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Symmetry breaking and hyperon decays in the Skyrme model
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We compute the vector and axial-vector-current matrix elements needed for the Cabibbo-theory
description of the semileptonic hyperon decays using exact eigenstates of the SU(3) Skyrme-model

collective Hamiltonian. In a qualitative sense we confirm that the symmetry-breaking corrections
are relatively small for the Cabibbo matrix elements while there is a drastic reduction from the

SU(3) limit of the matrix element (proton~sy„y, s~proton) which figures prominently in analyses of
the European Muon Collaboration "proton-spin" experiment.

I. INTRODUCTION

The recent European Muon Collaboration (EMC) re-
sult' on the polarized proton structure function implies,
with some seemingly reasonable assumptions, that the
main form factor of the three-flavor U(1) axial-vector-
current matrix element between proton states approxi-
mately vanishes at zero-momentum transfer. This is in
direct contradiction to the time-honored folk picture of
the proton as a system of three quarks exhibiting only
noninteracting spin and color degrees of freedom at low
energies. On the other hand, the EMC result is in good
agreement with the SU(3) Skyrme model ' which pre-
dicts ' this form factor to vanish. Hence it is clearly
desirable to understand this aspect of the SU(3) Skyrme
model in more detail.

At the outset it should be remarked that the Skyrme
model describes the baryons in a collective manner in
which the role of spontaneously broken chiral symmetry
is emphasized. It is not in contradiction with the full
quark-gluon QCD description, being presumably a
reasonable effective model for it at low energies. There
are actually many variations on the Skyrme model which
typically include field degrees of freedom other than the
pseudoscalars. These seem to us better and for some pur-
poses necessary approximations but in the present paper
we shall for simplicity and definiteness consider the basic
SU(3) Skyrme model of pseudoscalars only.

Here we shall use the SU(3) Skyrme model to calculate
the Cabibbo' matrix elements of the vector and axial-
vector currents. These are of relevance even though they
involve flavor-changing currents such as uy„(1+y~)s
and uy„(1+y&)d rather than the flavor-conserving
currents such as uy„you, dy„y5d, and sy„y~s which
enter into discussions of the EMC experiment. The
reason is that SU(3) invariance can be assumed to try to
relate the currents measured in hyperon decays to the oc-
tet parts of the flavor-conserving currents. This is, of
course, a very simple calculation. We will be interested
instead in the effects of SU(3}-symmetry breaking. A use-
ful feature of the SU(3) Skyrme model is that its collec-
tive Hamiltonian can be diagonalized exactly (in a nu-
merical sense) including SU(3)-symmetry breaking. In an
earlier paper we found that the SU(3)-symmetry breaking
made an important difference in the analysis of the EMC

data as presented by Brodsky, Ellis, and Karliner. We
did not however investigate the effects of symmetry
breaking in the Cabibbo scheme itself.

For the reader's convenience we first mention three
conclusions of Ref. 6 and how these are modified by a
more precise treatment of the same SU(3) Skyrme model
used there.

(i) The basic SU(3) Skyrme model including only pseu-
doscalars predicts a vanishing U(1) axial-vector-current
matrix element of the proton.

(ii) Feature (i) can be slightly modified by including
derivative-type symmetry-breaking terms anyway needed
to split the pion and kaon decay constants.

(iii) The proton matrix element of the strange axial-
vector current sy„yss is relatively large, about 30% of
the dy„y~d matrix element. This point is also made in

practically all phenomenological interpretations of the
EMC result and follows just from exact SU(3) symmetry
applied to the axial-vector matrix elements.

Point (i), which is the main one, is correct. However,
we have shown' that point (ii) is actually not correct.
The extra terms mentioned above contribute to the in-
duced axial-vector form factor which is not the relevant
one for interpretation of the EMC experiment. We also
showed that point (iii) does not hold in the SU(3) Skyrme
model —the proton matrix element of sy„y&s is reduced
to perhaps as little as 4% of the dy„ysd matrix element.

