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The scaling solutions of the relativistic hydrodynamics are expected to play an important role in
describing the expansion stage of a quark-gluon plasma which may be formed in nucleus-nucleus
collisions at high energies. After summarizing some general properties of the scaling solutions, we
study in detail their stability against small perturbations. In some typical cases of the two-
dimensional scaling solution it is found that (i) the scaling solution is stable if the Reynolds number
R defined in terms of the viscosity coemcients is larger than a critical value R, (=1), (ii) it is also
stable for a long-wavelength perturbation if R is small enough, and (iii) it becomes unstable when R
approaches R, from below. It is also shown that these results are related to the time dependence of
the Reynolds number, the entropy density, and the temperature, and the point R =R, corresponds
to a critical instant when the heating due to the dissipative processes balances with the cooling due
to the expansion of the Quid. The stability of the scaling solution of the quark-gluon plasma is ex-
amined for typical ranges of the relevant parameters.

1. INTRODUCTION

Extensive studies have been made recently on the evo-
lution of the quark-gluon plasma (QGP) which is expect-
ed from lattice QCD calculations and will be realized in
heavy-ion collisions. Many authors have used relativistic
hydrodynamics' to describe the space-time development
of the QGP. The equations of relativistic hydrodynamics
have analytic solutions which are called "the scaling solu-
tions. " In particular, the (1+1)-dimensional scaling
solutions have been often used to describe the expansion
of the quark-gluon (or hadronic) fluid as the simplest
model, either for the perfect fluid or for the imperfect
(viscous) fluid. ' In more realistic models such as a cy-
lindrically symmetric solution with both longitudinal and
transverse expansions, ' ' the scaling solutions have
sometimes been assumed as the approximate solutions for
the longitudinal expansion. It is, therefore, very impor-
tant to answer the question whether or not the scaling
solutions are stable. If the scaling solutions are unstable,
small deviations from them will grow rapidly and they
will no longer describe the whole process of expansion.

Baym et al. ' showed that, for the perfect fluid, the
1+1 scaling solutions are stable under small perturba-
tions. In this paper we generalize their analysis and
study the stability of the 1+ 1 scahng solutions when the
dissipative processes exist. It will be shown that the scal-
ing solutions become unstable when the viscosity
coefficients are large. The Reynolds number and the en-
tropy density at the initial stage of fluid expansion play
important roles. In Sec. II we review the relativistic hy-
drodynamics briefly according to the Landau-Lifshitz for-
malism. In Sec. III we explain about the scaling solu-
tions and their properties. The stability of the (1+1)-
dimensional scaling solutions is examined in Sec. IV. The

result is applied to the massless quark-gluon fluid in Sec.
V. A summary and discussion are given in Sec. VI.
Lyapunov's method' for stability analysis is explained in
the Appendix.

II. RELATIVISTIC HYDRODYNAMICS

A. The four-velocity and the local three-frame projector

There are two typical formalisms to describe relativis-
tic hydrodynamics. One was formulated by Eckart' and
the other by Landau and Lifshitz. The four-velocity is
commonly defined by

(2.1)

where v is the velocity of the fluid and we put the light
velocity c =1. In Eckart's formalism, v is the velocity of
the (conserved) number (such as the baryon-number)
transport. On the other hand, in the formalism of Lan-
dau and Lifshitz, it is the velocity of the energy transport.
We use the latter because it is more convenient than the
former when the chemical potential p is small. '

The four-velocity (2.1) satisfies the normalization

(2.2)

In our convention, the metric tensor g)" is defined by

g = —g"=—g = —g =1 and g"'=0

for pWv . (2.3)

The sign convention is opposite the one used in Ref. 2.
It is convenient to introduce the local three-frame pro-

jector' which is defined by
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6" =—g" —u "u ' .

It has the property

u 5„=0.

