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The CP-violating (CPV) kaonic matrix elements e', Imago, and ImA2 are used to compute CPV
observables in baryonic systems. The numerical results for the electric dipole moment and the
difFerence between A and A decay parameters are similar to other approaches that use quark opera-
tors. Relations between the neutron electric dipole moment, CPV pion-nucleon coupling constants,
and A-decay parameters are derived.

I. INTRODUCTION

Efforts to understand the nature of CP violation (CPV)
have gained new impetus from recent experiments on the
E -E7 (Ref. 1) and 8 -S systems. Several different ex-
periments are planned to further elucidate the CP-
violating aspects of kaons. It is very clear that any
discovery of CP violation or time-reversal violation
(TRV) in other systems would by very important.
Indeed, there are systematic significant efforts to study
TRV in nuclei and atoms.

The experimental efforts have stimulated theorists to
search for and predict the size of new CPV effects. How-
ever, the very small value of the upper limit on the elec-
tric dipole moment (EDM) of the neutron [D„&5
X10 e cm (Ref. 5), —(1.4+0.6) X10 e cm (Ref. 6)]
places very strong constraints on all of the theories.
Standard-model estimates of the neutron EDM employ
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In
those treatments the CPV occurs only at the three-loop
order. Typical results are D„=10 ' —10 e cm. The
spread in the results arises mainly from the uncertainties
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in relating the hadron CPV properties to matrix elements
of quark operators. For example, computing e (the CPV
mixing parameter in the E Eo syst-em) from the CKM
matrix requires detailed knowledge of the kaon wave
functions. Relating the CKM matrix to the neutron
EDM is even more difFicult.

The aim of the present work is to provide alternative
estimates of CPV observables such as the neutron EDM
and the differences between A and A decay. ' In our
approach measured hadronic matrix elements (including
the CPV kaon observables) are used to compute Feynman
graphs at the hadronic level. Examples are shown in Fig.
1. By employing the hadronic basis one avoids the
difficult steps of obtaining the quark CPV parameters
from the kaonic system and inserting these quark param-
eters into the matrix elements involving the baryons.
However, there are other problems, see Sec. V.

Here is an outline of our approach. Since measured
CPV matrix elements (generated only in the kaon system)
are to be used, it is necessary to review the standard nota-
tion. This is done in Sec. II. Our hadronic approach is
applied to the computation of the neutron EDM in Sec.
III. The differences between A and A decay observables
are predicted in Sec. IV. Experimental interest" in com-
paring A and A decay has been stimulated by the work of
Refs. 9 and 10. The output of Secs. III and IV can be
parametrized in terms of effective CPV meson-nucleon
coupling constants. Section V contains a critical discus-
sion of our approach in which various uncertainties are
discussed. Section VI contains a summary, including a
set of relations between various possible CPV observ-
ables.

II. CP VIOLATION IN K DECAY

l
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FIG. 1. (a) A sample CPV graph. The CPU occurs in the
blob. (b} EDM in terms of the efFective CPU pion-nucleon in-
teraction (blob). The S, 8'stand for strong, weak vertices.

%e use the formalism of Wolfenstein. ' The central
point is that a phenomenology requires three real CPV
quantities, while the neutral-kaon data provides only two
numbers. Thus, there is a void which can, in principle,
be filled with the output of experiments on other systems.

The observations of CPV, in kaonic systems, can be
sUmmarized' in terms of two complex parameters g+
and goo and the charge asymmetry 5 defined by
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A (KL ~n+rr )

A (Ks ~sr+sr )

A(KL~rr vr )

A(K mn )

r(K, ~ i+-v) r—(K, ~+i V)-
5=

I (K m I+v)+I (K m+1 v)

(2.1)

One can also show'

=e+e'/(1+m /&2),

rioo=@ —2e'/( I —&2w ),
(2.9a)

(2.9b)

(2.10)

m ImAoa=I+i (Im Ao/Re Ao) = —e' +
hM ReAO

K, =(K K)/—&2, CP =+,
K =(K +K )/&2, CP= —, (2.2)

where A stands for amplitude and l is either e or p. The
experimental results are tabulated in Ref. 13.

In general, CPV may occur either in the mass matrix
of the E -K system or in the decay amplitude. The CP
eigenstates are

ImA2e'= e'~m
Re A

&

ImAo

Redo

8'=5, —5,+—=48'+8' .
2

w =Re A 2 /Re A o
=0.045,

8=arctan(26M/I z ) =43.67'+0. 14',

(2.11)

(2.12a)

(2.12b)

(2.12c)

where K = —(CP)K . In the K, —Kz representation
the complex mass matrix takes the form

. rM —i—=
2

—im'

im . p) lf
M, 2

—iy y,
(2.3)

assuming CPT invariance. The off-diagonal terms that
mix E, and K2 are the result of CP violation. To a good
approximation' the diagonal values are equal to the ei-
gen values

M, —M~+i(y, y~)/2—=(Ms —ML )+i(l s —I L )/2

AM+i I—s/2, (2.4)

where hM is the mass difference between EL and j:s and
in the last line we use I I && I s. The factor i and the an-
tisymmetry indicate that the term m' violates not only
CP but also T as expected from the CPT theorem.

