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Calculation of the heavy-quark potential at large separation
on a hypercube parallel computer
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The static qq potential is measured on 24'X 10, 24'X12, 12 X24, and 16'X24 lattices at P=6.0
with high statistics. Using Wilson line operator-operator correlations, we find &0/Az ——77 and
a=0.58. This new result compares favorably with that obtained from charmonium experimental
data, but is significantly different from many previous lattice calculations. Our calculations use a
hypercube parallel computer which in its full configuration performs at 0.6 gigaflops on this applica-
tion.

I. INTRODUCTION

Despite the large amount of CPU time spent on super-
computers, calculations' of static (heavy-)quark poten-
tials in lattice QCD (Ref. 10) are far from conclusive: the
string tension does not scale according the continuum
scaling law of two-loop perturbation theory, so that this
physical parameter cannot be uniquely determined.
Moreover, the lattice data does not fit the charmonium
experimental result.

One of the reasons often suggested for these failures is
the presence of the deconfinement phase transition" near
the P value where these simulations were carried out so
that the static potential is strongly affected by the excita-
tions of higher-energy states. This argument has
difficulties in explaining the observed scaling violation in
Refs. 3, 4, and 6 where the size of the lattices are so large
that the effective temperature due to the finiteness of N,
(the shortest dimension on any lattice) is far below the
transition temperature. Many of the large lattice high-
temperature studies' show that the gauge field system
behaves much like a zero-temperature system until P is
very close to P, . With P about 0.15 below the transition
temperature P„ the system is essentially in the low-
temperature state. Thus, the finite-temperature effects in
string tension calculations do not seen large enough to
cause the scaling violation. For this and other reasons
more complex operators have been developed. These
"fuzzy" or "smeared" operators enhance the overlap of
wave functions with the lowest-energy state; i.e., they en-
large c& in comparison with c2,c3, . . . , in

pling constant. ) These enhancements, however, do not
directly solve the difficulty of scaling of the string ten-
sion o.

A closer look at these studies reveals that most previ-
ous parameters were extracted from potentials at fairly
short distances R in the range from 2a to 8a, where a is
the lattice spacing. In a lattice regularization, the
momentum cutoff' is ala, so a distance of 2a is quite
short. The wave functions at these distances are severely
distorted by the lattice discretization of space-time.
However, these short-distance points dominate the y fit
because of the exponential decay of the correlation func-
tions with increasing separation while the statistical er-
rors remain fairly constant. Thus the extracted potential
is dominated by the physics at R =2a-4a, rather than
the desired long-distance physics.

These observations lead us to consider the possibility
that previous estimates of the string tension may not cor-
respond to the correct asymptotic value as larger dis-
tances are probed. [Here we mean the lattice potential
V(R) at large distance R, not just large lattice sizes. ] In
fact, looking back at the history of the value of the string
tension, we see that it has decreased from the first esti-
mate by Creutz et al. ' in 1982 of v'o /At =167 to about
90 presently ' (at /=6).

By concentrating on the physics at P=6, and using
data from four different large lattices with sufficiently
long runs, we found that the asymptotic form Eq. (2) sets
in at around R =4a. With these more stable fits, we have
extracted reliable parameters.
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is the linear plus Coulomb potential. (Vo is the self-

energy of the quark and the antiquark and a is the cou-

II. THE SIMULATION

We have conducted a series of large-lattice pure gauge
@CD simulations on a new generation of hypercube
parallel supercomputer —the Mark IIIfp (Ref. 19) built
by Caltech/JPL. In this first paper we concentrate on the
physics at P=6. The lattices used in our simulations
were 24 X10, 24 X12, 16 X24, and 12 X24 with runs
of typically 20000 sweeps (see the first two columns of
Table I). We chose X, as the shortest direction on the
lattice and N, as the longest. We used the Cabibbo-
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TABLE I. Lattice sizes, number of sweeps, the string tension
extracted from plane-plane correlation cTpp and the string ten-

sion and coupling constant extracted from line-line correlation
oa and a.