(2.4)

(2.5)

where s is the entropy density. The RHS of Eq. (2. 16)
represents the entropy production. The entropy is con-
served for the perfect fiuid (r), (,~=0). On the other
hand, Eq. (2.15) yields the equation of motion

Any Lorentz four-vector V" is decomposed as wu„a'u„=vg —h„,a II'~, (2.17)

V"=u "V u +6" V

B. The equation of motion

The energy-momentum tensor is

(2.6) where w is the enthalpy density defined by w =e+p.
This equation corresponds to "the Navier-Stokes equa-
tion" in nonrelativistic hydrodynamics.

III. (M + 1)-DIMENSIONAL SCALING SOLUTION
IN ( N + 1 )-DIMENSIONAL SPACE-TIME

T" =au "u —ph"'+ H"'= T""+0" (2.7)

where e and p are the energy density and the pressure, re-
spectively. The first term T"" is the ideal part (perfect-
fiuid part), and the dissipative part (viscous stress tensor)
H" is given by

II""= r)( V"u '+ V'"u " ', 5""—V~—u ) +gh"'V~ u (2.8)

where r) and g are the shear viscosity and the bulk viscos-
ity, respectively, and V" is defined by'

(2.9)

J"=nu" +h" (2.10)

with

h"=~ nT
6'+p

2

vp
T

(2.11)

where T, n, p, and ~ are the temperature, the number
density, the chemical potential for n, and the heat con-
ductivity, respectively. The current h" is induced by heat
conduction.

Conservation of energy-momentum and that of particle
number yield, respectively,

Here we note the following fact. The factor —', on the
right-hand side (RHS) of Eq. (2.8) is chosen so that this
term is traceless. Notice that 6„"=3=the dimension of
the space. This choice reflects the physical meaning of
the shear viscosity.

The conserved number current is expressed as

Equations (2.16) and (2.17) have analytic solutions in-
dependent of whether or not ' the dissipative pro-
cesses are absent. They are called "the scaling solutions. "
They are sometimes used to describe the expansion of the
hadronic or quark-gluon matter. In this section, we re-
view the general properties of these solutions. For gen-
erality, we discuss the scaling solutions in N+1 space-
time and we use

T

V'"u "+V "u" a""V—~u—+pa""V~u2

N P (3.1)

M
7—: X Xj

j=0

' 1/2

(3.3)

The temperature T and the chemical potential p are sup-
posed to depend only on ~:

as the definition of the viscous tensor II" instead of Eq.
(2.8). We remark that, in this definition, the part which
contains the shear viscosity is traceless since 6"„=N in
N + 1 space-time.

Consider the case in which the X+ I velocity u" has a
nonvanishing time component and nonvanishing M ( ~ N)
spatial ones, depending only on x" (0 @~M) in N+1
space-time. The (M +1)-dimensional scaling solutions in
N + 1 space-time is then given by

T

x"/r for 0 @~M,u"= '

0 for M &p~N, 3.2

where

8 T"=0 (2.12) T = T(r) and p=p(r) . (3.4)

and

B„J~=0. (2.13)

It is convenient to decompose Eq. (2.12) using Eq. (2.6):

Putting Eqs. (3.2) and (3.4) into Eq. (3.1) and the N-
dimensional version of Eq. (2.11) and using the relations
(ar/ax~)=u„, (a7./ax~)=(aZ. /ar)u„and (ap/ax")
=(ap/ar)u„, we get

u„a.T'=0,
E„BT P=O.

(2.14)

(2.15)
and

(3.5)

Equation (2.14) with Eqs. (2.7), (2.8), (2.10), (2.11), (2.13),
the thermodynamical relation e+p = Ts+pn, and ener-
gy conservation yield the equation for the entropy flow:

h~=0,

where

(3.6)

nPa„su —~a" = —a,a ~ + a u. ,T T T
(2.16)

for O~p, v~M,
pv

0 otherwise . (3.7)
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NQ 8 Qp
—5p 8 P —kp BpH ~ —0 (3.&)

The equation of motion which has the same form as Eq.
(2.17) is automatically satisfied. The explicit r depen-
dence of T(r) and p(r) is determined by the entropy
equation

Equation (3.6) means that there is no heat conduction in
the scaling solutions. Furthermore, from Eq. (3.5), it is
easy to check that

wards a limiting value R during the expansion stage if
s, r), g~ T as is shown in Figs. 1 and 2. Therefore, there
is a peak in s (and hence in T) if R, ( 1 and R „)1, and
no peak if R, & 1 or R ( 1.

