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Radiative I(.i3 decays and chiral symmetry
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Chiral perturbation theory is used in order to analyze the K»~ process and results are compared
with the PCAC (partial conservation of axial-vector current) and Low-theorem analyses of Fearing,
Fischbach, and Smith. These predictions are found to be consistent with but much stronger than
those of the earlier analysis, and verification of these results can be used as a test of chiral symme-

try.

I. INTRODUCTION

Interest in the theory of radiative KI3 decay peaked
nearly two decades ago with the careful work of Fearing,
Fischbach, and Smith (FFS) in which they calculated the
spectra of both charged and neutral modes using the Low
theorem and PCAC (partial conservation of axial-vector
current) (Ref. 1). They concluded that, unfortunately,
observation of a structure-dependent effect was diScult
for K»~ and nearly impossible for K,3~ decay. Since that
time there have been a number of experimental studies
which are quite consistent with these calculations, and
there is no evidence as yet that any such structure depen-
dence has been detected. From a strictly experimental
perspective then there is at present little interest in such
radiative decays. However, from a theoretical vantage
point this is not the case and it is of interest to analyze
the radiative-K»-decay sector from the viewpoint of con-
temporary particle physics.

Below we shall undertake such an analysis and will
demonstrate that QCD, or more specifically chiral sym-
metry, makes unambiguous predictions for K&3& decay
spectra which are well beyond what FFS were able to do
two decades earlier. In principle verification of such pre-
dictions would provide a test of the QCD framework and
would be of great significance. In Sec. II then we shall
outline the chiral perturbation formalism on which our
analysis will be based. In Sec. III we shall utilize this for-
malism to analyze the KI3~ decay sector and will compare
with earlier theoretical work. Finally our results will be
summarized in a concluding Sec. IV.

where Pi are the pseudoscalar fields and F =94 MeV is
the pion decay constant. Under chiral rotations U trans-
forms as

U~L UR (3)

Assuming that the nonzero quark mass breaking of chiral
invariance can be treated perturbatively, the simplest La-
grangian constructed from U which is consistent with
both Lorentz and chiral invariance in addition to U(1)
gauge invariance is

,'F Tr[D„U—D"Ut+m (U+ Ut)] ,'F„F"', —(4—)

where

D„U:—B„U+ie[Q,U]A„

is the covariant derivative and

i.e., under chiral SU(3)L SU(3)„. Here A,, are the usual
Gell-Mann matrices. This symmetry is spontaneously
broken to SU(3) i and Goldstone's theorem demands the
existence of eight massless pseudoscalar bosons. In the
real world, of course, since quark masses are nonvanish-
ing these Goldstone bosons, identified with the m, K, and

g mesons, have nonzero but small masses, and it is the in-
teractions among these particles which will be described
below. The restrictions which chiral symmetry places
upon these interactions are best described in terms of the
nonlinear representation

8
1U=exp i g

II. CHIRAL FORMALISM m„0 0 0

Since the chiral perturbation formalism of Gasser and
Leutwyler has been detailed elsewhere, we shall be con-
tent to present here only a brief synopsis in order to
define notation used in the remainder of the paper.

In the limit of vanishing quark mass QCD is invariant
under separate left- and right-handed (global) rotations

8

q~ exp i g A,,a, qt =I.qt, —
j=1

8

qR exp t g A,JP qit =Rqg

m=C 0 md 0, Q= 0 —
—,
' 0 (6)

0 m,

2m~C=
md+m,

2m 6m

m„+md m„+ md +4m,

The third component is simply the free-photon Lagrang-
ian.

0 0 0 —1

The first term of Eq. (4) is chiral invariant and includes
the meson kinetic energy, while the second piece trans-
forms as (3L, 3R )+(3L,3|t ) and describes the pseudosca-
lar masses provided
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Tree-level evaluation of X' ' yields, at 0 (p, m ),
lowest-order current-algebra —PCAC results. For exam-
ple, in the m sector we find the well-known %einberg
scattering lengths

7m m

32~ F 16m. F

However, such a tree-level calculation violates unitarity.
Inclusion of loops solves this problem but introduces
divergences at O(p, p m, m ). Such infinities can be
absorbed into renormalizing phenomenological couplings
of an order-four Lagrangian, such as given by Gasser and
Leutwyler:

X' '=L~(TrD„UD"U ) +Lz(TrD„UD, U ) +L&Tr(D„UD"U ) +L4Tr(D„UD"U )Trm(U+U )

+L5TrD„UD"U (mU+U m)+Ls[Trm (U+U )] +Lz[Trm(U —U )] +LsTr(mUmU+mU mU )

iL9—Tr(F„Q"UD "U +TrF„"Q"U D "U)+LioTrF„„UF"" U +LiiTrF„„+LizTrm

Here F„,F„" are external field-strength tensors defined via

Fr &=d F&it r)gr& $[F&~ Fr ~] F&=v g F&=y
pv p, v p p ~ v ~ p, p p~ P P P

and L~ ~ ~ ~ L]2 are arbitrary. The L; coefficients are themselves unphysical inasmuch they can be used to absorb
divergent loop corrections from the lowest-order chiral Lagrangian 2' '. However, renormalized coefficients can be
defined via

1 4mL;"(p)=L;+ —+ln +1—
y

32m 6 p

Here L;"(p) are the physical (renormalized) couplings measured at scale p and

3 I q=O, I 4= —,', I 5= —'„ I 6= —,",, ,
(12)

are constants which cancel the X' ' divergences. We shall also require the piece of the Lagrangian which arises from
the anomaly, which has the form

48

F„" U 'F~ UR —R +F~ UF~U 'L L +B„F," U 'F~ UR +d„F„UFa U 'L

+(F„"Bg"+B„F"„F )R +(F„dg +B„F„F )L + . ] . (13)

Here ~(2) . F (q2)

R~=U '8 U, L.=a.U U-' (14) 32m, 2F2 m m'.

(rr+(p')~ J'„~~+(p) ) =F„(q')(p +@')„. (15)

Contributions wi11 arise from both tree and loop diagrams
from which one finds

and only the terms of X,'„', relevant to our calculation
have been included.

Gasser and Leutwyler have obtained empirical values
for the phenomenological couplings L„.. . , L,o in Ref.
3 and this Lagrangian X' ' can be used at the tree level
together with X' ' at the tree and one-loop levels and
with 2',„', in order to generate a picture of low-energy
mesonic interactions consistent with QCD. In order to
see how this program is carried out we give a simple ex-
ample. Imagine one is calculating the pion electromag-
netic form factor

=2'
F2

where

4 5xH'(x) = ——+
3 18

2 1+ ———x
3 6

2 2m 1 m&——
q ln ——

q ln
P P

+ —+ln4m+ 1 —y
q 1

2 E

1/2
x —4 &x —4+&x

ln
X &x —4—&x

(17)
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At low q we find

2

F„(q ) — 1+q L9 — —+—ln2 2, 1 1 1

F 32~ F 2 3 p
2

1 IK+—ln
2

We observe that divergences have been absorbed into the
phenomenological parameter L9 and from the experimen-
tal pion charge radius

& r'. ) =0.439+0.OOS fm'

we determine

(19)

L9(p=m„) =(7.7+0.2) X 10 (20)

Similarly the remaining parameters L", (p, ), . . . , L;0(p)
have been fit empirically. Despite the apparently large
number —ten—of such parameters the model is predic-
tive, as we shall see.

A perspicacious reader will no doubt be asking what
will happen if loop effects from X' ' are included. The
answer is that such diagrams are divergent and must be
canceled by counterterms of order X' '. Why can such

I

loop diagrams be neglected? The key to understanding
this point is realizing that chiral perturbation theory
represents an expansion in derivatives of the Goldstone
fields and hence in momentum. The parameter A which
determines the scale of this expansion is of order

A-4~F —1 GeV; (21)

i.e., the coefficients of terms in X ',X' ',X' ', . . . should
be of order

(2). (4). &6). . . . 1.g —2.P —4. . . . (22)

so at low enough energies —say, s (mK —the chiral ex-
pansion should be realistic.

