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Field theory and the nonrelativistic quark model:
A parametrization of the meson masses
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We apply the method developed in previous papers [Phys. Rev. D 40, 2997 (1989); 40, 3111
(1989)] to write a general parametrization of the masses of the lowest meson nonets. We compare
the mass formulas obtained in this way with those used currently in a nonrelativistic quark model

(NRQM). As in the previous work, the aim is to separate the features specific to the NRQM from
those that follow from a relativistic field theory satisfying a few rather general conditions (satisfied

by QCD). For the meson masses it turns out that the formulas obtained from field theory have

essentially the same structure and number of parameters as those in the NRQM. This explains the
good fit that the NRQM provides in this case; the internal U/c of the qq pair is irrelevant. As a by-

product, the mixing angle for the I =0 mesons (e.g., g and g') predicted from the masses turns out
to be model independent to first order in flavor breaking. We discuss the question of the linear
versus quadratic or, say, square-root mixing angles.

I. INTRODUCTION

This paper is a continuation of two papers' addressed
to the following problem: to separate in the predictions
of the nonrelativistic quark model (NRQM) the features
specific to the model from those that follow from a rela-
tivistic field theory under rather general conditions
(which QCD satisfies). It is assumed that such a field
theory is constructed in terms of quark and neutral gluon
fields and has, as QCD, a strong Hamiltonian free of A, -

flavor matrices, except for X8. To answer the above
question we display the parametrizations of various phys-
ical quantities in relativistic Geld theory and compare
them with those used in the NRQM.

In Ref. 1 we introduced a unitary transformation V
connecting the exact states of a hadron to its model
states. Using this transformation, we obtained general
parametrizations for the magnetic moments of the lowest
baryon octet ("general parametrizations" means those
obtained from the relativistic field theory, say QCD) as a
sum of several terms with different spin-flavor structures,
each multiplied by some coe%cient. We also gave general
parametrizations for the baryon masses' and the semilep-
tonic decays. Because these general parametrizations
have a form similar to the formulas usually written in a
nonrelativistic quark model (NRQM), we could see that
the formulas of the NRQM represent a selection of cer-
tain terms in the complete parametrizations; in the cases
examined it emerged that the terms considered in the
NRQM are in fact the dominant ones. In particular, the
parametrizations for the baryon magnetic moments,
masses, and semileptonic decays have clarified the mean-
ing of using the NRQM also for systems of "light"
quarks, even if v/c is not necessarily much smaller than
one.

Here we will apply the method to the lowest mesonic
nonets, find the general parametrizations for their
masses, and compare the results with the NRQM.

II. REDUCTION OF THE FIELD THEORY
CALCULATION TO A TWO-BODY

PARAMETRIZATION

We define the model states PM for mesons in a way
similar to the model states iI'is for baryons in Ref. 1. We
choose the model Hamiltonian & for the mesons, operat-
ing only in the subspace of the Fock states with one
quark and one antiquark, no gluon, as an operator having
a nonrelativistic, exceedingly simple structure; it is
defined in a way similar to that followed for the baryons'
(where & acted, of course, in the subspace of the Fock
states with three quarks, no gluon); & conserves the or-
bital angular momentum and is spin and flavor indepen-
dent. The model states of the pseudoscalar and vector
nonets are therefore degenerate states of %:

$, =S, W, p(r), (2)

where S, is the color-singlet factor for a meson (that can
be forgotten in what follows), W, is the qq spin-flavor
wave function of the ith meson, and q&(r) is a function of
the relative distance r of the quark and antiquark.

The exact states ~P, ) of the nonet mesons are obtained
by applying to the states ~P; ) the unitary operator V:

%~/~; ) ~no gluons) =Mo ~PM, ) ~no gluons)

(i =~, ri, ri', K;p, co, P, K*) . (1)

In (1) ~P; ) is a state of a meson at rest and Mo is the
common value of the masses of the 18 model states of the
0 and 1, lowest L=O mesons. From now on we omit
writing the factor