In Fig. 1 the ~ dependence of T, s, and R ' for M =1
and N =3 with two typical values of R, is compared with
the perfect-fluid case. For R, =9.52 which may corre-
spond to QGP (see Sec. V.), T, s, and R ' monotonically

1.0

Ms
Rz ' (3.9)

where the Reynolds number R is defined by

2(1 —M/X)rI+Mg
TS1

(3.10)

T/T 0 5

~ I ~ ~ ~ ~ ~ ~

2/3
I

T 7

1/3

1+
8a~; T,

' 2/3

Equation (3.9) with (3.10) yields the well-known results
for M =1 and X =3 (Refs. 7—12). In the case of the per-
fect fluid, R ' and hence the RHS of Eq. (3.9) vanish.
Thus the entropy density is proportional to ~™since
sr is a constant.

For example, consider the case that M = 1, X =3 with
p, =0, s =4aT (massless particles) and 4rl+g=bT
(weakly interacting massless particles), a, b =const. The
solution of Eq. (3.9) is given by '

' 1/3

0.0
0.0

s/s

A

—I y

1.0

10.0 20.0 30.0

PF
R = 9.52

R =0.5

40.0

(b)—

50.0

'1+
2

11—
'r

(3.1 1) 0.5

where T; and R; are the initial values of the temperature
and the Reynolds number at the initial proper time v. =~;.
For M =N =3 with p, =0, s =4aT, and g=b'T (b' is a
constant), we obtain

0.0
0.0 10.0

~ '~ '~ 0
I I

20.0 30.0 40.0 50.0

T I

T 7
1+ 3b'

ln
4av, T;

I

(c)

1+R; 'ln (3.12)

A nonvanishing R; ' makes the cooling rate smaller as
expected. If R, ' =0, Eqs. (3.11) and (3.12) give '

M/3

(3.13)

R =9.52

R —05
1

Bs, Ms
87 'T

(3.14)

The role of R. can be examined by rewriting Eq. (3.9}as
o.o

0.0 10.0
I I I

20.0 30.0 40.0 50.0

As is seen in this equation, the entropy density increases
if R & 1 and decreases if R & 1. When R =1, the entropy
production due to the dissipative processes balances with
the dilution of the entropy caused by the expansion of the
fluid. On the other hand, R increases monotonically to-

FIG. 1. The v. dependence of (a) temperature T, (b) entropy
density s, and (c) the inverse of Reynolds number R ' in the
scaling solution with M = I and X =3 when s, g, g~ T'. The in-
itial conditions are R, =9.52 (solid line) and 0.5 (dashed line).
The dotted line corresponds to the case of the perfect fluid (PF).
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1.5

1.0

"." PF
— R =20

(a)

0.5

decrease. For R, =0.5, T and s have peaks while R
monotonically decreases. In both cases R is infinite.

We also show the ~ dependence of the T, s, and R ' in

the case of M =X=3 in Fig. 2. It is easily seen that the
cooling is much faster than in the case of M=1 and
X =3.

IV. STABILITY OF THE SCALING SOLUTION

In this section we discuss the stability of the (1+1)-
dimensional scaling solution in (1+1)- and (3+1)-
dimensional space-time when the dissipative processes ex-
ist. The stability means that small deviations from the
scaling solutions damp through the whole development
and ensures that the scaling solutions can be realized in
realistic physical problems such as heavy-ion collisions.
Since we do not consider the transverse expansion, we
treat (1+1)-dimensional flow in (3+ 1)-dimensional
space-time as if it was the flow in (1+1)-dimensional
space-time. In our treatment, the only difference between
the two cases lies in the definition of the viscosity
coeScients as will be shown later. Our approach corre-
sponds to the work done by Baym et al. for the perfect
fluid in 1+1 dimensions (Ref. 13).