The decay amplitudes of main interest are E ~2m
written as

A[K ~am(I)]= AI exp(i5r)

A [K —+m m (I)]= —AI'exp(i 5I ),
(2.5)

iy' . Imdo—1
I s Redo

(2.6)

Thus the phenomenology contains the CPV quantities
m', Imdo, and Im A2. The observables can be expressed
in terms of these three numbers. As a result of CP viola-
tion in the mass matrix (2.3) the mass eigenstates differ
from the CP eigenstates:

where I is the sr~ isospin and 51 is the corresponding ~m.

phase shift. From CPT invariance and unitarity one can
show that AI is real if CP is not violated and also that y'
in Eq. (2.3) is given to a good approximation by

The numerical values are experimental results. ' '
One can show' that the asymmetry parameter 5 can

be expressed as

5=2ReZ=2Ree . (2.13)

K,

Equation (2.13) is well satisfied by the experiments. '

Thus precise experimental knowledge of g+ and goo
determines 5. Thus there are only two experimental ob-
servables to be determined from hm', Im Ao, and Imd 2.

It is worthwhile to present a physical interpretation of
the parameters e and e'. The relevant graphs are those of
Figs. 2(a) and 2(b). One source of CPV (Z) is that due to
mixing between bare KL and Kz systems, Fig. 2(a). (The
bare KL is simply the Kz.) The graph of Fig. 2(a) is pro-
portional to X=2mM, z/(q —Mz ), where M, z is the ma-
trix element for mixing between the bare K and I(

mesons and m is the Ko mass. For an on-shell KL,
q =ML and X is simply Z=(1.6 +1.6i)X10 . But in
evaluating graphs such as Fig. 1(a), the kaon is off shell
and its propagator is large compared with ML —Ms.
Thus the effects of M» and Z turn out to be negligible
when off-shell kaons are involved. (We shall show below
that Z=e. )

Figure 2(a) shows mixing between the bare KL and Kz
states. However, there can be another effect, CPV in the
KL ~me decay matrix, Fig. 2(b). For free kaons this is
proportional to e' which is limited to about 10 e. At
first glance, the effect of e' may be thought to be negligi-
ble. But with this direct CPV the factor X does not ap-

K~=(K, +eK, )/( I+ ~Zi )'

KL =(K2+eK, )/( I+ iZi )'

(2.7a)

(2.7b)
(b)

m' —i y'/2E=l
6M+iI /2

(2.8) FIG. 2. Sources of CPV. (a) Mixing between bare EL and E&
states proportional to F. (b) Direct term proportional to e'.
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pear. In our calculations, the influence of CPV in the de-

cay operators dominates. The value of ~e ~
is given by'

sible to transform the phase of the strange (s} quark:

s~se ' =s(1—ia), s~se' =s(I+ia) . (2.16)
Iel=(2. 259+0.»8)X 10 '. (2.14)

The recent CERN experiment (Burkhardt et al. ') finds

I

Re—=(3.2+1.0) X 10
E

(2.15a)

whereas a Fermilab experiment (Woods et al. ') publishes
I

Re—=(3.2+2. 8+1.2) X 10
E

(2.15b)

A newer value announced at the 1989 Lepton-Photon
Conference is"

I

Re—=( —0.5+0.9) X 10
E

(2.15c)

(=Im Ao/Re A o,
g' = Im A 2 /Re A 2 .

(2.15d)

(2.15e)

The phases of e and e' are approximately equal (because
8=8'), so that Eqs. (2.11) and (2.10) can be combined to
yield

w(g' —g)
e m'/bM+g

If g' « g, use Eqs. (2.10) and (2.11) to obtain

(2.15f}

More precise values from both experiments are anticipat-
ed in the next year. Note that a precise knowledge of ~e'~

and ~e~ and the determination of the phases with Eqs.
(2.10) and (2.11) are not suScient to determine
m', ImAO, and ImA2.

It is convenient to define the phases of A o and A 2 as

Under (2.16) one finds that any one of the three parame-
ters can be set of zero. Wu and Yang set ImAO to zero.
However, theoretical formulations such as the standard
model lead to nonzero values for all three parameters.
We do not take any of the parameters to zero in our cal-
culations. (We checked that the results presented below
are unchanged if we adopt the Wu-Yang phase conven-
tion. ) The key point is to use Eq. (2.16) for all of the s
and s quarks.

Note again that e' is suppressed by a factor of
w=0. 045. Thus processes (other than kaon decays)
which depend on Irn Ao and ImA2 but without the w fac-
tor may be a fruitful source of information about CPV.

III. CPV IN mNN AND THE NEUTRON ELECTRIC
DIPOLE MOMENT

As a first step, we compute the CPV coupling con-
stants for N—Xm. These can be used to compute the
neutron electric dipole moment (EDM) and to estimate
the CPV and TRV of the nucleon-nucleon and nuclear
systems.

If one assumes that the CPV occurs among the kaons
the relevant graphs are those of Figs. 3(a) and 3(b). The
heavy blob contains the CPV which may be related to the
parameters m' and AI of Sec. II. The strong emission of
a kaon occurs via a transition of the nucleon into a hype-
ron, here the A. However, the reconversion of the A into
a nucleon requires a weak interaction. Hence one can al-

ready anticipate the neutron EDM (D„)calculation. The
result will be of order

2 E'

Re —Ree .
N

Using the recent experimental values leads to

—(2.2+1.0) X 10 (CERN),
(3.3+6.0) X 10 (Fermilab).