Since the matrix element of the U(l) axial-vector
current uy„y&u +dy„y5d+sy„yss vanishes in the SU(3)
Skyrme model we may equivalently choose to measure
the strange axial-vector current by the matrix element of
the eighth component of an octet, namely, u y„ysu
+dy„ysd —2sy„y,s. This matrix element is evidently
related by SU(3} Clebsch-Gordan coefficients to the
famous F and D parameters measured in the Cabibbo
theory' of hyperon decay. Since SU(3) seems to hold to
good accuracy in the Cabibbo theory one would expect
this to be a reliable relation and hence for point (iii) above
to hold. But we have seen that (iii) is not true in the
SU(3) Skyrme model. The purpose of this paper is to find
out what is happening by investigating the Cabibbo
currents in the SU(3) Skyrme model.

It turns out that the proton matrix element of the diag-
onal current uy„y5u +dy„y5d —2sy„y5s is very much
more drastically suppressed (to less than one-quarter of
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its original value) by SU(3)-symmetry breaking than are
the matrix elements of the off-diagonal currents needed in

the Cabibbo theory. The latter typically suffer correc-
tions on the order of 30%%uo. Thus it seems possible to
make the qualitative statement that SU(3) invariance can
be reasonably good for the axial-vector Cabibbo matrix
elements but quite bad for relating to them the diagonal
current matrix element relevant for understanding the
EMC experiment. The reason this is a qualitative state-
ment is that the Skyrme model does not do too good a job
of predicting the absolute magnitudes of the axial-vector
matrix elements (e.g. , g „ is predicted in the range
0.6—0.8 rather than 1.25). Most conservatively, there-
fore, our calculation sheds some doubt on the applicabili-
ty of SU(3) invariance in the present context.

Another possible interesting aspect of this calculation
(apart from the fact that it has not been discussed before)
is that it would hold, modulo an overall factor, for any
generalized Skyrme-model (e.g. , one including vector
mesons) which yields a collective Hamiltonian [see Eq.
(4.2)] of the same form. If the generalized model were to
produce an overall factor such that g „comes out
correctly, we could start to take its predictions very seri-
ously rather than just in a qualitative sense. In such an
event the symmetry-breaking corrections to the Cabibbo
scheme computed here would provide a very severe test
of the model which would constrain the effective
symmetry-breaking parameter —,'yP —= ru [see Eqs. (3.1)
and (3.4)].

To put our work in perspective we remark that the first
papers on the SU(3) Skyrme model treated the mass
splittings to first order in the SU(3)-symmetry breaking
(essentially mx which measures the strange-quark mass

m, ) and neglected any symmetry-breaking effect on the
baryon wave functions. Reference 6 also followed this
simplified approach. More recently, by carrying out an
exact numerical diagonalization of the collective Hamil-
tonian, Yabu and Ando showed that this "first-order"
approach is not correct. In some previous papers we
have given additional interpretation and suggested im-
provement of the Yabu-Ando scheme. We interpret the
situation in the following way: when the original "first-
order" treatment is adopted the baryon wave function
knows nothing about the mass of the strange quark. It is
"deluded" into treating it as very light, thereby making it
easy to produce ss pairs in the proton. Indeed the proton
was observed" to have a large "strange content" at this
level of approximation. On the other hand, when an ex-
act diagonalization of the Hamiltonian (or higher-order
perturbation theory) is employed ' the baryon "knows"
that the s quark is relatively heavy and therefore contains
fewer of them. As the s-quark mass is increased the
"strange content" of the proton goes down. However the
deviations from the SU(3)-symmetry relations increase.

In Sec. II the underlying chira1 Lagrangian is written
down and the relevant currents are computed at the mi-
croscopic level. The Cabibbo matrix elements are tabu-
lated there for convenience. Section III contains a very
brief discussion of the collective Hamiltonian. In Secs.
IV and V the zero-momentum-transfer matrix elements
of the vector and axial-vector currents are computed for

II. VECTOR AND AXIAL-VECTOR CURRENTS

The underlying SU(3) chiral action is

r= J'd x(Xp+Xsa)+I wz .

Here

(2.1)

Tr(a„a„)+ Tr([a„,a„] ),
8 P P 322

(2.2)

with a„=B„UU, while the Wess-Zumino action' in

terms of the one-form a =a dx" isP

iN,
twz 2

Tr a
240m.