0.0
1.0 3.0 5.0

z/z
7.0

~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ e ~ ~ ~ ~ ~ ~

9.0

A. Relativistic hydrodynamics in 1+ 1 dimensions

First, we transform the coordinate variable
x"=(x,x ') =(t,z) into the proper time r and a light-
cone variable y which are defined by

2.0
~:—~ t —z andy/' 2 2 t+Z

t —Z
(4.1)

/
/

1 ~ 5
l

I

I

1.0

PF
R, =2.0

R =0.5

It is easy to check that

0

0.5 coshy —sinhy
—sinhy coshy l a (4.2)

0.0
1.0 3.0 5.0 7.0 9.0 Further, we use the rapidity 6I instead of u":

u"=(cosh6j, sinh8) . (4.3)

2.0

1.5

1.0

R, =2.0

R, =0.5

(c)

D cosh(8 —y) sinh(0 —y)
V

= sinh(H —y) cosh(8 —y) 1 t)

~ By

(4.4)

Notice that D =u"B„. Because V"u =6" B~u =6" VO,
we get

It is convenient to introduce the differential operators D
and V defined by

0.5

0.0
1.0 3.0 5.0

t/z
7.0 9.0

II" =gbF V0,

where

for M =1,N =1,
4q+g for M=1,%=3 .

t

(4.5)

(4.6)

FIG. 2. The ~ dependence of (a) temperature T, (b) entropy
density s, and (c) the inverse of Reynolds number 8 ' in the
scaling solution with M =X=3 when s, go- T . The initial con-
ditions are R, =2.0 (solid line) and 0.5 (dashed line). The dotted
line corresponds to the case of the perfect Auid (PF).

This result indicates that 4rl+g in the 3+1 case works

just like a bulk viscosity in the 1+ 1 case. In other words,
there is only one kind of viscosity in (1+1)-dimensional
space-time because of the relation V"u =b" B~u . The
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entropy equation (2.16) and the equation of motion (2.17)
are now expressed as

metric form as

D4+c, VO=c, R 'r(VO) (4.10)

and

Di~+VO= ~ (VOP+ " a~h
Ts Ts

(4 7} and

DO+c, V@=R 'r[(V 1ng}(VO)+(DO)(VO)+(VVO)],

DO+ = [(Vine)(V'8)+(DO)(VO}
Ts +pn Ts +pn where

(4.11)

+(VVO)] . (4.8)

d4=c, d lns = (at p, =0),d lnT
c

(4.9)

where c, is the sound velocity. By using this quantity in-
stead of T and s, Eqs. (4.7) and (4.8) are reduced to a sym-

From now on, we assume @=~=0 and introduce the
quantity 4 defined by

Ts f'
(4.12)

This definition of the Reynolds number is in accordance
with Eq. (3.10) (Ref. 8). We remark that Eqs. (4.10) and
(4.11) are valid not only for the scaling solutions but also
for the general ( 1+ 1 }-dimensional flows. Equations
(4.10) and (4.11) are cast into the following convenient
form:

+tanh(8 —y+8, )
B (4+8)=R 'r [cosh(8 —y)kc, sinh(8 —y)]

X t c, (VO) +[(V in()(VO)+(DO)(VO)+(VVO)] I,
where 8, =arctanhc, .

Putting into Eq. (4.13) the scaling solutions Eqs. (3.2) and (3.4) which are equivalent to

8(r,y) =y

and

@(r,y) =+o(r),
we get

=(R —1 }c
0 ] 0

0 s

(4.13)

(4.14)

(4.15)

(4.16)

From now on, the subscript or superscript zero means that the quantity is calculated using the scaling solution. Equa-
tion (4.16) corresponds to Eq. (3.14). It implies that 40(~) increases as r increases if Ro ( 1 and decreases if Ro & 1. At
the point Ro = 1, 40 reaches a maximum which corresponds to the peak in Figs. 1(a) and 1(b).

