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Pair production of W*, y, and Z in association with jets
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Amplitudes for the production of electroweak-gauge-boson pairs (any combination of y, Z, or
W+) in association with up to two jets are given. The gauge bosons may be either real or virtual

with subsequent decays into charged or neutral leptons. The amplitudes are presented in a form
directly amenable to numerical evaluation. Representative cross sections are given for Fermilab
Tevatron, CERN Large Hadron Collider, and Superconducting Super Collider center-of-mass ener-

gies.

I. INTRODUCTION

The standard model (SM) of strong and electroweak in-

teractions has been amazingly successful in the past in
describing a large variety of experimental data. This suc-
cess makes it even more imperative to test additional
processes for possible discrepancies between theory and
experiment, in order to unravel possible first hints for
new physics. Since one of the major open questions in
the SM concerns the nature of electroweak-symmetry
breaking, the production of electroweak bosons at e+e
pp, pp, and ep colliders' is deserving of further scru-
tiny.

Recently extensive studies have been performed of W
Z, and photon production in association with up to three
jets, which are of immediate interest for both the
CERN and Fermilab pp collider experiments. Consider-
able theoretical work has been done in the past on
W+ W production at e+e colliders, on W+ W, ZZ,
W*Z, and W +—

y production at hadron colliders ' ' and
on W —+1-jet production in ep collisions '" which will
for the first time allow a direct test of the electroweak
three-gauge-boson couplings, a test which is needed to
confirm the non-Abelian gauge structure of the elec-
troweak interactions. Previous work on Vi V2+ 1-jet pro-
duction at hadron colliders (V= W, Z, y) includes com-
plete calculations of one-loop radiative corrections to yy
(Ref. 12) and Wy (Ref. 13) cross sections and tree-level
results for the general one-jet case. '

In this paper we derive theoretical expressions for
V, V2+2-jet cross sections at hadron colliders, which are
important to obtain a more precise picture of the jet ac-
tivity in vector-boson pair production. Perhaps even
more important is a precise understanding of these pro-
cesses as a background to new-physics searches. A par-
tial list of applications for such a V, V2+2-jet study is

easily enumerated.
(1) The production of heavy-top-quark pairs leads to

final states with two 8 s and two jets
pp~tt~W+bW b. For very large top-quark masses,

m, ) 150 GeV, say, the WW+2-jet background may be-
come significant.

(2) In studies of W W production, aimed at measur-
ing the WWy and WWZ vertices, one needs to know the
typical jet activity in these events in order to distinguish
them from tt production with subsequent decay into real
W's. Without such a study, p p ~W+W X, which
could be the most powerful reaction for analyzing the
three-gauge-boson vertex in future collider runs, ' would
not be useful.

(3) The principal production mechanism for a heavy
Higgs boson (mH & 0.6 TeV} is via W-boson fusion where
the two quarks which radiate the almost real W's are in
principle detectable as two high-rapidity jets. With the
subsequent H~ZZ decay, the process pp~ ZZ+2 jets
that we calculate is an irreducible physics background
which needs to be understood, if one wants to tag the jets
in Higgs-boson events at the CERN Large Hadron Col-
lider (LHC) or Superconducting Super Collider (SSC).
Jet tagging may be a useful tool for reducing back-
grounds from qq ~ZZ events. '

(4} A variety of new-physics sources leads to multiple
weak bosons and jets in the final state. One example is
the cascade decays of squarks and gluinos. ' Clearly it is
desirable to know the SM rates for such events in order
to unambiguously identify the new-physics signals.

In this paper we present a perturbative calculation of
production cross sections for electroweak-boson pairs
V, V2 (V, = W, Z, y) in association with up to two jets.
Analogous calculations already exist for V, V2 produc-
tion in association with 0 or 1 jet, ' but for V, V2+2-jet
production only partial calculations exist in the litera-
ture. ' In particular the subprocesses involving external
gluons have not been previously calculated.

