integers, appears. These
features are discussed in the following sections.

S. Overlapping resonances

We observed that important imperfection resonances
are always located near important intrinsic resonances.
%'e studied the overlapping resonance with the following
model. For a given isolated intrinsic resonance strength

e;„, the imperfection spin resonances are generated by
randomly misaligning the quadrupoles until the spin is
depolarized. Figure 3 shows an example of an intrinsic
resonance and its nearby imperfection resonances for a

random distribution of quadrupole misalignments. The
strengths of these imperfection resonances can be adjust-
ed by the amplitude of misalignment.

From the model, a tolerable imperfection resonance
strength e; p

can be assigned to a given intrinsic reso-
nance strength e;„,. Figure 4 shows the interrelation be-
tween the tolerable imperfection resonance e; versus
the strength of the intrinsic resonance e;„,. The results
show the characteristics of two regions of dominance.
When e;„, [or e;„,l(Nsl2)] is near (e, },the strength of
the tolerable imperfection resonance becomes very small,
which can be understood through the argument of the
perturbed spiD tune in Sec. IIIA1. When e;„, is de-
creased to 0.4, the tolerable imperfection resonance
strength e; ~ becomes larger until e; ~0.3, where the
spin depolarization is dominated by the imperfection spin
resonances. A small increase in the imperfection reso-
nance e; would result in a large reduction in tolerable
E;„t. At e;„,(0.025, where the intrinsic spin resonance
can be considered to be insigni6cant, the strength of the
tolerable imperfection resonance is increased suddenly.

In other words, we realized that the linear-order tenn,
proportional to the parameter ab of the spin transfer ma-
trix T in Eq. (19), cancels each other every two turns
around the accelerator for v, =

—,
' and K=integer (see

Ref. 4 for detail discussion). The tolerable strength of an
isolated imperfection spin resonance is, therefore, much
larger. When an intrinsic spin resonance is located near-
by, the cancellation of the linear order disappeared. A
sharp decrease in tolerable e; is seen in Fig. 4 until
e; p

~ 0.3, when the imperfection spin resonance becomes
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a superposition of dipole magnets for rotating the spin
direction 180 around an axis on the horizontal direction
without disturbing the orbital motion outside the snake,
there can be two types of imperfections: (1) an error in
the spin-rotation angle and (2) an error in the snake's ro-
tation axis.
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When the spin-rotation angle P in Eq. (16) is not 180',
the spin transfer matrix of the snake can be expressed as
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where hiI}=m —((}. Comparing Eq. (14} and Eq. (25) we
can derive the equivalent imperfection spin resonance
E'

p
due to the error of spin rotation angle as

FIG. 4. The correlation between the tolerable intrinsic and
imperfection resonance strength. See the text for further discus-
sion.

less important. The tolerable strength of the intrinsic
spin resonance can be increased until the perturbed spin
tune issue, discussed in Sec. III A 1, dominates the depo-
larization process shown on Fig. 4.

Figure 4 shows also a similar feature for Nz =16. The
physics is essentially the same as that of Nz =2. Compar-
ing the results of Nz =2 and Nz =16, we found that the
scaling property works well.

The scaling property indicates that the required num-
ber of snakes can be estimated from Fig. 4 as

Ns
(24)

IV. THE SNAKE IMPERFECI'IONS

Besides the dipole error in the circular accelerator re-
sulting from the depolarizing imperfection spin reso-
nances, the snakes themselves, used for maintaining the
polarization, may have imperfections. Because a snake is

The factor of 0.4 is chosen to increase the tolerable im-
perfection resonance strength shown in Fig. 4. The spin
becomes less susceptible to the imperfection spin reso-
nances. Based on the estimate of Eq. (24), we expect
Ns ~ Se;„,=26 for SSC (e;„, =5 at 20 TeV and the nor-
malized beam emittance of 10m. mm mrad). The tolerable
imperfection resonance strength becomes 'E

p
0 1

=2.6. The strength of the imperfection spin resonance
strength calculated from an SSC lattice is about 0.6 after
a closed-orbit correction to 0.3 mm rms displacement (see
Sec. II). The snake configuration can thus restore the
polarization after passing through the spin resonance.

The error in the spin rotation angle is equivalent to the
imperfection spin resonance at every integer with equal
strength (picket fence).

The error in the spin rotation angle also gives rise to
the spin tune oscillation about a half-integer as

cosnv, =cos(yGn )sin (27a}

for an accelerator with two snakes. The spin closed-orbit
vector n would also precess around the vertical axis.