~

no gluon ) in (1) and also suppress the
index M in PM;. Because of the spin and fiavor indepen-
dence of the model Hamiltonian %, the wave function P;
of a meson has the form
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As described in Ref. 1, V is constructed in terms of the
exact field-theoretical Hamiltonian H (say, the QCD
Hamiltonian); we assume that H (and thus V) is written in
terms of the renormalized quark masses, to be identified
with the masses of the constituent quarks, possibly in the
range of some hundreds of MeV for the light quarks; as
for the baryons, the precise values assigned to these
masses mp=m~ and m& will not intervene, except to en-
sure that the flavor-breaking parameter hm /m &

—= (mi —mt )/mi is decently small and can be treated
perturbatively. Note also that P, , the eigenstates of the
model Hamiltonian %, are typical nonrelativistic states
written with two-component Pauli spinors, whereas V is
constructed in terms of creation and destruction opera-
tors of four-component Dirac fields. To define the opera-
tion of V on P; we simply imagine the Pauli spinors of the
nonrelativistic wave function completed with zeros in the
lower components (of course, also & is formally extended
to act on four-component spinors, with no matrix ele-
ment connecting the upper and lower components and
being zero when operating on the latter).

In the above notation the mass of the ith meson is

M, =&q, ~H~q, &=&y, ~V'HV~y, & . (4)

Because ~P, & is, by construction, a two-body state (one
quark, one antiquark) only the projection H of the opera-
tor V~8V in the subspace of these two-body states inter-
venes in the calculation of (4):

H =gllq, lq && lq, lql V HVllq', lq '&& lq', lq 'I, (5)

where by ~1q, lq & we mean a coinplete set of states of one
quark, one antiquark (with total three-momentum zero,
since we consider a meson at rest) and the sums in (5) are
over such a set of states.

The above statement that the only part of V~H V inter-
vening in the calculation of M, (4) is the two-body part H
is trivial but essential; in fact calculating the expectation
value of the field operator V HV in the state ~P; & be
comes equivalent to calculating the expectation value of a
certain quantum mechanical -two body operato-r H on the
wave function P, in ordinary nonrelativistic two-body
quantum mechanics:

M, =&y, IHIP', & . (6)

The most general parametrization of the meson masses
amounts then to write in ordinary nonrelativistic two-
body quantum mechanics the most general operator H of
the relative coordinate and momentum r, p of the spins
o i, oz (1 =quark, 2=antiquark) and of the flavor opera-
tors f (see below) invariant with respect to translations
and rotations.

III. THE LIST OF THE SPIN FLAVOR TERMS
IN THE PARAMETRIZATION

=HQ R(r, p) G(o,f) .

The most general operator H of the space and spin-
flavor variables of the quark-antiquark pair can be writ-
ten in the form

g.=&q(r)IR.(r, p)Iq(r)& . (9)

Because of the fact that we have chosen the model Ham-
iltonian & independent from the flavor and from J, the
space wave function y(r) in (9) is independent of the
meson index i and also the coefficients g„ in (g) are in-

dependent of i. Therefore the mass operator (of which
the expectation value has to be taken purely on the spin-
flavor part 8'; of the wave function) is

M=gg„G„(o,f) .

Note that this is a general result from field theory; its in-
terest (as for the analogous expression for the baryons in
Ref. 1) is in the fact that it appears in a notation directly
related to that of the nonrelativistic quark model.

To list the possible operators G„(tr,f) in (10), we first
discuss their flavor dependence. As in Ref. 1 we restrict
ourselves to a field theory (such as QCD) where the only
flavor A, matrix in the strong Hamiltonian is A, s; in fact in

QCD A, s intervenes in the quark mass difference term and
the flavor-invariant part of the Hamiltonian does not
contain A,-flavor matrices at all. Instead of 18 we consid-
er the projection operator I',

P =-,'(1 —As),

that gives zero when applied to the P or JV quarks (or an-
tiquarks) and is 1 when applied to the A, quark (or anti-
quark); it is (P )"=P . For a system of one quark and
one antiquark, the list of flavor operators acting on states
with isospin I%0 is

(12)