Size

24'X 10
24'X12
12'X 24
16'X24

Sweep

16 600
19 600
20000
16000

~pp

0.034(3)
0.033(4)
0.033(3)
0.035(5)

0.031(2)
0.033'
0.036(4)
0 035'

0.69(6)
0.54(6)'
0.47(8)
0.54(10)'

'Because of the weakness of the signal, a reliable fit of the line-

line correlations to obtain a and cr together is impossible. We
instead fit them by fixing 0 to the value obtained from fitting the
plane-plane correlations and extracting these o. values from the
line-line correlations.

Marinari pseudo-heat-bath method for updating the lat-
tices. By using the multihits variance reduction tech-
nique' for the measurements, we were able to determine
the qq potential fairly accurately at large distances up to
R =10a.

We calculated the Wilson line (line-line) correlation
function

Ce(R)=Re Z )y(x, y, z))y (x,y, z+R ))
x,y, 2

(3)

where the Wilson line W(x,y, z) is the trace of the prod-
uct of the gauge field links in the t direction. Ctt(R) is

then fitted to

Nt V(R)NI V(NzR)Ctt(R)=constX(e ' +e ' ' ), (4)

where the second exponential comes from the periodicity
in the z direction. We also computed the zero-
momentum (plane-plane) correlation function' '
Czz(R) Re(J Z )V(xyz))y (x',y', z+R ))

I yx,y, zx, y

(5)

and fit this to Eq. (4) with a=0 in Eq. (2). This zero-
momentum correlation gives a better fit, as can be seen in
a simple analog with one-particle quantum mechanics.
In the energy spectrum of the one-particle system, above
the mass gap, there usually exists a continuum band of
energy levels due to the non-zero-momentum states. This
implies that E„Ez, F3, . . . in Eq. (1) are close to each
other, thus making a clean separation of the first term
difficult. However, one can first sum over the spatial
components of the wave function to project out the zero-
momentum state, so that cz, c3, . . . in Eq. (1) become
zero until the next discrete state is reached. Equation (1)
then contains only terms from well-separated energy
states and one can more easily isolate the first term.

Using Wilson line correlations to extract the potential
has two advantages over the use of Wilson loops. First,
the fitting is straightforward and clean, as shown in Eq.
(4). Second, the self-energy contribution Vo to the corre-
lations is a constant —because the quark loop length is a
constant (2N, ) for Wilson lines —and can therefore be
clearly isolated from the potential contribution V(R) as
the separation R varies. The disadvantage with Wilson

line correlations is that they are difficult to measure in
practice because the loop sizes are large: N, Xz, for
z=2 —12 on our lattices. Because of their exponential
decrease in value, these large loops have a very small
signal-to-noise ratio. To reduce this noise, sufficiently
large statistics alone is not enough, since the noise, or sta-
tistical error, decreases only as I/&N, so that an order
of magnitude longer run only reduces the noise by about
a factor of 3. Therefore we used the variance reduction
technique' and found that it works very well. The idea
is simple. Given a fixed environment, instead of taking
one random sample, one can take many samples and
average them. This averaged quantity will have smaller
random fluctuations. In our case, the variance reduction
was achieved by doing multiple updates (hits) of a given
link while keeping its environment fixed and then averag-
ing these updated values as the measured link value.
With a five-hit average, we found that the statistical er-
rors decrease by about a factor of 5 —10. This is
equivalent to 25 —100 times increase in computer simula-
tion time. With this technique we were able to measure
the line-line correlation at separation R =12a with an ac-
curacy of about 30%.