For problems involving large numbers of Feynman
graphs the direct numerical evaluation of amplitudes cor-
responding to fixed initial- and final-state polarizations
and subsequent quadrature and summation over helicities
is the method of choice. A variety of methods has been
developed in the past to obtain analytic formulas for heli-
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city amplitudes. ' In a problem of cornp1exity similar

to the present one, namely, W or Z production in associa-
tion with three jets at pp colliders, it was found that the
amplitude calculus developed in Ref. 22 yields a very
e%cient code for the evaluation of cross sections and we

employ this particular method in this paper. In general,
when doing calculations with amplitude techniques for
weak-boson production it is straightforward to include
the decay of the weak bosons to final-state leptons and in-

terference effects between photon and Z exchange dia-
grarns, which in the end allows one to determine the full
correlations among weak-boson decay products.

The amplitude formulas to be presented below have
very simple crossing relations which allow us to relate a
variety of processes. The basic calculations which we
have carried out are analytic expressions for the
qq V, Vzgg and qq V& Vzqq amplitudes which are relevant

(
—)

for pair production of electroweak bosons in p p col-
lisions via the subprocesses

and

qq~ V, Vzgg,

qg~ V, Vzqg,

gq~ V& Vzqg,

gg ~ V& Vzqq,

(1.1a)

(1.1b)

(l. lc)

(1.1d)

qq~ V, Vzqq,

qq ~ V& Vzqq,

qq —+V&Vzqq .

(1.2a)

(1.2b)

(1.2c)

When the V leptonic decays (y, Z~e e or W~ev)
are included the same amplitudes yield, by crossing, the
parton-level cross sections for epee(v)+3-jet produc-
tion, arising, e.g. , from

eq ~l Vzqgg (1.3)

via V, exchange, which is crossing related to the process-
es of Eq. (1.1).

The primary intent of this paper is to set up amplitude
and cross-section formulas for V~ Vz+n-jet production
(n =0, 1,2). We also address some illustrative phenome-
nological applications. We evaluate the V, Vz+ n-jet
cross sections in pp co11isions at the Fermilab Tevatron
and in pp collisions in LHC and SSC energies, for n =0,
1, and 2 jets with typical jet acceptance criteria. We also
discuss yy+ n-jet production in pp collisions at the
Tevatron in some detail.

The remainder of this paper is organized as follows. In
Sec. II we derive analytic expressions for the qqV, Vzgg
and qqV, Vzqq amplitudes. For the sake of completeness
and to familiarize the reader with our notation we also
include expressions for qq V, Vz and qq V& Vzg amplitudes,
which correspond to V& Vz and V, Vz+1-jet production
in hadron collisions. A special subsection is devoted to
the generalization of the formulas when one wants to in-
clude the decay of the electroweak bosons V& and Vz.
Section III contains the phenornenological discussion

mentioned above, while technical details have been
relegated to three appendixes. Appendix A presents a
self-contained summary of the amplitude calculus of Ref.
22 and sets up the notation used in Sec. II. In Appendix
8 the handling of color factors is explained and fina11y, in

Appendix C we explain briefly how to assemble our am-

plitudes into parton-level cross-section formulas.

II. VV AMPLITUDES

p; =S;p; (2.1)

with S;=+ for quarks and S;= —for antiquarks. Simi-
larly we distinguish the chirality indices o.; and the physi-
cal helicities o; /2:

o.;=S,o, . (2.2)

We will use the physical momenta (p, ,g„k;) and physical
helicities o.

, /2 to express the phase space and the wave
functions of fermions and bosons, whereas we employ the
momentum flow as appearing in the Feynman diagrams
(p, ,g, , k, ) and the chirality indices o.

, to express truncated
amplitudes.

A. Vvqq

Weak-boson pair production with no jets is described
by the VVqq process shown in Fig. 1. The triple-weak-
boson vertex (V~ V, Vz) is introduced through the four-
vector

In this section we give the helicity amplitudes for the
production of weak-boson pairs plus n jets (n =0, 1,2).
The amplitudes are evaluated using the methods de-
scribed in Ref. 22. The notation is explained in detail in
Appendix A.