In (12) and in the following, the index 1 refers to the
quark and the index 2 to the antiquark. For the mesons
with I =0 the list (12) is incoinplete. Indeed the flavor
operators in (12) connect only a qq pair to a qq of the
same type (say PP with PP, or JVJV with JVJV or PA, with
PA. , and so on); the sum in Eq. (5), however, includes, for
mesons with isospin I =0, also matrix elements of H that
connect a PP state with a JVJV state or a A,A, state with a
PP+ JVJV state (in QCD they are due to the gluon annihi-
lation diagrams). Thus there are other flavor operators in
addition to (12); to list them we first introduce the I =0
favor states:

iz &=iP,P, +JV,JV, +X,X, &, /w&=/k, X, & . (13)

Note that in (13) ~z & is not normalized; for normalization

Here G„(o,f ) is the set of independent operators
(specified by the index v) constructed in terms of tr„o z

and the flavor operators f of the quark and antiquark;
R (r, p) are operators (the expression of which we do not
need to know} constructed in terms of r and p of the
quark-antiquark pair.

On performing the expectation value (6) of H, the
masses M, become

M, =yg„& W ~G„(cr,f}~W, &,

where g„stands for
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[z)(wi+ iw)(zi,

[ w ) ( w/
—

PAPAL.

(14b)

(14c)

The first of these operators [(14a)] is a unitary singlet; the
second [(14b}] transforms linearly in A, s [precisely as
P =(1—A.s)/3] under SU(3)s,„«. The third [(14c)]trans-
forms quadratically in P . We should have included in
(14) also i ( ~z ) ( w

~

—
~
w ) ( z~ ); we did not because the ex-

pectation value of this operator vanishes on states with a
real wave function (as P s are).

As to the o dependence of the G,(a,f)'s, only the fol-

lowing expressions (15) are possible:

1, o ).crq . (15)

IV. THE MESON MASSES

We start discussing the mesons with IAO (n, K;p, K').
For them [compare the Eq. (12)] the fiavor-breaking part
of the G„(a,f)'s contains only Pi and P2. Multiplying
the spin operators (15) with the flavor operators (12) and
noting that the charge-conjugation invariance of the
Hamiltonian implies that the G s must be invariant for
the exchange of 1 and 2, the list of G„'s is l, o, crz,

P, +Pz, o, az(P, +Pz ). Therefore the most general ex-
pression of the mass of a IAO meson, correct to all orders
in flavor breaking, is

Mt~a A+Bo, a2+C(P, +P2)+Do, a2(P, +P2),
(16)

where A, B,C,D are four real coefticients. Because
0'& 0'2= 3 for 2 =0 and o

&
o2=+1 for J = 1, the

masses (indicated with the meson symbols) are

@=A 38 (=138—), K=A —38+C —3D (=495),
(17)

p= A +8 (=770), K'= A +8 +C+D (=894) .

Equations (17) imply (in MeV)

A =612, B =158, C =182, D = —58 . (18)

Note finally that, restricting ourselves to the IWO
mesons, an equation of the form (16) holds not only for
the masses, but also for their squares or for any power of
the masses [of course with values of the coefficients
different from (18)].

We now consider the mesons uith I =0. For them the
most general mass formula is constructed adding to (16)
[with the coefficients A, B,C,D just determined from the
masses of (rt, K;p,K*)] another part obtained by multi-
plying the fiavor operators (14) with the spin operators
(15};that is,

a factor ( I/&3) should be inserted; while keeping this in

mind, (13) is more convenient for calculations. Then to
the list (12}we must add the operators

(14a)

Mt 0= A+Ba, a, +C(P, +Pt )+Dai o2(Pi+P~)

+(E+Fa, .a, )iz &(zi

+(H +Go, a2)(iz ) ( wi+ iw ) (z))

+(X+Ta, .a2)P, P~ . (19)

Equation (19) contains in addition to A, B,C, D [deter-
mined (18) from tt, K;p, K ' ] six parameters
E,F,H, G, N, T; one might determine them from the
masses of rt, rt', to, g plus the two mixing angles (the vector
Ov and the pseudoscalar Hr), if the angles are known in a
way free of theoretical uncertainties. Alternatively we
can limit to the first-order flavor-breaking approxima-
tion, as we did for the baryons in Ref. 1; in such a case
the last term in Eq. (19), which is of second order in
fiavor breaking [being proportional to P,P~, it is of order
(hm/mi ) ] can be disregarded (X =0, T =0). In this
first-order flavor-breaking approximation the masses of
ri, ri'; tv, P fix E,F,H, G; one can then determine, to first or-
der in flavor breaking, the mixing angles.