(2.3)

the integral being over a five-dimensional manifold whose
boundary is Minkowski space. Finally the symrnetry-
breaking terms are (see Ref. 9 for notation and the
relevant analysis)

=Tr[(P'T+P"S)(B„UB„U U+U B~UB„U )

+(5'T+5"S)(U+U —2)], (2.4)

wherein T =diag(1, 1,0) and S =diag(0, 0, 1). The param-
eters 5' and 5" are analogous to "quark mass" coefficients
and are determined from the meson sector of the theory.
Similarly P' and P" adjust' F&AF in the meson sector.

The vector and axial-vector V„and A„currents, may
be found' by "gauging" (2.1) with external gauge fields

U„=U„'Q, and a„=a„'Q, and evaluating the functional
derivatives:

51'( U, U&, a„)
Va

P g a

5I ( U, v„,a„)
Sa'

P

v =a =0
P P

v =a =0
P

(2.5)

(2.6)

Note that the Q, are 3 X 3 Hermitian U(3) generators.
This yields, for the currents,

iF„
Tr[Q'(a„+- P„)],

(2.7)

N,
2 e„„p Tr[Q'(a„a a +PJ'S )]+

48m

wherein the upper (lower) sign corresponds to V„' ( 3„').
Furthermore P„=U B„U. The center dots indicate the
contributions to the currents of the derivative-type
symmetry-breaking terms. This type of contribution was
shown in the second paper of Ref. 5 to be not very irnpor-
tant for baryonic matrix elements.

an arbitrary symmetry-breaking parameter. Finally, Sec.
VI contains some discussion and a comparison with the
experimental g ~ /g v ratios for strangeness-changing
hyperon decays on the assumption that all axial-vector
matrix elements can be uniformly rescaled.



2838 N. W. PARK, J. SCHECHTER, AND H. WEIGEL 41

x pVO n =1,

fd 'x
&p ~ A,

"
~
n &

= —g „&g,. ) .
(2.8}

The matrix element coefficients of interest are given in
Table I. The axial-vector coefficients are given in terms
of the usual dimensionless parameters F and D which
satisfy

F+D =g~ =1.25 . (2.9)

For our present purposes we are only interested in the
zero-momentum-transfer matrix elements of the above
currents. Equivalently, we need the space integralsjVod x and jA d x.

In order to compare our results with the SU(3)-
symmetry Cabibbo model we need the matrix elements of
JVo dx, JVo dx, JA; dx, and JA,." dx ap-

propriate to various semileptonic hyperon decays. For
ordinary neutron —+ proton P decay we have

symmetry-breaking parameter corresponding to (2.4) and

D, ( A) is the octet representation matrix

D,~(A. .) =—,'Tr(A, , A A.~. A ) . (3.2)

The above parameters are all calculable in terms of the
Lagrangian (2.1). But we would like to stress that the
collective Hamiltonian 8 may arise from a more general
SU(3) chiral Lagrangian than (2.1). In this sense the
present calculation may apply to models beyond the
Skyrme model of pseudoscalars only. It is also important
to remark, as first pointed out by Yabu and Ando that
the last, symmetry-breaking term must be treated beyond
first-order perturbation theory. Those authors wrote
down a differential equation for the exact diagonalization
of (3.1). Their basic results can be recaptured by pertur-
bation theory beyond leading order. Then it is seen that
the spin- —,

' baryons, for example, are no longer pure octets
but contain sizable admixtures of the 10 and 27 represen-
tations. For example, the proton looks like

Notice that the parametrization of the matrix elements in
Table I is only meaningful in the exact SU(3)-symmetry
limit. In particular it is meaningless to speak of the pa-
rameters I' and D when SU(3) symmetry is broken.