(2.15g}

(2.15h}

eD„gsg we /41T
n

=e(0.2X10 ' cm)10(10 ' X10 )/4n.

=10 ' e crn,

It is clear that measuring e' is a difficult task. One
reason is the appearance of the factor m=0. 045 in Eq.
(2.11). Another possibility is that the value of e' is
artificially decreased by a cancellation between the b,I=

—,
'

and —,
' amplitudes g and g'. Flynn and Randall' study

the effects of the electromagnetic penguin graphs and find
that the value of g' can be substantial. For the extreme
case of g'=(, the measurements of Re(e'/e) provide no
constraint on either g or g'.

The difference between the values of Z and e is of con-
ceptual interest. This is because graphs, such as Fig. 2(a),
that depend on mixing between CP eigenstates, are pro-
portional to Z rather than the measurable e. However,
the measured (or implied) values of e' are small enough
(implying g is small) so that Z and e are essentially the
same via Eq. (2.10).

Wu and Yang'7 emphasized that the parameters m',
Im Ao, and Im A2 cannot be determined because it is pos-

/q —k

P+k —q y P+q

(A+Eiy, ) 7e

q —h,

p +k
(A —iivs) „

FIG. 3. Graphs for the CPV ~ -X and coupling constants.
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Parameter

e'/e
E

~x~z /4~
6 /4a

B
B,

ReAo
u) =ReA2/ReAO

TABLE I. Parameters used in the calculations.

Value

3.91 X 10 MeV
2.64 X 10 MeV

See text
(1.64+1.57i ) X 10

13.6
14.3

10.76/v 3
—10.76&2/3

3.4X10 ' MeV
0.045

Origin

Ref. 10
Refs. 1 and 15
Ref. 13
Ref. 19
Ref. 19
Refs. 13 and 18

in rough agreement with typical standard-model evalua-
tions.

A. Evaluation of CPV mN couplings

L~N~=GFm Q)v( A Bys—)BAQ 0,

L/ op= GFm~ A( A+By5)B/y 0

(3.2)

The evaluation of Figs. 3(a) and 3(b) requires informa-
tion about the strong, weak, and CPV meson-baryon in-
teractions. The parameters of CPV are described first.
The CPV occurs in the matrix element via a physical
kaon (K) decaying into two pions, recall Eq. (2.5). Here
the pions are virtual (the center-of-mass energy is less
than 2m ) so that one may set the mm phase shift 61 to
zero. The K decay amplitude enters in Fig. 3(a) and the
complex conjugate of that amplitude enters in Fig. 3(b).
The strong meson (P)-baryon (B) Lagrangian densities
(L) that we use are

where GF, the universal Fermi coupling constant is

GF = 1.03 X 10 /M~. The A~pa interactions have
the form of Eq. (3.2) but with constants A, and B,. The
measured ratios A, /A and B,/B are consistent with the
(
—&2) of the b,I= —,

' rule. We use the numerical param-
eters given in Table I. Each of these is determined from
experimental data and all the input necessary to do the
calculations are now specified.

Computation of the sum M of the graphs of Figs. 3(a)
and 3(b) yields

L)vAx =G)vAlr&B~y5B&grr,

L~~„=GtB~y5r BNf~ .

The weak A=Km vertex functions are

(3.1)

M= 2(GFm )Im((K ~H m~) )BIu(p+q)u(p),
(4~)

(3.3a)

where

X
) mA —m„+m„(1—x, —xz)

I [qx2+(p+q)(1 —x, —x&)] +mj, x, +(m, —
q )x2+(m A

—m„)(1—x, —x2)]I
(3.3b)

o mop

O. I8

The integrals are convergent, since the only potential log-
arithmic divergence goes as fd k k„F(k ) =0. Numeri-
cal evaluation yields I=0.16 fm at q =0.0. There is
only a slow variation with q, see Fig. 4. (Note that the
term of Fig. 3 proportional to A goes as i y5 and is merely
a second-order weak correction to the usual strong in-
teraction. )

To proceed we must relate Im(K H~n~) to ImAI.
One may use (2.1) and (2.5) with 51 =0 to show that

0.l4,— (K ~H~vr+7r ) =&2/3(Ao+ A2/&2),

(K H~rr n ) = —&I/3(Ao —&2A2) .

(3.4a)

(3.4b)
0 l2-5 -4 —3 -2 —

I

FIG. 4. Variation of I(q ) [Eq. (3.3)] with q .

The use of (3 4a), Table I and the value
ReA2/ReAo =0.045 gives ReAO =3.38 X 10 MeV. A
similar use of Eq. (3.4b) yields ReA0=3. 25X 10 4 Mev.
Using Eqs. (3.4) and measured rates for Kz~m. ~ leads to
ReAz/ReA0=0. 032 and ReA0=3. 4X10, MeV. To
be definite we use the values of Table I.
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We may now put everything together:
1/2

ImAz
w B,Iu(p+q)u(p),

M(~ nn)=—

1/2
ImA

M(n+n p)= 2(ReAO)GFm
(4m. )

GnKA Gp~ Im~o
2(ReAo) —&2 w BIu(p+q)u(p) .

(4~)~ v'3 Re A o Re A z

(3.5a)

(3.5b)

Thus,

I

M(m+n ~p) = —6.9X10 ' g+ —wv'2

M ( vPn ~ n ) =3.5 X 10 '
( g

—&2$'w ) .