Similarly, for an accelerator with Nz snakes, the spin
tune becomes

Ns
cosnv, = c.os(2y6n /Ns )sinS (27b)

to the leading order of b, iI}. Note that each snake is as-
sumed to contribute coherently to the total spin tune.
We expect, therefore, that the spin tune would deviate
more from a half-integer in the accelerator with a greater
number of snakes. Figure 5 shows the amplitude of the
spin tune for Nz =2 and 16. In general, the spin rotation
angle P may statistically deviate from 180' within certain
rms value. We shall expect that the spin tune would be
proportional to QNs.

The spin can easily be depolarized by (1) the spin tune,
(2) the overlapping between the intrinsic and imperfec-
tion resonances, or possibly (3} the snake resonance. Fig-
ure 6 shows the result of numerical simulation for a toler-
able spin rotation angle P versus the strength of the in-
trinsic spin resonance. For N~=2, the effect of tune
spread due to the error in the snake rotation angle is
small. The characteristics of Fig. 6 are similar to those of
Fig. 4. The corresponding equivalent imperfection reso-
nance E'

p
is also similar to that of Fig. 4.

Figure 6 shows also the tolerable error in the spin rota-
tion angle for Nz = 16. The tolerable error is much small-
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er, which may be due to the large tune spread for a large
number of snakes in Eq. (27b) and Fig. 5.

B. Errors in the snake axis
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The axis of spin rotation in each snake in the accelera-
tor should be organized according to Eq. (17b), which
gives a half-integer spin tune. However, when the spin
rotational axis does not satisfy Eq. (17b), the spin tune
would deviate from a half-integer value. By adjusting the
relative rotational axis, one can change the spin tune be-
tween an integer and half-integer.

Let us consider an example of two snakes, where
y&

=0' and qz can be adjusted for 0' to 90'; mv, =y2 —y, .
The OTM is given by

l.o
Na= l6
Ly =60

K = 949.8I

4K & 0.4

t»(8n+2n. , 80)= —e '(1 —2b e' cos4),
—&(e—It' n+ y&)t,2(80+2@,80)= 2iab—e ' cos4 .

(28a)

(28b)

Applying the iterative equation, Eq. (19), we can obtain
the nth OTM. Sum up terms which contribute coherent-
ly, so that one can obtain again the condition of snake

l.p
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FIG. 5. The spin tune v, as a function of yG for the error in
spin rotation angle b P. The spin tune can be obtained perturba-
tively from Eq. {27b). 0.50 50
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FIG. 6. The tolerable error in the spin-rotation angle b,P is
shown as a function of intrinsic resonance strength. Note that
the tolerable error is greatly reduced for a large number of
snakes due to spin tune modulation of Eq. (27b).

FIG. 7. For accelerators with two snakes, the spin tune is
plotted as a function of the spin rotation axis q& with g&=0.
The position of the snake resonances are also shown. In the
lower part of the figure, the polarization after passing through
the resonance shows also the effect of the snake resonances.
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resonances. Thus, by changing y2 relative to yI, we ob-
serve some snake resonances. '

Figure 7 shows the final spin (S ) after passing
through a resonance at K =integer+0. 81, with a=0.3 as
a function of the rotation axis angle Pz of the second
snake (with respect to the radially outward direction).
The axis angle for the first snake is chosen to be yi =0,
i.e., radially outward direction. The corresponding spin
tune is given by the upper part of Fig. 7, where the snake
resonances apparently exist. For a properly chosen verti-
cal betatron tune v„ the tolerable imperfection on the
snake axis is therefore given by the occurrence of the
snake resonance. In the present example with two
snakes, we found

is needed to avoid the low-order snake resonances for
E=integer+0. 81.

V. CONCLUSION

We have analyzed the tolerance of the imperfection er-
rors in the large hadron accelerator with snakes, and then
calculated the imperfection resonance strengths for SSC
before and after the closed-orbit correction. Our results
agree well with the analytic formula with statistical as-
sumptions. There are two types of imperfection reso-
nance after closed-orbit correction, that is, imperfection
resonances near the betatron tune, and background im-
perfection resonances at harmonics far away from the be-
tatron tune. The strength of the imperfection resonance
near the important betatron intrinsic resonance is about
0.6 at 20 TeV after the global closed-orbit correction to a
rms closed orbit 0.3 mm. The background imperfection
spin resonance is of the order of 0.1, which can be con-
sidered to be made up of isolated, small, irrelevant reso-
nances.