III. COLLECTIVE HAMILTONIAN

~p) =~p, g)+ Y
~p, 10)+ Y

~p, 27)+v'6y '
6v'5 ' 50

(3.3)

The collective Hamiltonian appropriate to baryonic ex-
citations of (2.1) has been widely discussed in the litera-
ture. It is given by

~2 3 YP2 (3.4)

which illustrates that the effective symmetry breaker is
the product

H=Md+
2

+ [Cz(SU(3))—J(J+1)——,']
2cx IV. VECTOR MATRIX ELEMENTS

+ [1—Dss( A)], (3.1)

TABLE I. (a) Vector and axial-vector matrix elements for the
strangeness-conserving baryon decays in the limit of exact SU{3)
symmetry. {b) The same as (a) for the strangeness-changing
baryon decays. Note that D/F = 1.8 while D +F=g„.

0
2D

where the dynamical variables A comprise a 3 X 3 unitary
matrix and whose canonical momenta appear implicitly
in the spin Casimir operator J (J + 1) and the flavor
Casimir operator C2(SU(3)). M„ is the classical soliton
mass while a is the ordinary moment of inertia and P is
the moment of inertia for fiavor-space rotations. y is the

Here we shall calculate the integrated vector currents

Id x Vo as obtained from (2.7). We shall neglect the rel-

atively small SU(3)-symmetry breaking due to the
derivative-type terms in (2.4). The quantities of interest
are simply the flavor-SU(3) generators. Because the
baryons are not pure octets, this computation is not trivi-
al. However the vector charges for the strangeness-
conserving decays are not affected by SU(3)-symmetry
breaking and continue to be given by their values in
Table I. It is well known that the strangeness-changing
vector charges are not renormalized to first order in per-
turbation theory (Ademollo-Gatto theorem' ). However
since first-order perturbation theory is inadequate for the
SU(3) Skyrme model there is no guarantee that there will
not be important second-order contributions. To see
what is happening we may compute a typical matrix ele-
ment by perturbation theory. Let us denote the genera-
ors by Gril, (normalized so I3 Go&o Iv'2 and

Y=V'2/3Gooo) and compute the strangeness-changing
matrix element & p ~ G» &2, zz ~

A ) . Notice that the ~p )
state is given in (3.3}and the

~
A) is

(b)
X ~n (A& = ~A, S&+ —,', ) P')A, 27&+ . (4.1)

yk —3/&6
(3F+D)

v'6

3/&6
3F —D

v'6

1/&2
F+D

&2

Then, remembering that the group generators do not take
us out of a given irreducible representation we have, to
order (yP ),
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(4.3)

I
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obvious from this de d llo G

s nally gives
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'
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. in

1250 360
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or any operator G.
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'

vector
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d '
the 17 f 11

g
= t U, (x)A (r)

(t)

u ion, we have

d xd x A =cD„(A), (5.1)

where the octe
in (3.2) and

octet representat'a ion matrix D ( A ) is defined

23/'2n.c= rr F' F +
2e

2sin F sin2F F + F'2+ sin F
e T

2
(5.2)

1.5
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model under consideration is that all the axial-vector de-
cay constants roughly scale as 1/e so physically reason-
able values may be obtained by choosing a suitably small
value of the Skyrme constant e. Of course, this affects
other dynamical predictions too. This procedure is also
reasonable in the sense that various different models (e.g.,
including vector mesons} give the same formula (5.1) but
with different values for c.

With a uniform rescaling of all axial-vector quantities
so that the calculated g„ is set to 1.25 (for each co ) we
obtain the predictions shown in Table II for the "g„/g„"
ratios for the three strangeness-changing hyperon decays
A —+pev„X —+nev„and:- ~Aev, . These are the de-
cays for which a number for g„ /g~ has been listed by the
Particle Data Group. The results of Table I(b), Figs. 1

and 3 were used for this determination. It can be seen
that the zero symmetry-breaking predictions for A~p
and X ~n are quite good and the effect of symmetry
breaking is to worsen the predictions. For = ~A, the
predicted value seems a bit lower than the experimental
value and the effect of symmetry breaking does not
change much. For this last decay it might be remarked
that the experimental determination of g„ /gr assumed
exact SU(3) symmetry. Also experimental determinations
with such assumptions played a role in determining the
"world average" value of g„ /g~ for the other modes.