B. The stability of the scaling solutions

Next we consider small deviations of 8 and 4 from the scaling solutions. We write the solutions as

8(~,y) =y +58(r,y}

and

4(~,y}=C&0(r)+54(r,y} .

Putting them into Eq. (4.13), retaining only the lowest-order terms of 54(r,y} and 58(r,y), we get

Bc
+c, (54+58)+( I —c, )58+ 54

B~ '
By 0

(4.17}

(4.18)

=R 'c,'0

8 In/
Be

5 ln(R 1 ) 5@+ 1
5 2

B(58) R
— o 58

cp B+ $y
r

~@0 5(5e) a(58) a'(58)50+ + 'T

B7 By Bv By
(4.19}
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From Eq. (4.19) with the Fourier transformation (4.23)—(4.26) reduce to

and

5$(r,y) =$054(r,y)/c,

=f dk exp(iky)5$(r, k)

58(r,y) = f dk exp(iky)58(r, k),

(4.20)

(4 21) and

= —c"R
11 Cs 0

A, ~= —k(1 —2RQ '),
A2, =kc, (1—3R0 ' )/(1 —Ro ' ),

(4.29)

(4.30)

(4.31)

we obtain
A22= —[(1 c—)+c Ro '+3c RQ '(1 —Rp ')

5s (r, k)

i 58(r, k)

for R0%1 where

=A

5$(r, k)
11 12

i58(r, k)

5s(r, k)
Sp

i 58(r, k )

+k Ro ']/(1 —RQ ') .

Equations (4.27) and (4.28) become

5$( r, k)'p2 2k
'ar s

and

58( k) s 5s(r k)2~kc02

1+k sp

5s(r, k)
sp

(4.32)

(4.33)

(4.34)

p l 8 ln(R 'r)
ll s 0 (4.23)

A,2= —k(1 —2RQ '),
0

(4.24)

and

r

Apl =kc c Rpo o

0
(1—RQ ') (4.25)

A 22
= — (1—c, )+c, R 0

'

+c R '(1 —R '}
s 0 0

0

+k Rp' (1—Rp ') . (4.26)

For R0=1, we have

8 5$(rk)
7

Br sp

=c'.
S

8 ln(R 'r)
ac

+k' c,'—
, 0

8 in/
84

(1+k2) $5( T, k}'
sp

(4.27)

and

58(r, k)= ikc, c, ——8 In)
ae (1+k ) .

5$(r, k)
sp

(4.28)

If we put Rp ' =0, Eqs. (4.22)—(4.26) reduce to the result
for the perfect fluid obtained by Baym et al. '

If s, g~ T (and hence c, is constant), these equations
are written in a more compact form. For Rp&1 Eqs.

Now we discuss about the stability of the scaling solu-
tion. We define that the solution is "stable" if any small
deviations damp through the time development of the
solution. If the solution is not stable we call it "unsta-
ble." However, before considering the stability through
the whole process of the development, we study whether
or not the deviations grow for given Rp and k. For sim-

plicity we assume s, g~ T and c, =
—,'. This condition is

approximately satisfied in the case of the weakly interact-
ing fluid composed of massless particles. First, we con-
sider the case Rp= l. In this case the deviations damp
since —c, [1+2k /(1+k )]&0 in Eqs. (4.33) and (4.34).
Next we consider the case k =0. The two components of
Eq. (4.22) decouple, and 5s/sp damps since A „ is nega-
tive, while 58 damps if A» &0. The condition A» &0
yields Rp & R, =1 or Rp &R,'-0.58. When R0%1 and
kAO the situation is more complicated since the two
components of Eq. (4.22} do not decouple and the matrix
A depends on r. We study the stability of the scaling
solution using Lyapunov's method' (see the Appendix)
on the R p

'-k plane. The result are summarized in Fig. 3.
In the region where Rp ~ 1 (region I) the magnitude of

the deviations damps for any k. It also damps for fixed k
when Rp is small enough (region IV) and grows for fixed