We restrict ourselves here to the determination of the
parameters for the pseudoscalar (P) mesons ri, ri', for
them cr& cr2= —3. For the vector mesons one proceeds
similarly, simply putting a, .o2=+1 and therefore re-
placing below A —3B with A +B;C —3D with
C +D;E —3F with E +F;H —36 with H +G. As is
well know, the parametrization with A, B,C,D alone is al-
most sufficient for the I =0 vector mesons (the vector
mixing angle is nearly ideal); this amounts to saying that
in (19) E +F=0 and H +G =0; of course there would be
no problem in calculating the exact parameters and an-
gles also for the vector mesons.

Let us proceed with the P mesons; we introduce the ab-
breviations

The diagonalizing equation

b+f —M f f+g
f b+f —M f+g =0 (22)

f+g f +g b+2d+f +2g —M

determines the coefficients f and g from the masses of q
and g'. One solution of (22} is the amass; of course w.e
get n=b =—A —38 [com. pare (17)]; as to the masses of g
and g', they are the two roots of

(b+2f M)(b+2d+f +—2g —M) —2(f +g) =0 . (23)

The solutions of (23) are M =b+k+(k +2g 4fd)'—
where 2k = 3f +2d +2g. Equating the two solutions
with the masses of g(549 MeV) and g'(958 MeV) we

b =A —38 (=138 MeV), d=C 3D (=357 —MeV),
(20)f =E 3F, g =H ——3G,

where b and d are known from (18). Thus Eq. (19) for the
P mesons with I =0 takes the form

Mt 0(P) =b +d (Pi +P2 )+fez ) (zi

+g ( lz & ( wl+ Iw & (z~ )+0((&m /mi )') .
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obtain ri'+r1=2b +3f +2d +3g and (q' —i))/2
=[2g 4—fd 9 ,'(3f—+2d+2g) ]' where b and d have

the values of (20). Solving for g and f we obtain two pos-
sible solutions (g;f},and (g;f}2, in MeV they are

(g;f), =( —133, +261),

(g;f),=( —343, +400) .
(24)

The ratio (g/f&3) between the coefficient g&3 of the
(normalized) flavor-breaking term and the coefficient 3f
of the (normalized) unitary singlet term is substantially
smaller for the solution N. 1 than for the solution N. 2.
Thus we must choose the solution N. 1 to be consistent
with the assumption of neglecting terms of order higher
than the first in (hm/mi). On choosing (g;f), it is
straightforward to check that the diagonalization (22) im-
plies [in addition to n =(1 /&2)( PP—JVJV)]

i) =0.603(PP+ JVJY) —0.522K, A, ,

rl'=0. 367(PP+ JVJV)+0. 854hZ, .

(25)

(26)

With the usual definition ri = ri isin8p+ 17gcos8p and
7)' = ri, cos8p+ ilssin8&, where i), = (1&3)(PP+A'JV
+AX) and r18=(1/&6)(PP+JVA —2AX), we have, from
(25) and (26),

sin8p= —0.39 (that is, 8p = —23') . (27)

V. COMPARISON OF THE GENERAL
PARAMETRIZATIONS WITH THOSE OF THE NRQM

A. Mesons with I/O

Equation (16) has the same form as that currently used
in the NRQM to fit the L =0 meson masses (compare,
e.g., Ref. 5). It now emerges that (independently of the
NRQM) the four parameter equation (16) is the most gen-
eral expression possible for the lowest nonet meson
masses in any (relativistic field) theory where the only A,