We studied also the overlapping intrinsic and imperfec-
tion resonances. The tolerable imperfection and intrinsic
resonances show the characteristics of two regimes. At
e~zl(Ns/2) &0.3, the tolerable e;„, is small. Similarly,
at e,„,/(Ns/2) & 0.4, the tolerable e; is small. Thus, the
criteria for the number of snakes should be Ns & Se;„, [Eq.
(24)]. The tolerable e; becomes considerably larger in
this region.

We then analyzed the errors on the snakes. The error
on the spin rotation angle in the snake can ve viewed as
the imperfection resonance. The rotation angle error b,P
can be cast into an equivalent imperfection resonance.
The characteristics of Fig. 6 are similar to those of Fig. 4.
However, the tolerable error on the spin rotation angle
decreases with an increasing number of snakes, possibly
due to a large tune spread. Thus, the spin rotation angle
is an important consideration in designing the snakes.

Besides the error in the spin rotation angle, the snake
axis may not be properly designed. Then, the spin tune
would deviate from a half-integer. The limiting feature
arises from the snake resonances. Our study shows that
the spin tune should not deviate from —,

' by more than —,', .
The corresponding tolerance for the snake axis is about
12'.

Based on our analysis we believe that there is no major
difficulty for having a polarized beam in the SSC, where
the expected intrinsic resonance strength will be e;„,=5
at @~=10m. mmmrad and e; =0.6 after orbit correc-
tion at 20 TeV.

The number of snakes needed is about )Vs=26. With
this number, the effect of the overlapping imperfection
resonances should be small (Fig. 4). The spin rotation an-
gle of each snake is important to maintain polarization,
and the snake rotation axis should be properly designed
to avoid snake resonances.
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APPENDIX A: SPIN-TUNE SPREAD FOR
A LARGE NUMBER OF SNAKES

2m
XS(y, )t 8O+, 80

s
(A 1)

where S(y;) is given by Eq. (16) and t[8o+(n+1)2a/
Ns, 8O+n 2m/Ns] is the spin transfer matrix between the
nth and the (n+1)th snakes given by Eq. (14). The com-
ponents of Eq. (A 1) become

t» 80+,8O = —e ' ' (1 2b e' cos4—), (A2a)
s

4m
~12 ~0+ ~ ~0

s

2Em.= —2iab exp —i c — +y2 cos4,
s

(A2b)

where 4=K8o+2Em/Ns+d —y„b =(~e~/A. )sin(mA/

Xs ), a = ( 1 —b )', and the quantities c and d are defined
in Eq. (15).

The perturbed spin tune Q, can then be obtained from
the trace of the OTM. To obtain the OTM we shall
evaluate the spin transfer Inatrix through the spin track-
ing equation of Eq. (19). When the number of snakes Ns
is large, the OTM becomes rather complicated. We can
however solve Eq. (19) perturbatively by using the set of
hierarchy equations

There are many different snake configurations which
satisfy the basic requirement of Eq. (17). The spin motion
~ould depend on the snake configuration. The depen-
dence may render us to a proper choice of the snake
configuration. In this appendix we shall study the depen-
dence of the perturbed spin tune in different snake
configurations.

The spin transfer matrix at the end of a pair of (q&z, y, )

snakes is given by

4m 4m. 2m
8O+ 80 =S(tp2)t 80+ 80+

s Ns Ns
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7 (0)(y )
— 1 2 7 (0)(y )

T'"(8 ()=—e ' ' T"'(8 } —2iabe ''cos(KB +d)T', ,"(8 ),
(A3a)

(A3b)

TII'(8„+))=—e ' ' T'"(8„}+2be " ' 'cos(KO„+d)T))'{8„)+2iabe ''cos(KB„+d)T',z" (8„),
(A3c)

T' '(8 ()=—e ' ' T' '(8 )+2b e " ' ' cos(KB„+d)TIq'(8„)—2iabe 'icos(KB„+d)T"'(8 )

(A3d)
with c =c 2K'—INz+yz and d =d+2Krr/Nz —p).