III. APPLICATION TO KI3

We can now apply this formalism to the K/3y sector.
We shall quote here only the tree-level results, as loop
effects are in general considerably smaller. We begin
with charged-kaon decay: K+ +n I+—vi. Since the weak
current consists of both vector and axial-vector com-
ponents there are contributions to the radiative decay
process from both anomalous and conventional com-
ponents of the weak Lagrangian. For the conventional
(vector-current) amplitude we find

&„,(pi, qi, q&)= f d x e '
&m (p, )iT(V' (x)Vx (0))iK+(p, ))

2~ 2L9
(pl qi q2)+ ( H pl ql +pl ql +g p2 q2 p2 q2 +pl p2 pl p2v)F„

' 1/2
L)o 1 FK

qi'q& qi q (23)

where we have used the identity

=1+ (mx —m )L~ .F F2 K (24)

Here the Born amplitude represents the simple kaon-pole diagram

&n (p )iV„ iK+(p, —q, ))&K+(p, —q, ) V™iK+(p,))
A p~y (p i, q i qp ) =

(pi —qi)' —mk

with

(25)

2L9 2
2L

(pi ) ) =(pi+p~)„1+, (pi —p~) —(pi —p~)„, (p i
—p~),F2 P F2 (26a)

2L9 FK 2L9
v'2&~'(pp)l V. IK'(pi)) =(pi+p~)„1+, (pi —p~)' +(pi —p~)„—1—,(p' —p') (26b)

For the anomalous (axial-vector-current) amplitude, we find

B„„(p„q,, qz)= f d x e '
&n (p~)iT(V'„(x)A„(0))iK (p, ))

1= —e„„g — q i (3p~i+9p~~)+B„„
224vr F

with

(27)
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pl pz ql v

pv paPrp lpzq I g24 zFz z
( )z5'1 P2

However, the kaon-pole term is higher in momentum and is proportional to the lepton mass when contracted with the
lepton current. This piece was thus dropped by FFS, and similarly we shall not consider it further. It is elementary to
verify that both axial-vector- and vector-current amplitudes satisfy the gauge-invariance requirement

1
lim A„,(p„q„qz)= M„„(pl,ql ),

p2 0 2F„
where

M„„(p„q,)=f d4x e"' "&olT( v„-(x)A'„(o))lit+(pl ) &

is the axial-vector-current amplitude for radiative decay. We have, from Eq. (23),
' 1/2

1 1lim A„„(pl,q„qz)=
p~~0 g 1 2p1$1

2L9
2 2L9 FJ;

(2P1 —ql}„ 1 + , ql +ql„ , (ql -2Pl ql} (pl -ql).F2 P F2 I
Fx

gpvpl ql +p lpq lv)

2v'2—
F, I lol:g„.ql (pl —

ql )
—ql. (pl —

ql }„]

q~A„.(pl, ql, qz)= —&~'(pz)lv. IIt'(pl)&, q~&B„.(pl, ql, qz)= —&~'(pz)IA„ IIt'(pl)&=o.
On the other hand, if the soft-pion limit is taken and PCAC is used, we require, for the vector-current amplitude,

(28)

(29)

(30)

(31}

while from direct calculation we find

M „(p„q,)=M„"(p„q,) v'2F~g„„—

4v'Z+ F (~9+~ lo )I (Pl

g„(P1

4&Z
L9(gp ql qlpql (32)

is the polar-vector amplitude for radiative kaon decay
and is related by a V-spin rotation to the amplitude for

2y:
a P1

(Pl ql ) z ep apP1'q l4~2~ F„
(36)

On the other hand, taking the pz~0 limit of Eq. (27) we
find

3
lim B„„(pl,q, ,qz}= e„@lpla P

p& 0 224m. F„
where M„„""(p„q, ) represents the kaon-pole term

1
M„,'""(pl,q 1 ) = v'2F„(p, —q, ),

211'01

2L9
X (2p 1

—
q 1 )„1+ q 1F2

2L9+ql„(q 1
—2p, .q, ) . (33)P F2

1
lim B„(p„q„qz)= X„„(p„q,) . (34)

X„„(p„q,)=f d x e

x & ol T( v™(x)v„(o)) I& '(pl ) &

(35)

Comparison with Eqs. (29) and (31) reveals that the
PCAC condition is precisely satisfied.