SU(3)„,„„that intervenes is A, s. It is an exact equation to
all orders in flavor breaking. This fact [that Eq. (16) is an
exact formula, no more an approximate NRQM result]
has, in our view, an important implication for the pion:
The small mass of the pion appears now just an accident
that depends rather critically on the values of the pararn-
eters A and B in (18); assume, for instance, that B in (16)
had a value 100 MeV instead of 158 MeV [Eq. (18)]; then
the pion, if A keeps its value (18), would have a
mass=312 MeV, no longer so small (the p mass would
then become 712 MeV). Now, taking, e.g. , QCD as the
basic theory, a reduction of the parameter B in (16) by
the above amount of =40% may possibly be obtained
with an even smaller percentage variation of the quark-
gluon coupling. Thus it seems difficult to attribute any
profound meaning (as still often done) to the smallness of
the pion mass. This remark does not question at all, of
course, the phenomenological treatments or results relat-
ed to PCAC (partial conservation of axial-vector
current), insofar as they simply take note of the empirical
smallness of the pion masses.

We also compare Eq. (16) with the NRQM formula for

the meson masses of De Rujula, Georgi, and Glashow
[their formula (17)] derived from QCD in the one-gluon-
exchange approxiination. A feature of that forinula (see
also Ref. 7) is that o, .cr2 appears only multiplied by the
factor (m, mz) ' where m, and mz are the masses of the
quark and antiquark; this factor (m, mi) ' cannot be ob-
tained by general arguments, as far as we can see. One
can check, however, that the general parametrization Eq.
(16) above reduces to the formula (17) of Ref. 6, to
first order in (m i m—

& ) /m i, if we choose D /B
=(m&/mi )

—1. From the experimental values of D and
B [Eq. (18) above] one gets, as noted already in Ref. 6,
(m&/m&)=0. 63, that is, (mi —mp)/mi-—0.37 to be
compared with an equal value derived by similar argu-
ments from the baryon masses and (mi —m~)/mi -—0.35
from the baryon magnetic moments (compare also Ref. 1;
the comparison should not be made with the value
(15.4/49. 2) =0.31 derived there from Eq. (87), but with
the value =0.37 that one obtains fitting the data without
the parameter E).

B. Mesons with I =0

(1) The P mixing angle. Having suppressed terms of
order (hm /m & ) in Eq. (19), the results for I =0 mesons
are correct only to first-order flavor breaking, as already
stated; it should be stressed, however, that to that order
they are exact results; what we mean by this is that if we
were able to solve the equations of the correct field theory
(say, QCD) and were allowed to neglect terms of order
higher than the first in b, m /mz, we would obtain, in par-
ticular, the value 8& ———23' for the P mixing angle. A re-
mark on the question of the quadratic versus linear mix-
ing angle is appropriate at this stage. We have
parametrized, above, M; = (P, ~

VtHV~P; ), but clearly, as
stated in Ref. 1 (Sec. XI), we might have parametrized as
well M;"= (P; ~

V H" V~/; ) for any real n, positive or neg-
ative, integer or fractional. The form of the parametriza-
tion is the same independently of n; it is in all cases an
equation of the form (16) or (19); simply one has to re-
place on the left-hand side of these equations I by I";
the coefficients A, B,C, D,E,F,H, G, N, T have of course
different numerical values for each different n. If we do
not neglect N and T [the second-order terms in flavor
breaking in (19)] then the exact mixing angle is always
the same, independently of n; the same mixing corre-
sponds, say, to a quadratic (M ) or square-root (M'~2)
mass formula; indeed the exact eigenstates of H or H'
are the same. However, as already noted, keeping N and
T there is no connection between the mixing angle and
the masses; a connection arises only neglecting N and T.
However, then we get different values of the mixing angle
corresponding to different choices of n; for instance, one
can check that for 8~ we have

(M'~ ) 8p ———31', (M} 8p—-—23', (M } 8p-——10

Note that in all cases the procedure takes into account
exactly first-order flavor breaking; but note also that the
expansion of the mixing angle in terms of the flavor-
breaking parameter Am /m& starts with a term of first or-
der in flavor breaking:



FIELD THEORY AND THE NONRELATIUISTIC QUARK. . . 2869

sinH'p""'=a„+O((b, m/mi ) ),hm 2

mg

where o.„ is some coefficient depending on the selected
value of n B. ecause b, m /m& ——0.37 is not so small, terms
O((b, m/mi ) ) may contribute significantly to 8~, with a
different relative weight for different n s. Which is the
best angle? No theorem can be stated in general; only
solving the problem in QCD, say, can one get the correct
angle. However the following remark seems relevant: If
one were to solve the problem in QCD, namely, deter-
mine the mixing angle as an expansion in the flavor-
breaking parameter, one would certainly never dream of
using the square or square root of the QCD Hamiltonian
(indeed to perform calculations with H or H'~ the ques-
tion arises, in the first place, of defining properly such
operators, not only via their eigenvalues M2 or M ).