Rp when k is large enough (region II). The stability has
not been confirmed in region III. As is seen later, we can
study the stability of the scaling solution through the
whole process without the knowledge of region III. One
has Rp Rp, (Rp, is the initial Reynolds number), since
R 0 monotonically increases through the expansion of the
fluid as seen in Fig. 1(c). For fixed k, the scaling solutions
move from the right to the left on the R 0

'-k plane shown
in Fig. 3. The scaling solution is stable for Rp; 1. This
is consistent with the result for the perfect fluid. ' On
the other hand, if Rp, (1, the scaling solution becomes
very unstable as Rp approaches to 1. The growth of the
magnitude of the deviations diverges like 7 as
R p ~ 1 +e for small e & 0. Therefore, the line R 0

' = 1

on the R 0 -k plane is a critical line for the stability.
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2.0

k' 1.0

I
stable

where Nf is the number of the quark flavor and a, is the
QCD coupling. If we put Nf =2 and assume a, =0.8 in
Eq. (5.2), we get a =4.05 and b =2.59. As is mentioned
in Ref. 9, a, has a logarithmic dependence on T. Howev-
er, we treat b as a constant.

Next, we discuss the relevant range of the wave num-
ber k which is introduced in the Fourier transform of
Eqs. (4.20) and (4.21). There is a cutoff at large k in the
case of the realistic fluid. Fixing r (d r=0), we get

dz= dy=tdy .
7'fiXed

(5.3)

0.0
0.0 1.0 2.0 3.0

R0
4.0 5.0 From the uncertainty principle, km, „ is roughly estimated

as

FIG. 3. The stability of the (1+1}-dimensional scaling solu-
tion examined on the Ro '-k' plane. In regions I and IV
(R, =1, R,'-0.58}, the scaling solutions are stable, while they
are unstable in region II. The stability in region III is not
confirmed yet.

The singularity at Ro=R, =1 is explained as follows.
The equation of motion for M = 1 is rewritten as

( e+p —
garou, )u „a u„=V„(p —

garou, ) (4.35)

The factor p
—(Bi'u works as an effective pressure, and

hence the factor e+p —(B~u works as an effective
enthalpy density. In the (1+1)-dimensional scaling solu-
tion with p=0, this effective enthalpy density reduces to
tv(1 —Ro ). It is positive if Ro) 1 while negative if
Ra&1. The effective enthalpy density vanishes when
R o

= 1. We also remark that the critical Reynolds num-
ber R, =1 corresponds to the peak of the temperature
and the entropy density as seen in Figs. 1(a) and 1(b).
The entropy production due to the viscosity balances
with the dilution of the entropy due to the expansion of
fluid when RO=R, .

s =4aT, c, =
—,', 4q+g=bT— (5.1)

For the values of a and b we employ the results by
Hosoya and Kajantie. Using the relativistic kinetic
theory for the QGP matter, they have obtained

V. APPLICATION TO THE QGP FLUID

A. QGP fluid

In this section we examine the stability condition of the
(1+1)-dimensional scaling solution found in Sec. IV for
the QGP fiuid. First, we set the values of the parameters
used in Sec. IV. We neglect heat conductivity for simpli-
city, and put @=0which may be well realized in the cen-
tral region (y-0) of high-energy heavy-ion collisions.
We assume the following relations which are approxi-
mately satisfied in the case of weakly interacting massless
particles:

1

(&y);„
t

(hz);„' (5.4)

where (by), „and (bz);„are the minimum scales of y
and z. It is obvious that (bz);„cannot be smaller than
the mean distance n ' between the nearest particles,
where n is the particle number density estimated as

n-
m

(5.5)

m, being the transverse mass of the particle. Then, we

get

z min

(5.6)

For e-1 GeV/fm, T—300 MeV, and t —1 —10 fm, we
get

k,„1.5-15 . (5.7)

1~Ra; or r, T; ~ (for any k) .
4a

(5.8)

If we choose the initial condition as ~;=1 frn and
T; = 300 MeV, we get Ro; =9.52 and Eq. (5.8) is satisfied.
For this value of Ro;, the development of the ternpera-
ture, the entropy density, and the Reynolds number has
already been given in Fig. 1. If we use a rather small
value of a„ for example, a, =0.3, we get Ro;='7. 22
which also satisfies Eq. (5.8). In Fig. 4 we show the re-
gion where Eq. (5.8) is satisfied on the a, r; T; plane. Th-e

scaling solution may be unstable if a, is very small. The
region of possible instability enlarges as Nf increases.