Similarly we may examine the axial-vector-current
term, for which we expect

1
X„„(Pl,ql ) . (37)

plpplv 'q leap lv Fplpq lv

GP 1 pPzv HPzpP 1 v

(38)Ipz„q 1 Jq 1ppz

Comparison with the chiral-symmetry form Eq. (23)
yields then

Thus the soft-pion condition is indeed satis6ed by the
axial-vector-current contribution. This agreement ap-
pears to be accidental since it is easily veri6ed that the
soft-kaon limit is not obeyed. Also in the related neutral
radiative E&3 amplitude discussed below the soft-pion con-
dition is violated while the soft-kaon limit is obeyed.
However, these results are perhaps not surprising since
the origin of such terms is from X,„, .

It is also of interest to compare these chiral-symmetry
predictions [Eqs. (23) and (27)] with the PCAC —Low-
theorem analysis of FFS. These authors, for the vector-
current piece, use the definition

A&„(pl, q l, qz ) = Ag&„Bq1&q1„—CPz+z—
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4LQ1+ pl aqlF2

' 1/2

A = — — + (L +L }q (p —p —
q )+ L [q —p (p —p —2q )]

2&v F~ 4I 98 = L10 + [m —p (p —
q )]

2&Z
F2 9

2L9D= —&2 1+ q 1

4LQ

F +, [m'. —
p~ (pi —qi)]

F~ q 1 2p 1
'q

1

1

2

1/2
4LQ

1+
2 pl 'qlF2

F~ 4LQ

F +, [m'. —
p~ (pi —qi}]F„ F2

1

2p 1 'q
1

2L9F= —
q

(L9+Lio)+&2 1+ qiF2 F 1

F~ 4LQ 1

F + lm P2 (Pi —q»]
F~ q 1 2p 1

'q
1

(39)

H =- '~'L0=— LQ,

2LQ F~ 4LQ
2 —

F +, [(pi —qi}'—p~. (pi —qi}]
1

2pl ql

10 &

' 1/2
2&vJ=— L +9

4LQ
1+

F2
F~ 4LQ+, [(P 1

—ql)' —
P2 (P 1

—q2}]
1

q 1 2p 1
'q

1

1
A FFS

2

Not all ten structure functions are independent, however,
and D,F, G can be eliminated using the gauge-invariance
requirement. Of the remaining seven terms, B,E,J do not
contribute to I( I3y decay but only to K&3 + . Thus, we

may write the most general vector-current matrix ele-
rnent for E13& in terms of A, C, H, I for which FFS gave,
based upon the Low theorem and PCAC,

' 1/2
F~ 4LQ

F
+ (m —p, pz)

~„.(pi qi q2} ~p ap(bplql+cp2ql+dpIP2}

for which chiral symmetry predicts

b= 3

24~'F'&Z '

(42)

p2~0, as might be expected from the PCAC origin of
the derivation.

In the case of the axial-vector-current contribution,
FFS defined a similar set of structure constants

4(L9+L,o)+
F q 1 'P l

—9
24+F'v'2 ' (43)

CFFS ~FFS L IFFS 0
2&2
F2 9

(40}

Cchiral g FFS ~chiral ~FFS

Ichiral IFFS 2 2

F Lio .

(41)

Thus imposition of the full requirements of chiral invari-
ance yields additional constraints over the results of FFS.
However, any such differences vanish in the limit as

Comparing with the chiral-symmetry predictions in Eq.
(39) we find

g chiral g FFS
—LQ —Llo

ql P2

d=0,
while FFS used a K'-pole model together with the soft-
pion theorem to give

1 fa * ir'ay
2F m', —m~

(44)

(Of course, no information could be gained about c, since
its contribution to 8 „vanishes as pz ~0. ) Since
3/24+2mF-0. 24mir we .see that the order of magni-
tude is the same in the FFS and chiral approaches. How-
ever, the chiral model is completely predictive, with no
need for model-dependent assumptions.