(3.6a)

(3.6b)

I

significant ss content. Obtaining a reasonable estimate
of such an effect is beyond the scope of this work. But
one can make a wild guess (WG) that there is an enhance-
ment by 10 over the standard-model phase. Then one ob-
tains g=g

=2 X 10
To obtain the mN CPV coupling constants one needs
values of g and g'. However, no data exist. The equation
for e',

and

g „(n n, p)=1.5X10

(3.9)

e = —we (( g}
1

V'2
(3.7)

« I&'I =w/&2lg' —gI, depends on a different linear com-
bination of g and g' than appearing in Eq. (3.6). Thus the
neutral K data do not determine gcpv. However, one can
make a series of estimates.

In the standard model (SM) with penguin dominance
I(I))Ig'I and Ie'IAO. Then (=g and is given by Eq.
(2.15h). This gives a CPV pion-nucleon coupling con-
stant defined as gcpv:

SM

gcpv(7T+n p)= 1.5X10 (CERN)

gcpv(m+n, p ) =(2. .3+4.2) X 10 ' (Fermilab),
(3.8)

if the CERN or the Fermilab value of Eq. (2.15h} is used.
It may turn out that Ie'I lIeI =0, but with g' and g' each
not zero. Indeed if g=g' then there are no experimental
limits on either. Then how large can g possibly be? The
relevant standard-model phase is ImC5 ~2X10 in the
notation of Ref. 9. Then the upper limit is essentially the
same as that of the CERN value of Eq. (2.15h). One can
make a more optimistic hypothesis. Suppose the CPV
E~2m decay is enhanced due to the presence of the nu-
cleon. This is possible, see Fig. 5, if the nucleon has a

The wild-guess value would also be obtained if
g' —(=+0.1(. Equations (3.8) and (3.9) are chosen to
yield relatively large values of ( and gcpv. However, the
possibility

g+ —w =0
2

(3.10a)

is not ruled out. In that case one obtains at lower limit
(LL), the pessimistic value

gcpv (77 n, p) =0 (3.10b)

B. Evaluating the neutron electric dipole moment

The next step is to compute the neutron electric dipole
moment D„. We proceed by using the values of gcpv of
Eqs. (3.7)—(3.10) to compute the graph of Fig. 1(b). The
estimates of Crewther et al. ' and Morgan and Miller
are relevant. These works are motivated by term 8 of
QCD. The value of the CPV n NlV vertex function (gcpv )

is obtained in terms of 8. Then D„ is computed in terms
of gcpv(~+n, p). Hence we can use our values of
gcpv(n+n, p) in the expressions of Refs. 21 and 22.
Crewther et al. ' use a current-algebra estimate. Then
in our notation their result is

u, c,t
(a)

Dc= G g (n n,p}M„ln
CPV + M

v'2 " M„

=9.6X10 '
g (m+n, p)e cm . . (3.11a)

d

K

S

(b)

FIG. 5. Enhancement of K~2m due to nucleonic ss pairs.
{a) Standard penguin diagram. {b) Possible nucleonic enhance-
ment.

Morgan and Miller make use of the cloudy bag model
which allows one to relate the pionic properties of the nu-
cleon to observables. In Ref. 22 both quark and pion
terms yield contributions to D„, but only the pionic term
(D„) is relevant here. D„of Ref. 21 differs from that of
Ref. 20 in two ways: terms of all order in m are kept
and, the radius R of the three-quark nucleon bag pro-
vides a cutoff for the integral. These effects reduce the
magnitude of the computed D„. The result is about half
as much as that of Crewther et al. For R =0.6 fm,
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D„=4.8X10 "g (m. n, p)e cm . (3.1 lb)

=(3.5 —7) X 10 (3.12}

The values of g from Eqs. (2.15h), (3.9), and (3.10a) yield

DsM= —(7—14) X 10 e cm (CERN),

DsM=(1+2) X 10 e cm (CERN),

D =(7 14)X—10 ' ecm,
DLL 0

(3.13)

Using the current experimental upper limit (UL} of
D =D" =(3X 10 e cm) in the third line of Eq. (3.12),
an upper limit on g=g can be obtained. The value of
PL=1000»2m. But the measurements of e' already
constrain g to be very small. Thus the current upper lim-
its on D„do not place a useful constraint on g.

The value of D is consistent with the standard-
model estimates using quarks. The large value in Eq.
(3.12) is at the upper limit value of Ref. 7. This is as it
should be, since Eqs. (3.7) and the larger value of (3.13}
are based on the assumption of a relatively large value of
~e'~. Thus, we provide a confirmation of the quark-based
standard-model estimates of D„.

IV. CPV IN A AND A DECAY

We use both values in (3.8b), (3.9), and (3.10b) to provide
a range of estimates of D„:

D„=(5—10)X10 '
g (mN, N)

=(3.5 —7) X 10 ((+('co&2)

decay. An immediate consequence of such a CPV cou-
pling constant is the existence of a time-reversal-violating
TRV signal in the weak decays A~Nm. However, such
effects are masked by the influence of Nm final-state-
interaction effects. A better way is to compare A and A
decays. In principle, this can be done using pp col-
lisions. '" Plans to carry out a dedicated experiment are
in progress. "

A. General formalism

The formulas necessary to compute CPV in nonlepton-
ic hyperon decays are given by Donoghue, He, and
Pakvasa (DHP). We use their formulas and notation
and begin by presenting a brief summary.