C. Region II and III

B. Region I

As seen in Sec. IV, the scaling solution is stable when it
is in region I of Fig. 3. The stability condition is given by

a = 1.75+ 1.15Nf,

1/b =
2 7 a ln(1/a) for Nf =12 0 (5.2)

The scaling solutions are unstable in region II. The
higher-order effects are important to see the behavior of
the actual solution in this region. It is not at all clear at
present whether this region is relevant to QGP. A reli-
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2.0

1.5

1.0

N =0
f

N, =2

region II.
(6) The change of the sign of the effective enthalpy den-

sity w —gB"u„at R =R, =l plays a crucial role to
separate regions I and II.

(7) The condition for the (1+1)-dimensional scaling
solution being in region I through the whole development
is given by

0.5

0.0
0.0 0.2 0.4 0.6 0.8

FIG. 4. The region which satisfies Rp; 1 is shown on the

a, -r;T, plane. The solid line is the condition R&;=1 when

N& =0. The dashed line is the condition Rp, = 1 when N~ =2.

able estimate of viscosity coeScients near the transition
point is necessary. The stability of region III may be im-

portant if k,„ is not very small.

R -(5 4k +1.7) (5.9)

As seen in Eq. (5.7), k has the upper bound. Equation
(5.9) is satisfied if Rc & (0.07-0.001). It may be possible
that, if the scaling QGP fluid is realized in region IV,
hadronization takes place before the solution enters the
unstable region II.

VI. SUMMARY AND DISCUSSION

The results obtained in this paper are summarized as
follows.

(1) We have formulated the scaling solutions of the rel-
ativistic hydrodynamics in any spatial dimension.

(2) In the scaling solution, when R ~
= 1, the cooling of

the fluid due to the expansion of the flow balances with
the entropy production which is caused by the dissipative
processes.

(3} Assuming p =a =0, we have transformed the 1+ 1

hydrodynamic equations of the viscous fluid into the
form which are convenient for studying the stability of
the sealing solution.

(4} Using these equations, we have studied the stability
of the scaling solutions against sma11 perturbations in de-
tail when the dissipative processes exist.

Further results are obtained by assuming that s =4aT,
c, =

—,', and 4 g+ g =b T (weakly interacting massless par-
ticles).

(5) For small perturbations along the two (time and
longitudinal) directions, the (1+1)-dimensional scaling
solutions are stable in region I of Fig. 3 (when

Rc « R, =1) and in region IV, while they are unstable in

D. Region IV

The deviations from the scaling solution damp in re-
gion IV of Fig. 3. The stability condition is approximate-
ly expressed as

(6.1)

q& ~QT v (6.3)

for a gas of weakly interacting massless particles. On the
other hand, our stability condition R ~

) 1 reads

r) ~3aT ~ 3g—— (6.4)

for the same situation with M =1,N =3. This inequality
is satisfied and hence the scaling solution is stable if the
inequality (6.3) is satisfied and g is smaller than 3a T r.

We remark that the critical Reynolds number R, ( =1)
is different from the one known in the nonrelativistic hy-
drodynamics in the following points. (i) The viscosity g
which is used in Sec. IV works as a bulk viscosity in 1+1
dimension. On the other hand, the Reynolds number
used in the nonrelativistic hydrodynamics is defined in
terms of a shear viscosity and the transverse motion plays
an important role for the stability of the flow. (ii) In the
nonrelativistic hydrodynamics the flow is stable (unsta-
ble) when the Reynolds number is smaller (larger) than
the critical value. This behavior is opposite to the one
which we found around R, . In this point, another criti-
cal value R,' (=0.58) which we have also found in Sec.
IV is more analogous to the critical Reynolds number in
the nonrelativistic cases rather than 8,

There are still many open questions about the stability
of the scaling solution.