We make measurements of both the line-line correla-
tion CII and the plane-plane correlation C~~ every five

sweeps of updates. In order to check the statistical in-
dependence of these successive measurements we com-
puted the autocorrelation length'

)(,=1+g 2 1 — g(t),
M

+[A (t +i) A][A—(i)—A ]
g(t) =

+[A(i)—A ]

using all M data points. For the single Wilson line ( W),
k is about 100 measurements, or 500 sweeps. For the
line-line correlations X=15 sweeps and for the plane-
plane correlations A. =50. The larger A, for the plane-
plane correlation results from the larger extent of these
operators. All the errors below are calculated by first
computing the standard uncorrelated error and then mul-
tiplying by &t(, to take into account the autocorrelation.

The reason that the line-line correlation, which is of
the form ( W (x) W(y) ), is much less autocorrelated than
the single Wilson line can be explained by their different
physical interpretations: the former relates to self-
energy, i.e., the quark world line absorbing virtual gluons
emitted by itself, while the latter has in addition the ex-
change of gluons between the two opposite-going (quark
and antiquark) lines. The slow oscillations of W(x) and
W(y) could be nearly phase coherent —they are highly
correlated —so that these fluctuations cancel out in
( W (x)W(y)) allowing the latter to progress with the
faster dynamics of multiple-gluon exchanges.

The data points are plotted in Fig. 1. Two general
features are clear. (1) As N, gets bigger, the signal-to-
noise ratio gets smaller because the quark self-energy
diverges, leading to ( W) -exp( —self-energy)~0. (2)
The plane-plane correlations have better signal/noise
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FIG. 1. The line-line, C«(R), and plane-plane, C»(R), correlation functions are shown as points and the fit as a line for various
lattice sizes.
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than the line-line correlations because more components
are involved in the average.

III. DATA ANALYSIS

As we generate more and more data with high statis-
tics on many different lattices, fitting this data to the
theoretical model becomes a challenge —consistency and
parameter stability have to be systematically examined.
Consistency means that the same fit criteria is applied on
different sized lattices. Parameter stability means that
the fitted parameters should be stable against dropping
short-distance points from the fit.

It should be noted that the data points at different R's
are correlated. We performed the y fit which included
correctly these correlations i.e., we minimized

g o r.i t d=g(y ),k[ci(j) C (j)][ci(k) C.(k)] (8)
j, k

where C, are the theoretical predictions from Eq. (4) and

C, are measured in the simulation. The error matrix,

yjk, is related to the errors e, ek of C(j),C(k) through

yjk =pjkejek. pjk are the standard correlation coeffi-
cients between C(j),C(k):

g[C"(j)—C(j)][C"(k)—C(k)]
(9)y[c"( ') —c(j)]'y[c"(k)—c(k)]'

I

where C"(R) stands for the ith measurement of C(R).
The fit is good in general, with the g per degree of free-
dom —1.5. We also tried the usual y fit by ignoring the
correlation between C(j),C(k) so y k =5jkej ek The.
fitted parameters change less than 1%, which is com-
pletely within the error bars. In fact, the errors increase
from -2% to —10%. When we systematically drop
short-distance points from the fit, the fitted parameters
fiuctuate in the range of 10%. Thus this systematic error
is more realistic and is quoted in Table I.

We first consider C on the 24 X 10 lattice, Fig. 1(a),
because it has the best signal/noise ratio and because
only two adjustable parameters (string tension and the
normalization constant) are involved in the fit. The fit is
quite stable as we drop R =1,2, 3,4 points from it; see
Table II. Plane-plane correlations on other lattices ex-
hibit similar fitting stability; Figs. 1(c), 1(e), and 1(g). For
the line-line correlations, the fits start becoming reason-
ably stable around R =4. One can see that on the two
lattices 24 X 10 and 12 X 24 where the signal/noise ratio
is good, the values of 0 obtained from C and CII are

fairly close (Table I). This is significant, because in most
previous calculations of quark potential using Wilson line
correlations the authors assume that at these distances
simulated (R =3—10) the asymptotic behavior of
o

I& =0&~ sets in (where crII is obtained from C&l and 0.

from C~~). The signal/noise ratio for C&l on the 24 X12
lattice is as good but the fitted parameters drift quite a bit
as short-distance points are dropped. For the 16 X24
lattice, CII is very noisy and reliable fits could not be ob-
tained. Fortunately, good fits for C~~ are obtained on
these two lattices. To extract the coupling constant a, we
fit CII by fixing cr to the value obtained from the C fit.
The best-fitted parameters are listed in Table I.