The amplitude M for the hyperonic nonleptonic decay
B'~B m' is a sum of a parity-violating S-wave term
S(B;) and a parity-conserving P-wave term P(B;):

M(B'~B m')=S(B,')+P(B; }cr q . (4.1)

a=2 Res "P/( ~S~ + ~P
~ ),

P=2 ImS*P/( IS I'+ IP I') .
(4 2)

For antihyperon decays one uses the parameters S, P, a,
and P.

The following quantities vanish if CP is conserved:

Here a, b, c refer to charges and q is the momentum of
the final baryon in the B' rest frame. The experimental
observables are the total decay rate I and a,p which
determine the decay angular distributions and polariza-
tion of the final baryon. These are given in terms of S
and Pby

The basic reason for investigation of these effects can
be seen by comparing Fig. 6(a) with Fig. 1(a). One
immediately sees 6 (A, Nn )/G "(N,Nm) —

—,'(6/
GFm „)=10, since two strong interactions appear in A

0
7f

I —I I a+I a a+a
I+I Ia —la a —a
rp+rp p+p+~
I-P rP P P--—

DHP parametrize the decay amplitudes as

I(S, +y~) I(S, +y~)
I 7 I

(4.3)

(4.4}

0

in which i denotes the possible final isospin state, S; and

P; are real, 5; is the strong final-state-interaction phase.
The phases P contain the information about CPV. If
these are zero S= —S and P =P, and the observables of
Eq. (4.3) would vanish. Under the CP transformation
S,P; ~+S;P; and P, P; ~ P, P, so that- .

i(5 —p ) i(5 —p )S=—QS;e ' ', P=QP, e ' ' . (4.5)

(b)

FIG. 6. S-wave terms in A~N~, A~Nm decays. CPV
occurs in the blob.

DHP give expressions for all of the nonleptonic hype-
ron decays. We consider only the A decays: A~p~
(A } and A~nn (Ao) here. Then

S(A }=—&2/3S„e ' ' +01/3S33e
(4.6)

P(A )= —&2/3P„e " ' +&1/3P33e
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SP SP S
Sij S261,2I P'' P261,2I 0 421 51 21

51,=521, hI is the magnitude of the change in baryon iso-

spin, and I is the final ~-baryon isospin. The values of
the parameters are summarized by

may write [using (4.7) and (4.9)]

B=Bs+B, Bs = —8.0$t, Bp=8.0$, . (4.13)

5, =6.0', 6„=—1.1',

5 = —3.8, 531=—0.7',

S33 —0 3

32.8
'

P33 0.06

P11 12.4

It is therefore an excellent approximation to take

[s +y~)
S(A ) = —&2/3st, e ' ' = —3/2S(AO),

(4.7)
B. Computing 4,

The S-wave terms arise as in Figs. 6(a) and 6(b). The
effects of the two strong iy~ couplings lead to an S-wave
amplitude since y5= 1.

In our approach the CPV difference between A and A
decays arise from CPV in the K ~m.~ and K ~mm ampli-
tudes. Recall that

i(5 +p~)
P(A ) = &2/3—P„e " i = ~2P(Ao)

Then one finds

(4.8) &Ic lHl

& I~ IH I ~~(I ) }= —A *e'" .
(4. 14)

6 (A ) =3/2(S33/S&
&

)sin(53 —
5& )sin($3 —

pt ),
A (A ) = —tan(5t t

—5t )sin(Pt —
P) ) = A (Ao), (4.9)

B(A )=cot(5, t
—5, )sin(gt —Pt)=B(AO) .

S= —V'2/3s, t e '(1+i/) ),
S=+3/2/3st, e '(1 ipt )—,

(4.10)

The term 6 has three very small factors, so we concen-
trate on A and B. Note that B= —64. 5 A.

The problem of computing CPV reduces to that of
computing P& and P&. We have

S=F~o+Scpc

S= —F~ 0 Scpc
(4.15)

Here F stands for the magnitude of the Feynman diagram
of Fig. 6(a} or Fig. 6(b), not including the Ao factor. The
b,I=

—,
' rule is used in obtaining Eq. (4.15). The effects of

other CP-conserving (CPC) diagrams are denoted as
Scpc. The use of Eqs. (4.12) and (4.1 5) to compute Pt
yields

Using CP conservation of the strong amplitudes and set-
ting 51=0 for the neutral mm system at subthreshold en-

ergies one finds that the amplitudes for A~nm and
A~no. can be written as

so that

s s+s
t

S —S

Similarly,

P = —3/2/3P, t e "(1+i$, ),
P =3/2/3P„e "(1—iP, ),

P P-P

P+P

(4.11)

(4.12)

FI A FR A

Sexpt Sexpt
11 11

(4.16a)

The exPerimentally measured value of Scpc (Set&Pt) aP-
pears in the denominator. One knows

S',", '= —40X1O-'. (4.16b)

The next step is to compute the Feynman-diagram
term (F)Re(AO). The possible values of g are given in
Eqs. (2.15), (3.9), and (3.10). A straightforward evalua-
tion yields

The parity-violating (P&) and parity-conserving ((()t)
CPV phases have different physical origins, and are treat-
ed separately. Indeed since these are separately small, we

i

with

1 1

, g ~x~g.,~.(P+q )~ A(P»}J~3 (4m)
(4.17a}

1 —xi mAx, —m„(1—x2)
0 0 m„(1—x, —x2)(l —x2) —m~x, (1—x, —x2)+mItx, +m~2 —

q x,x,
(4.17b)

P, =0.33( (4.18)

and [from (4.13)] Bs=2 6( If g=P. .[Eq. (2.15h}]
B'=BsM

At q =0, J=0.12 fm. Then using the numbers in Table
I we find

BsM = —5. 8X 10 (CERN),

BsM =(9.0+16)X 10 (Fermilab) .