While symmetry breaking with co =10 may worsen the
g„/gr predictions by as much as 30%, it should be em-
phasized that the matrix element of interest for the pro-
ton spin problem —(p i fd x A, ip ) is much more drast-

ically suppressed. As previously shown this matrix ele-
ment is reduced from 0.42 at co =0 to 0.09 at ~ =10.
Hence qualitatively it seems fair to say that this matrix
element is drastically suppressed without causing a major
change in the various hyperon decay amplitudes.

Since the above statement claiming a difference be-
tween SU(3)-symmetry-breaking effects for the flavor-
changing and flavor-conserving axial-vector matrix ele-
ments is a qualitatiue one it might be comforting to give a
"hand-waving" argument to show how such a situation
could be understood in the quark model. Suppose the
proton wave function has the schematic form

co —0
co —5
co =10

0.71
0.54
0.45

—.36
—.29
—.23

.18

.17

.16

Expt. 0.7020.03 —0.36+0.05 0.25+0.05

TABLE II. Comparison of experimental and theoretical ra-
tios g~/g& for certain hyperon decays as a function of the
SU(3)-symmetry-breaking parameter co . The axial-vector ma-
trix elements have been rescaled to set g „=1.25 (for the n ~p
mode) at each co'. Note that only the magnitude has been exper-
imentally determined for X ~n.

g~ igv

p —uud [ 1+rt[uu +dd +(1—e)ss] I

Here q is a parameter which measures the strength of the
quark-antiquark "sea" while e is a (positive) symmetry-
breaking parameter which increases as the SU(3}-
symmetry breaking increases. Then the flavor-conserving
matrix element has the following structure to lowest or-
der:

(p ~
(u y„y 5u +d y„y 5d —2sy„yss ) ip ) —1 —ge .

On the other hand, if we similarly represent the A hype-
ron as

A-u ds I 1+g'[uu+dd+(1 e') —ss]I+ .

a flavor-changing matrix element would have the lowest-
order structure

(p iu y„y,s i A ) —1+re(1 —e) .

It can be seen that for choices such as g = 1 and a=0.8
the symmetry breaking can be greatly magnified for the
flavor-conserving matrix element compared to the
flavor-changing matrix elements.

It would be tempting to use our results to draw con-
clusions about the symmetry-breaking parameter co in
the SU(3) Skyrme model. However, given that all axial-
vector matrix elements are predicted to be only around
half of their true values without symmetry breaking it is
clearly premature to take these fine-tuning corrections
seriously in other than a general sense. If one were to
produce a soliton model with a value of c which gives the
correct g„, then the hyperon decays could be considered
to provide strong restrictions on that model. In such a
model it would probably be diScult to explain both the
pattern of baryon mass splittings (which seems to require
co2=10) as well as the small symmetry-breaking correc-
tions to hyperon decays. This might suggest the necessity
of an even more sophisticated method of collective quant-
ization.

Note added in proof. In treating the axial-vector
current in (5.1) we mentioned that terms proportional to
the "angular velocities" 0, were being neglected. These
terms are proportional to the coefficient A3(r} in (A2) of
Appendix A and are expected to be small. We have now
carried out a rather lengthy calculation (to be described
elsewhere) of them. It turns out that they are indeed
small (though not completely negligible) for the Yabu-
Ando approach to quantizing the SU(3) Skyrme model.
However, if one adopts a modified quantization scheme
in which an intrinsic kaon field is excited by the collective
rotation (see Weigel et al. ), it turns out that, for the
realistic range of the symmetry-breaking parameter co,
they make important contributions to the axial-vector
charges. This results in only small deviations from the
SU(3)-symmetric values of the g„/gv ratios in Table II.
For the matrix element (p isy„y~s ip ) there is still a very
substantial reduction from its SU(3}-symmetric value.
Because of the improved agreement with the Cabibbo
scheme, the overa11 claim of this paper is strengthened.
Furthermore it provides evidence for the importance of
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exciting the intrinsic kaon field in the SU(3) Skyrme mod-
el.
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APPENDIX A: CONTRIBUTIONS TO THK CURRENTS
PROPORTIONAL TO THK ANGULAR VELOCITY