From Table I one can see that the six independent o's
are close to each other. This suggests that finite-size
effects on these fairly large lattices are small. The a' s
differ about 20%, refiecting the difficulty in an accurate
determination.

IV. CONCLUSION

By a systematic study of quark potentials at large dis-
tances at P =6, we find

O.a2=0.033, a =0.58 . (10)

These numbers were fairly insensitive to the lower cutoff
in R and are consistent on all four different lattices we
simulated. The string tension, converting to the dimen-
sionless ratio

100

C4

50

I I I I

I
I I I I

I
I 1

I

16g32
16 x32
16 x32
16
1g x8
8 x16

=77
AL

is about 20% smaller than previously estimated. The
coupling constant a is almost twice the transverse fiux-
tube calculation' result of a/12=0. 26, which is the
value obtained from previous simulations. ' Thus, our
result indicates, as also noted in Ref. 17, that the origin
of the Coulomb term is perhaps more complicated than
that provided by the transverse Aux picture. These
differences can be attributed to the larger distance points
we have used in our fits. In fact, if we fit only Cz (2 —8)
or C„(2—8) on the 24 X 10 lattice, we obtain results con-

TABLE II. String tension obtained as a function of fitting
range Ro —R,„. The data indicates that the fits become stable
at R0-4.

Size C(R) 2-12 3—12 4—12 5 —12 0

24'x10
24 X12
12'x 24
24'x 10

Cpp 0 0343(22) 0 0338(25) 0 0345(30) 0 0363{32)
Cpp 0 0428(35) 0 0376(33) 0 0333(38) 0 0344(4 1 )

Cp~ 0.0415{22) 0.0374(25) 0.0331(27) 0.0311(31)
CII 0.0413(15) 0.0383(17) 0.0311(18) 0.0303(23)

50 100
number of nodes

150

FIG. 2. Speedup of the program on the 128-node Mark IIIfp
for fixed total lattice sizes.



2916 H.-Q. DING, C. F. BAILLIE, AND G. C. FOX

sistent with the previous work.
%e can compare our calculations to the experimental

measurements of a and o. Charmonium is a natural sys-
tem to look at since for it we expect the heavy-quark po-
tential approach to be reasonable. In fitting charmonium
data to a Coulomb plus linear potential, Eichten et al. '

estimated that a=0.52 and @=0.18 GeU . This com-
pares favorably with our estimate: a=0.58 and cr =0.15
GeV, assuming Amom =420 MeU. Note that the previous
simulations gave a =0.3.

This work is based on about 1300 CPU hours on the
32-node Caltech/JPL Mark IIIfp hypercube' which has
a performance roughly twice that of a Cray X-MP pro-
cessor. The codes were first developed by Jon Flower and
Steve Otto on the Mark II hypercube computers. After
using Weitek assembly language for the matrix calcula-
tions and much of the update, and with the use of opti-

mized communication routines, the program updates a
link matrix in 32 psec, which is equivalent to a sustained
speed of 150 megaflops on a 32-node hypercube. In Fig.
2 we present the performance of the 32- to 128-node
Mark IIIfp hypercube as the speedup of the parallel sys-
tem compared to a single processor node. A single node
runs at 6 megaflops for our algorithm so the speedup of
100 in Fig. 2 for a 32 X16 lattice on 128-node system
reflects a performance of 600 megaflops. The hypercube
has been shown to be a general purpose scientific comput-
er for many applications ' and this figure illustrates the
good performance it achieves on this particular computa-
tionally intensive application.
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