If (=g [Eq. (3.9)] B =Bwo

B~~ =5.8X10

(4.19)

(4.20)
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Of course, the value g =0 is not ruled out so a lower limit
(LL) is

lasL, I
=o.o . (4.21}

Note that the "standard-model" value BsM (with CERN
data) is about five times larger than the DHP value.

If the small measured value of e'/e is due to a cancella-
tion between g' and g, the value of 8 could approach the
magnitude of the wild-guess values.

C. Parity-conserving CPV

(4.24)

In our approach the P-wave (CPV) phase P& arises
from K~3~ amplitude as in Fig. 7. Three y5 operators
act on the baryons, so the net result is the single y& need-

ed for a parity-conserving vertex. We may then write the
P-wave amplitudes for A~An. , A~A~ as

P =F, (K IH I
~me. & +Fb (K IH Immn. &'+Pcpc,

P=F.&KIH I~~~&+F, &KIH I~~~&'+P,pc,
in which the CP-conserving terms are Pcpc. The dia-

gram of Fig. 7(a) is written as F, (KIHI men ), and that
for Fig. 7(b) is Fb(KIHln. ~n)'. Another graph, that of
Fig. 7(c}does not contribute to CPV because of a cancel-
lation. Then we find, with Eq. (4.12),

F.«, IH I~~~&+F,«, IHI~~~)"
iyP= (4.23)

2Pcpc

Recall that

i P&
= — i Im(Z) (KL I

H
I
n me )p

v'2

Pcpc

F.&KsIH I~~~&+F,«, IH I~~~&*
+

+2Pcpc
(4.25)

Since Z and (KI IH I~en) .are measured, it is tempting
to keep only the first term of Eq. (4.16). This yields a
negligible result, if the effects of the virtuality of the Kl
are included: In free space, the mixing between KL and

Ks can be expressed as the conversion of a bare KL (K2)
into a bare Ks(K, ) as in Fig. 2(a). The graph is

2mM12
&K, IHI

q m—, +i(I"sm /2)

mL ms+i(I sm /2)
2 2 &KslHI~~& . (4.26)

q
—ms+i(I sm /2)

For on-shell kaons q =mL and the term is proportional
to Z as in Sec. II. However, for off-shell kaons the factor

mi —ms+i I sm /2

q ms+—i I sm /2
(4.27)

essentially vanishes because the numerator is so small.
The rare opportunity of seeing CPV in Kl -Kz mixing in
free space arises from the small energy denominator.
This denominator is absent when kaons are virtual. Nu-
merical calculation shows that including the effects of the
factor F of Eq. (4.27) causes a suppression by a factor of

5X 10 17

Neglecting the effects of K -K mixing in Eq. (4.25)
leads to

so F.&K, I HI ~~~ &+F,&K, I HI ~~~&"

+2Pcpc
(4.28)

We need the value of Pcpc(P;"P') which appears in the
denominator. One knows

P11 —15 X 10 (4.29)

(a)

(b)

n N

The next step is to estimate (E, IH Immn&. Since K.
&

is.

a pure CP=1 eigenstate, (K, IHInnn)=0 for thr.ee.

I =0 pions. The CPV occurs in H
I nmm), so tha. t

(K, IH In~a ) is analogous to e' of the two-pion decay.
The quantity is accessible in the observation of the time
dependence of the decay rate of an initially pure K
and/or K beams. At present no signature for K ~3m
events have been found. '

We repeat the Particle Data Group' (PDG) analysis in
order to obtain reasonable estimates. For E+~3m., the
ratios of amplitude

(c)
h N N

A(K m+~ n )

9+ —0 + — 0A (KL ~non). .

A (Ks ~nnn)'''
A(K n m n )

(4.30)

FIG. 7. P-wave terms in A~No, A~No. decays. CPV
occurs in the blob.

are the quantities that measure CPV. If CPT invariance
holds and there are no EI=—,

' or —,'transitions, then
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Req+ o can be neglected. Furthermore Imp+
=Imp =—Imp. Then24

Qr(Ic,
Imp+ o= &0. 12 (Ref. 25)

Qr(rc,
(4.31)

ydk
(z )'

P+k P+q

Qr(rc,
Imgooo= &0.23 (Ref. 23) .