Thus in performing a field-theoretical calculation, one
would use H and get Op

———23' plus terms
O((bm/mi ) ). In this sense the linear mixing angle is
certainly the most natural one; it represents the choice
made, without saying, practically in any perturbative di-
agonalization problem of a Hamiltonian.

(2) Comparison with the NRQM results. We first com-
pare our parametrization for the I =0 mesons with the
NRQM work of Sacharov and Zeldovich (SZ}.
Specifically we compare our Eq. (19) with the expression
for the masses proposed in SZ [their Eq. (3) H =H, +Hb,
with H, and Hb given, respectively, by their Eqs. (4) and
(1)]. The structure and the number of parameters con-
tained in the quoted equations of SZ is identical to that of
our Eq. (19) in the approximation N=T=O; the only
minor difference is that SZ keep terms of second order in
flavor breaking [in their Eqs. (1) and (4) ignore a2 and re-
place (1—P) with 1 —2P]. With this modification the
expression for the masses of SZ becomes equal to our Eq.
(22) with the following correspondence of our parameters
b, d, f,g with those of SZ: b =(ao ——', co)sz,
d =(bo+ —'cotz)sz f =(~o)sz g = (doP)sz (Ref 8)

We next compare our general parametrization (19) for
the I =0 mesons with that of De Rujula, Georgi, and
Glashow (DGG). The mass matrix of DGG [appearing
before their Eq. (23)] differs from ours (22) because DGG
neglect in their matrix the flavor-breaking correction (our

term with coefficien g). In fact if we identify our f with
the P appearing in the mass matrix of DGG and include
the first-order flavor-breaking corrections g (that DGG
should have been included because the quark masses ap-
pear in the quark lines of the annihilation diagrams) our
mass matrix and that of DGG coincide.

VI. CONCLUSION

The main conclusions of the above analysis are as fol-
lows.

(1) Almost all the features of the mass formulas for the
lowest meson nonets currently used in a NRQM descrip-
tion are general consequences of the field-theoretical pa-
rametrization, independent of the NRQM; the only ex-
ception is the (m, m2} factor multiplying the 0, oz
term in the DGG expression for the meson masses, a re-
sult that depends specifically on the one-gluon-exchange
potential. Stated differently, the meson mass formulas
used in the NRQM are more general than one might have
thought; for the mesons with IWO they possess a number
of free parameters as large as that of a complete relativis-
tic parametrization; for the mesons with I =0, the same
is true neglecting a term of second order in flavor break-
ing. In this respect the situation for the meson masses is
quite different, for instance, from that found for the
baryon magnetic moments there, we recall, the general
field-theoretical expression of the magnetic moments
(correct to first order in flavor breaking) had seven pa-
rameters, whereas the successful parametrization of the
NRQM had only two.

(2) The procedure described above to derive the meson
mass formulas clarifies the old question of the mixing an-
gle for the I =0 meson nonets. The mixing angle (say
8~) can be determined from the general parametrization
(that is in a model-independent way) knowing the masses
of the P mesons provided terms of order higher than the
first in the flavor-breaking expansion parameter Am /mz
are negligible and are neglected. According to this pro-
cedure the linear angle is much more natural than the
quadratic or square-root ones; it would be the angle re-
sulting from a QCD calculation on expanding the exact
result in series of b, m /mi and neglecting terms
O((b, m/mi ) ).
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Needless to say, a fundamental calculation from the basic La-
grangian lsay QCD), if feasible, evaluates in all cases all the
parameters in terms, say, of the gluon-quark coupling con-
stant and few others. In a sense the derivation of the above

(m, rn2) ' factor is an example of this, although of course in
this case the (old) question arises of why one should trust a
Fermi-Breit one-gluon-exchange treatment of QCD at low
Q2