In this appendix we comment on the contributions pro-
portional to the angular velocity A A =(i/2)A, , Q, for
the space components of vector and axial-vector currents.
We will show that they are important for the space com-
ponents of the vector currents in the strong-coupling lim-
it in order to recover the SU(2) results. A careful treat-
ment of (2.7) leads to

v'3
V (r, t) =

V i(r)e)),x)D«+ 8 (r)e;)i,x)Q&D, s2

+ V2(r)e)i, x;d), t)Dg~Qt)

+ Vi(r)x;fs t)D, ~Qt),
(A 1)

a=1, . . . , 8, ij,k=1, . . . , 3, a,P=4, . . . , 7.
Here Vi(r) is the integrand of the moment of inertia a in

(3.1) and B(r) is the baryon-number density. The radial
functions V2 and V3 depend on the cranking of the kaon
fields and are irrelevant since only Vo is needed to evalu-
ate the corresponding form factor in (2.7} at zero-
momentum transfer. Similarly one obtains for the axial-
vector current

A (r, t }=A, (r)D„.+ A2(r)x;x), D«

+A&(r)(x 5; —x;x )d) &D, Q&. (A2)

The integral fd x(A, +—,'x A2)=c in (5.1). As men-

tioned in Sec. V the term proportional to 0, i.e., A3, has
been neglected in our discussion of the hyperon decays.
l4 3 depends again on cranking of the kaon modes but as
do V2 and V3 it receives a contribution from the %'Z
term even if a variational ansatz for the kaon field were
not imposed. In a somewhat tedious calculation we have
evaluated the matrix elements ( N

~
d 3 &D, Qt)i N ) for

a =3 and 8. They are found to be small compared to
(N~D, 3iN) at co =0 and to vanish in the strong
symmetry-breaking limit. Thus it might appear reason-
able to neglect the contributions of A 3 in the discussion
of the hyperon decays. The small inhuence of V2 V3,
and A3 on the magnetic moment and axial-vector charge,
respectively, at finite symmetry breaking will be con-
sidered elsewhere. (See Note added. )

In the limit of large symmetry breaking we obtain, for

the terms of the vector currents V; and V; which con-
tribute to the nucleon matrix elements,

V, V, (r)e, „x.DP ' 'l

v'3
V, ~ B(r)E, ),x Qi, .

2

(A3)

(A4)

This gives, for the electromagnetic current 7;,
'P, =V, + V, =V, (r)e,)),x)D(iI, ' '+ ,'B(r)—e,)),x, Qt,

1

3

V3[SU(2)]+ ] g
1

(A5)

where 8; are the space components of the baryon
current. Thus we have shown that the SU(2) result will
be recovered in the strong symmetry-breaking limit only
if the vector current is expanded up to order A. This
gives evidence that also the e8'ects of V2(r) and V3(r} on
electromagnetic properties such as magnetic moments
have to be taken into account at finite symmetry break-
ing.

APPENDIX B

J'd'x A'= 2+F
J r dr F'+ D„(A)+

r

(B2)

where D„(A ) is defined in (3.2). It is interesting that (Bl)
is independent of the sign of F(r) while (B2) changes sign
if we reverse the sign of F(r). Noting that the matrix ele-
ment (p 1 ~ D, 3 ip 1 ) = —

—,
' ( r, ) and comparing (B2) with

(2.8) shows that the integral over r must be positive. This
may be accomplished by choosing

F(0)= —m. . (B3)

Since we are computing both g„as well as gz it is
amusing to check our (standard} phase conventions to see
that the relative sign works out correctly. For simplicity
let us restrict attention to the first term in (2.7) and the
SU(2) Skyrtne model. Making the variations (2.5) and
(2.6) on the fundamental @CD Lagrangian gives the vec-
tor and axial-vector quark currents corresponding to
(2.7): V„'=iqy„Q'q and A„'=iqy„y5Q'q The no. rmali-
zation is provided by noting that the baryon number is
given by B= i l3 J —d x V4

' where Q'c'= 1. The nonre-

lativistic reductions of the n ~p matrix elements of these
currents are given in (2.8). Reference to Eqs. (3.460) and
(3.461) of Sakurai shows that we must choose
g„=+1.25. Now at the Skyrme-model level we may
calculate the isospin charge and the integrated axial-
vector current as

I'= i d x V&—= r dr sin FTr(AA r')8'
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