Qr(lc, -~'~'~')
Since K& contains an e admixture of Kl one expects
Imri = Ime = 1.6 X 10 . Eq. (4.33) shows that the
currently available experimental upper limits are about
100 times larger than this expectation. As explained
above, effects proportional to F and e are suppressed.
Thus we neglect the effects of Z. However, effects of CPV
in the K decay matrix can contribute and are included.
Then26

ImA)
Imp = (4.32)

where A, is the amplitude for the K to decay to a
three-pion final state of isospin 1. Since Imp is not mea-
sured, we need an additional assumption to proceed. It
seems reasonable to assume that the CPV amplitude for
KL ~3m proceeds by a CPV K ~m~ decay followed by a
PV mm~mn. m process. See Fig. 8. This gives

ImA

Imago

GFA =gGFA
Redo

(4.33a)Imp =

where we have assumed that Im 3, /Re 8, = Im A o /
ReAo and A is an hadronic appropriate mass scale. The
scale A may be expected to lie in the range 500-1000
MeV. Then 25X10 XGFA &10 and 5X10 &o

&Imi) if the CERN value (Eq. 2.15) of g is used. This
implies that

FIG. 9. Two-pion-absorption part of the graphs of Fig. 7.

The charged pions are now projected onto an isospin zero
state. The use of PCAC (partial conservation of axial-
vector c'urrent) to remove the m leads to

(4.36)

where f is the pion decay constant ( =93 MeV). The
above result is obtained from the left-handed nature of
the weak Hamiltonian using the arguments of Ref. 25.
The X decay matrix elements are parametrized by g
(imaginary part) and in the table. Thus we immediately
have

(K) ~H~nirir) =2.8i X10 (4.37)

(4.38)

To proceed further we evaluate the graphs of Figs. 7(a}
and 7(b). A simple approximate evaluation should be
sufficient, given the uncertainties inherent in obtaining
the unmeasured CPV matrix element for the IC, to decay
into three pions, Eq. (4.37). The first step is to isolate the
part of the graph containing two pions, Fig. 9. The quan-
tity I is given by

1I'= u(p+q)igy, igy, u(p)
(2n }

Imp=(12%8) X 10 (4.33b)
Explicit numerical evaluation shows that using

This estimate arises from the notion that the standard
model would predict CPV phases in the 3m decay, Fig. 8.

The value above is ineant only to serve as a preliminary
order-of-magnitude estimate. One can determine the
value of ImA, using current-algebra techniques. First
define the amplitude

I.=i
4& q2 —m2

(4.39)

A=&K'~m~~((~+a n'),
so that

A, =v'2/3' .

(4.34)

(4.35)

I.O—

O

c4 05
I

I I I I
I

I I I I
I

approx.

I i 1 1 I

0 50 IOO

-qa (fma )

FIG. 8. CPV in K1~3m decay.
FIG. 10. Comparison of Eq. (4.37) exact and Eq. (4.38) ap-

proximate.
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is an excellent approximation for —4m„&q &0. See

Fig. 10. For large values of —
q the integral goes like

1/ln( Q ). However, the nucleon degrees of freedom
should become irrelevant for such large values. At high

I

—
q Eq. (4.39) represents a mathematically artificial, but

physically reasonable cutoff'. We therefore use Eq. (4.39)
for all negative values of q .

The use of Eq. (4.39) allows us to obtain

gnKA g
(4~)2 4ir

m„I,

1
—x) m~x, —m„(1 —x2)

0 0 m„(1—x
&

—x2 )(1—xi )
—m z(1 —xz —xz )x

&
+mzx i +m„x2 —m ~ ix2

gnKA g
(4ir)2 4n

m„J, (4.40)

i —xi mzx& —m„x, +mAx2

0 0 (rnid
—mzx, —m~x2)(1 —x~ —xz)+mzx, +m„x2+rn~ix2

Numerical evaluation yields

I= —0.051 fm, J=0.19 fm, (4.41)

so

F, = —0.023, F~ =0.086 . (4.42)

At this stage all of the elements required to evaluate P,
of Eq. (4.28} are available. Putting the value of the loop
integrals (4.41), the coupling constants of the table and
the current-algebra value of Im A, yields

(4.43)

I

sion in the strong coupling constant. For example, terms
such as Fig. 11 are ignored. There are phenomenological
and theoretical ways of testing the assumptions.

The phenomenological method is to compute ordinary
weak decay rates with the same mechanism. Since real
pions cannot be emitted from free neutrons, one can look
at the P decay via the graph of Fig. 12(a). The P decay of
the neutron is already understood in terms of CVC and
computed vector couplings. Hence, the check is that
term of Fig. 12(a) yields a small contribution to the P de-
cay amplitude. A simple estimate suffices. Compare the
rate for Fig. 12(a) to that of a more conventional term
Fig. 12(b). One finds

This gives

Bp =17( . (4.44}
Fig. 12(b) (IC~H~ev) GFm

Fig. 12(a) (ir~H~ev} 4ir

The evaluation of Bz using the values of g of Eq. (2. 15) is

left for the concluding section.

V. STRONG-INTERACTION UNCERTAINTIES

Our procedure is based on the use of hadronic degrees
of freedom. This means that the kaon CPV matrix ele-
ments are assumed to have little variation as the kaon
goes off its mass shell. But there are no experimental
constraints on the on-shell values of g and g'. Thus the
use of on-shell matrix elements is a very significant as-
sumption. Another possible problem is that our graphs
seem to represent the first term of a perturbation expan-

where Gzm enters because of the weak mNN vertex.
The 1/4' enters because of the loop. In other words,
Fig. 12(b) is a second-order weak process, so no difficulty
arises.