1. Snake configuration with snake superperiod P& =N& /2

The most simple snake configuration corresponds to Ns/2 identical pairs of (y2, p() snakes such that

v, =N& ( re rp) ) /2—n'=j +—,
'

or

The corresponding snake superperiod is Ps =Nz/2. Because of the repeated structure of these pair of snakes we can
solve Eq. (19) perturbatively as

(0) '"~" ips

TIz'(8„+))=(—)"+'2iabexp i c—— +p2+ n
s s

g exp i
m=0 s

2m Kv 2m'.K
cos 4+ (A4b)

(n+1)mv,
TI)'(&„+))=(—)"2b exp i-

s
g exp i

m=0
@+2mKm

Ps
2mKm

cos 4+
s

T

(n —1 Hrv,+( —)"4b exp i- exp
Ps =0

277m v
1

Ps
@+2(m+1)Km

cos 4+ cos 4+
s I =0 s

—a~v, I/PsXe
Keo+2K')r/Ns+d rP). The first-order term T",2' in Eq. (A4b) can be summed easily to give

(A4c)

T)2 =( —)" 2iabexp i c — —++2 —.exp i @+(1) n+1 ~ ~ K~ ~ . n 77K

Ps Ps kn+1
Ps

K —vS

's
+exp —i 4+ n vrK

(A5)
Ps

where the enhancement function g„(x } is given by Eq. (7). At the conditions (K+v, )/Ps =integer, which is the first-
order snake resonance, the off-diagonal matrix element T,2 becomes larger. The spacing and the width for the first-
order snake resonances increase linearly with Ps. One should choose v, and Ps properly to avoid all the important spin
resonances, which depends solely on the lattice design of the accelerator.

The perturbed spin tune can be obtained from the trace of T»(8~ ) of the OTM. From Eq. (A5) with n+1=Pz we

obtain then

cosmg, =+b gp sin 24+2Kvr2K

s
2K'
P,

+—,
'b' 0~, —)

K+v,
&s

sin[24+ (Pz+ 1)/n v, IP&+ (Pz —1)rrK /Pz] cos[(Ps+ 1)/m (K+v, )Pz ]'+
sin[m(K —v, IP&] sin[w(K+ v, IPs ]

+0~,-( P,

cos[(Ps+1)/n(K —v, )Pz] cos[24 —(mv, IP&)(Ps+1)+(SKIP&)(Ps—1)]+
sin[ n.(K —v, ) /Ps ] cos[m(K+ v, )IPs]

2K
Pp —) pS s

cos{24+2Km.—[m{K—v, )]IP& I cos(2 P+3(n.K/PE —m.v, /Ps)
sin[m(K —v, )IPs] sin[n(K+v, )IPs]

(P~ —1){cot[a(K——v, )IPs]+cot[a(K+v, )IPs]I (A6)
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Thus the perturbed spin tune spread will be large at the conditions 2K/Ps=integer and (K+v, )/Ps=integer. The
large tune spread in Eq. (A6) may not necessarily give rise to spin depolarization. The spin motion with large tune
spread will be more susceptible to the errors discussed in the paper.

When the snake resonance conditions (see Sec. III) are encountered, the TIz' term in Eq. (A3b) will be large. There-
fore the T", ,

' term in Eq. (A3c) will also be greatly influenced.

2. Snake configuration with snake suyerperiod Pz = 1

The other possible snake configuration has Pz = 1 by using snakes with different rotation axes y„, n = 1,%&. Without
loss of generality we assume that

2VS 7T

g„=(n —1), n =1,. . . , Ns .
S

(A7}

Let P =Ns/2. The hierarchy equation (A3) can be solved to obtain the matrix element of the one-turn map as

TI2'(8o+2rr, 8o) =( —
) 2iab(p

K —vS

P
I( m P —1

exp i c —— +v, rr cos 4o+ (K —v, )m (AS)

, -I~V,
TI", (8o+2m, 8o)=( —} 'e '2b g exp i 4o+

m=0

2m(K —v, )m

P
2m(E —v, )m

cos 4p+

P —1

+2 g cos 4o+
m=0

2m(K —v, )m ~ —1 2l(K —v,)n.
g cos 4o+
1=0 P

(A9)

where @o=K8o+2Kn/Ns+d. The enhancement factor gp[(K —v, )/P] in the off-diagonal matrix element T,2 of Eq.
(A8) indicates that the depolarization would easily occur at (K —v, )/P =integer. Tracking results, shown in Fig. 25 of
Ref. 4, display this feature clearly.

From the trace of the diagonal matrix element T» of Eq. (A9} we obtain the perturbed spin tune Q, as

cosnQ, =+b gp
2(K —v, ) 2(p —1)

P
sin 2@o+ (K —v,)n' (A 10)

One interesting feature of Eq. (A9) is that the second term does not contribute to the perturbed spin tune. The spin
tune in the snake superperiod 1 would behave like that of the accelerator with two snakes, provided that the condition
2(K —v, ) /P = integer is avoided.
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