Similarly we can analyze the neutral radiative mode
EC ~m I+vl for which the chiral-symmetry prediction
is, using the FFS notation,
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Lio—4 [q p —p (p p— q—)]—4 q. (p —p —
q )

L (o FK 4L9
4 + 2 F + [mK Pl (P2+ql )]F„ F2

4L9
, p2qiF q)+2p2 q)

2L9
2 FK 4L9

C =2 l+ q, 2— + [mK —p, .(p2+q, )]
1

2
q &

+2p2. q&

L9a=4
F2

L9 4L9E= —4 + 1 — p qF2 F2

LioF= —4
F2

FK 4L9 1+ [(P2+ql ) Pl (P2+q»]F F2
i +2p2 q1

(45)

L9G=4
F2

L9 2L9K= 8
2

+2 1
2 qF2 F2

FK 4L9

F F2+, [(P2+ql)' —Pl (P2+ql)]
1

2
q] +2p2

L9 —L ~o 2L9 FK 4LI = —4 +2 l+ q2l 2 — + [mK —p (p +q )]F2

4L9J = 1+ p2'q)
FK 4L9 1+ [rnK P 1 (P2+ql )]F F q&+2p2 q&

for the vector current and

3b=
24m F

—3
C =

24m. F
(46)

2 Inon-Born Lio
mmK — mK

2
mK

( g non-Born+Inon-Born

p]'q&

=0.66,
(48)

l~ 2Inon-Bornl l 55

2

I
g non-Born+Inon-Bornp

q I
2 5 (47)

ImK2bl =2.5 .

The corresponding chiral-Lagrangian predictions are

=0
for the axial-vector current. Once more it is easy to veri-
fy that both gauge invariance and PCAC structures are
satisfied by these forms, except for the violation of the
current-algebra constraint for 8 „as discussed above.
However, in comparing with the FFS analysis, although
the Born terms agree between the two approaches, FFS
could not relate their non-Born contributions to experi-
mental observables. Instead these were calculated in a
simple vector —axial-vector meson-pole model, yielding

3mK
mKb = =0.35,

24' F

which are somewhat smaller than the FFS predictions.
%e see again that the chiral model is completely predic-
tive, with no model-dependent assumptions required ex-
cept for that of chiral symmetry, which follows from
QCD.

In principle then careful measurement of radiative K13
spectra could provide a definitive test of the chiral predic-
tions. Unfortunately, such a program does not appear to
be currently practical experimentally. For the electron
radiative mode, inclusion of structure dependence makes
virtually no change in the calculated spectrum while for
muon decay the effect of inclusion of structure-dependent
(i.e., non-Born) terms is only slightly larger, as discussed
in Ref. 1. In both cases, the spectrum is dominated by
the characteristic 1/k dependence of the inner brems-
strahlung (i.e., Born) terms. Numerically, we have, for
the electron mode,
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where

=(2.3889+0.007m' f +0.002mtrb) X 10

f —
( g non-Born+ lnon-Born)1

5'2'~
&

(50)

Thus changing any of the structure-dependent terms
affects the above ratios at only the tenth of a percent lev-
el. In the case of the muonic modes effects are larger:

I (K+ np, +v&y. , Er & 30 MeV)

I(K+~n e+v, )

=(0.509 15—0.007 46mtt f —0.007 58mt~rb) X 10
(51)

I (K ~n+p, v„y, Er & 30 MeV)

I (K ~tr+e v, )

= ( 1.466+0.017m trf +0.005m' b ) X 10

1(K+~~ e+v, y, Er &30 MeV)

1'(K+~n e+v, )

=(2.0981—0.006mtt f—0.003m' b) X 10

(49)
I (K ~n.+e v, y, Er &30 MeV)

I (K ~n+e v )

We see then that changes in the structure-dependent
terms now can affect results at the percent level. Howev-
er, the overall branching ratios are an order of magnitude
lower than in the case of the electron counterparts.

IV. CONCLUSIONS

We have demonstrated that the assumption of chiral
invariance allows a model-independent prediction to be
made for the matrix elements for radiative E(3 decay in
terms of X' ' parameters L9,L,o which are well deter-
mined from the pion charge radius, pion radiative decay,
respectively. Comparison with earlier PCAC —Low-
theorem methods are much more powerful and do not re-
quire model-dependent assumptions. While the updating
of these predictions is interesting from a theoretical per-
spective, the veri6cation of the chiral results is probably
beyond the reach of present experiments because of the
dominance of the inner bremsstrahlung component of the
radiative spectrum.
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