One can make similar checks that mechanisms do not
yield unrealistically large CP-conserving nonleptonic A
decays. Consider the S-wave term. The CP-conserving
(CPC) term of Fig. 3(a} is (S—S }/2 =Re A zF = 13
X10 &40X10 . Here the last quantity is the mea-
sured value. Thus in our phenomology CPV and CPC
terms arise from different sources. It is possible to argue
that the higher-order effects of the strong interaction in-
crease the CPV and resulting CPC terms. However,

n

lK~
n/ l

(a) (b)

FIG. 11. Strong-interaction correction to Fig. 3. FIG. 12. CP-conserving weak decays.
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VI. SUMMARY

In this section we give a summary of our results.

A. A, A decay comparisons

The results of Sec. IV [Eqs. (4.13}, (4.19), and (4.33}]
are that

B =Bs+Bp, Bs=2.7$, B p16.6(,
where

(=Imago/Redo.

Assuming g » f', we get

B=(4+2)X 10 (CERN)

(6.1)

=( —6.2+11)X10 (Fermilab}, (6.2}

where the different CERN and Fermilab values of
Re(e'/e) are used. The CERN answer of Eq. (6.2) may
be viewed as an upper limit. This is because of the recent
Fermilab work which shows that the possibility that e'

(hence g) vanishes is not yet ruled out.
We have stated above that ( is not determined by e'

Indeed, it is possible that e' is accidentally small because
of a cancellation between g and g', recall Eq. (2.15f) and
the subsequent discussion. The size of g' depends on the
value of electromagnetic penguin terms. ' In the case
g=g' our prediction for B would be enhanced by a factor
V(k=4').

It is worthwhile to compare our CERN results with
the standard-model estimates of DHP (Ref. 9). These are
based on using the upper limit on the penguin operator
ImC5, as quoted by DHP. This operator leads to a
"large" value of Re(e'/e) similar to that observed by the
CERN group. Thus if we use the CERN value of Re

there are other standard CPC terms that approximately
account for the standard weak interaction. Hence it
seems reasonable to expect that the CPC terms we gen-
erate via neutral-kaon exchange are indeed small. In that
case our CPV estimates can be of the correct order of
magnitude.

The theoretical technique is to reformulate the calcula-
tion in terms of dispersion relations. This was the ap-
proach of Barton and White (BW). The dominant term
of this approach is the meson baryon physical intermedi-
ate state. Hence our evaluation of Figs. 2(a) and 2(b) is
consistent with the BW approach. The term of Fig. 11 is
part of the two-meson baryon intermediate physical state,
has a higher threshold and is therefore expected to be rel-
atively small.

Another concern is the possibility we do not use
enough intermediate baryon states. We studied the
effects of including intermediate X baryons, and found
that the contributions are about a 20% correction. This
is a small effect, so we do not exhibit the X calculations
explicitly. The inherent errors in our calculation are
large enough so that a 20% correction is regarded as
small.

A final comment concerns the possible use of chiral
perturbation theory. This is an alternate way to compute
observables that we have not investigated.

(e /e) the input to our and the DHP calculations is simi-
lar, so one may compare the methods by comparing the
results. DHP find

8 ——6 4X10 8 -36X10

3X 10
(6.3)

Our results are rather similar to those of DHP, even
though very different techniques are used. This leads to
some confidence that one would be able to make accurate
predictions of B, once the inputs e' or g are known.

B. CPV coupling constants and D„

In our hadronic approach the idea that CPV originates
from the kaonic CPV matrix elements serves as a unify-
ing principle. This allows us to relate the predictions for
the CPU pion-nucleon and ~AN coupling constantsg, g (Ao ) and the electric dipole moment of the
neutron D„.

The Eqs. (3.6), (3.12), (4.18), and (4.44) determine that

g (m, N, N)=. 10

g (mon, n )= ,'g (m, N—,N),

gc (mop, p)=0,

D„=( 5. 321. 7)X10 g ecm,

g (Ao )=10 g(S wave)

=7X10 g(P wave),

cpv( Ao) 1 cpv( A
—

)0 ~2 Q (6 4)

in which Ao denotes A~pm and Ao denotes A~nor .
The coupling constants for A decay are given by

g (Ao )= —&2/3S„Pf, S wave,

g (Ao ) = —&2/3P»P~, P wave
(6.5)

for the S-wave parity-violating and P-wave parity-
conserving CPU coupling constants.

All of our CPV quantities [Eqs. (6.1) and (6.4)j are
essentially proportional to g. These can be used in con-
nection with any theory that predicts (. We may use
Eqs. (6.1) and (6.4) to relate observables. Simple division
yields

D„
B=(3.6+1.2) X10"

ecm

g (Ao )(P wave)=10 g (m, N, N)

D„= ( 1.3+0.4) X 10 10
ecm

(6.6)

25g (m, N, N)=(1.3+0.4) X10 " 10 '
e Gm
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A nonzero measurement of any of the CPV quantities
B,g (AN, N) or D„would via Eq. (6.6) lead to a pre-
diction for the others.

We have studied several CPU effects: the pion-nucleon
and vrAN coupling constants g, g (Ao ), B and the
electric dipole moment of the neutron D„. Of these, the
search for a CPV difference between the A and A decay
parameters (B) is the most likely way to observe a CPV
effect.

We conclude that the obvious cannot be overstated.

Future progress in this field depends strongly on a new
experimental discovery of CP violation.
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