(1) The results (2) and (6) mentioned above have ap-
parently different origins. There may be a deeper connec-
tion between them.

(2} In this paper, we have examined the stability up to
the lowest order of small perturbations. The higher-
order effects may play an important role in the instability
region II. The numerical calculations may be indispens-
able.

Condition (6.1) is likely realized in the massless weakly
interacting quark-gluon fluid, unless the QCD coupling
a, is very small. It is thus very probable that the scaling
solutions have a realistic meaning for the problems of
QGP. On the other hand, it is not yet clear whether or
not the stability region IV has a physical relevance for
the case of the QGP fluid.

The qualitative features of the result of Fig. 3 including
the value of R, do not change even if c, A —,

' as long as c,
is a nonzero constant.

A kinetic theory argument of Ref. 10 shows that the
following inequality should hold in order to apply the
Navier-Stokes theory:

r) ( ,'er (up —toa factor of two uncertainty) . (6.2)

This inequality is rewritten as
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(3) The effect of transverse motion should be studied.
If it is taken into account, a critical Reynolds number
which exactly corresponds to the one known in the non-
relativistic case may be found.

(4) The effect of boundary or finiteness of the fluid
should be studied further. ' '

(5) For the quark-gluon fluid the effect of hadroniza-
tion is important. In particular, it is expected that the
behavior of the transport coeScients around the transi-
tion point has a great importance for the whole develop-
ment of the system. '

(6) The stability should be checked under more general
conditions; e.g. , p@0, ir&0, more general equation of
state, etc. It is also very interesting to study the stability
of the scaling solution for general M and N, in particular,
the case for M =N =3.

(7) The stability of region III is under investigation, as
it may be important in some cases.

Kajantie, Raitio, and Ruuskanen solved the hydro-
dynamic equations numerically for the (1+1)-
dimensional perfect Auid and compared the results with
the scaling solution. ' ' Recently, Akase et al. have
studied the stability of the scaling solution numerically
for some case with viscous terms. ' However, the equa-
tion of state and viscosities used in Ref. 12 are not the

tions from the solution X(t)=0 at some r develop as t in-
creases. We transform Eq. (Al) as

(A2)

where

and

A'(t) =BA(r)B

(A3)

We remark that V( t) & 0 and the equality is satisfied only
when X, =O and X2=0 (i.e., X=O). Increasing V(t)
with increasing t will signify the instability. We can also
show that

We remark that a and p (%0) are constants. By defining
V(r)=Xp+X2 =(X,+aX2) +pXz, one has

dX'
=2X'(r) =2X'(r) A'(t)X'( r)

dt dt

=X'(r)T[ A' (t)T+ A'(r)]X'(t) .

(A4)

same as ours.
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where A;„(t) an. d A, ,„(t) are the smallest and the biggest
eigenvalue of the symmetric matrix A'(t)T+ A'(t), re-
spectively. From Eqs. (A4) and (A5) we get

APPENDIX ~;„(&)V(&)««A, ,„(r)V(r) .«dV(t)
dt

(A6)

We consider the differential equation

= A(r)X(r),
dt

(A 1)

where X(t)=(X„X2)is a two-component real vector and
A(t) is a real 2X2 matrix. Equation (Al) has the solu-
tion that X(t)=0. We study whether or not the devia-

From Eq. (A6), it can be shown that the solution
X'(t) =0 is stable [hence X(t)=0 is stable] if A, ,„(t)«0
and the solution X'(t) =0 is unstable [hence X(t)=0 is
unstable] if I, ;„(r))0. These inequalities on l,„(t) and

,„(t) may be realized if one chooses a and P appropri-
ately. This procedure is a simple example of Lyapunov's
method and V ( t) is called Lyapunov's function. '
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