Basically we derive analytic expressions for scattering
amplitudes in the two-component Weyl basis for the spi-
nors. Products of Dirac matrices &=a„y" and spinors
then reduce to two-by-two matrix multiplication of Pauli
matrices (P )+ =a + a o and two-component Weyl spi-
nors (i

~
and

~j ), which is performed numerically in the
end. The task is then to rewrite all amplitudes in two-
component notation, simplifying the expressions on the
way and factorizing components common to several
Feynman graphs whenever possible. In order to exploit
the great simplifications that occur in the relativistic lim-
it, we set all fermion masses equal to zero throughout this
paper.

In presenting the formulas for the amplitudes the fer-
mion momenta p, (i = 1,2, . . . ) are chosen to point in
direction of the arrow of the fermion line (p, is incoming
and p2 is outgoing in all the diagrams). All boson mo-
menta (k, for V, , g, for gluons) are chosen to be outgoing.
For a given process the momenta of the physical particles
may differ by a sign from the momenta appearing in the
corresponding Feynman diagrams and the set of sign fac-
tors for a11 external particles suSces to completely specify
any of the scattering processes related by crossing. We
will denote the physical momentum of a particle by a bar
over the mornenturn that appears in the Feynman dia-
grams. For fermions we thus have
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(a)

Vt

k))i,
iI

V)

(b)

V2

Pg

k& k,

V~ Vt

(c)

Pt mion and VV1 V2 couplings, i.e., the four-vector
I"(k„k2)„in Eq. (2.5) is given by

r(k, , k2)„=

/gal„g
' 'r (k„k2)„, (2.7)

V

FIG. 1. Feynman diagrams for the V& V2q)q2 process. For
V, V2 =yy, ZZ, Zy diagram (c) does not contribute.

where the nonvanishing V—+ V1 V2 three-vector-boson
couplings are given by

gvw-w+ —gw-vw- —gw+w+ve for V=r, gvw+

I (k„k2)„—:[e, e~(k, —kq)"+2k2 e, e2 —2k, e2e&]

g„„+(g—1)k„k„l(k (My—)
k Mq+iMVI y(k )

(2.3)

where k, (kz) and e& (e2) are the four-momentum and po-
larization vector of the outgoing gauge boson V, (Vz)
with k =k, +kz and (= 1, 0, or oo for the Feynman,
Landau, or unitary gauge, respectively. I t, (k ) denotes
an effective k -dependent width of V, which may be ap-
proximated by

I q(k ) = r q8(k )k /Mv (2.4)

[8 is the step function, 8(x )0)=1, 8(x (0)=0]. Since
we are treating all fermions as massless, no Goldstone-
boson-exchange graphs enter when using other gauges
than the unitary gauge for virtual weak bosons. Hence
the Feynman gauge is the most economic gauge for all
virtual gauge bosons. Using the bra and ket notation of
Appendix A, it is easy to write a compact expression for
the V1 V2q; q; amplitude:

gw+ vw+ gw w v
T

e for V=y,
e cot8a, for V=Z . (2.8)

B. VVqqg

Weak-boson pair production in association with one jet
is calculated from the VVqqg processes shown in Fig. 2.
We denote the gluon polarization vector by e". The
V, Vzq, q; g' amplitude (a denotes the gluon color index,

1 2

a = 1, . . . , 8) is then given by

Thus the triple-vertex term [the last term in Eq. (2.5)]
vanishes identically for yy, Zy, and ZZ production.
Similarly F,2=0 (F2~ =0) for &+IV production from
uu (dd) annihilation, whereas all three terms in Eq. (2.6)
contribute for 8' +—

y and W +—Z production.

~=&;; I
—F„(21(82),lk„l) —F~p(2 (/)) lk2, 1)

+Fo(2l[F(k„k2)]. Il ) ] . (2.5)

Here (8;)+ denotes the contraction of the polarization
vector e,~ of the electroweak boson V; with the four Pauli
matrices (o&)+, and 5;, is the color tensor (i~ and iz are

I 2

quark color indices). The relative signs of the amplitudes
are due to the different signs for fermion and boson prop-
agators. The normalization factors are given in terms of

Vf,fthe electroweak coupling constants g
' ' defined in Ap-

l

pendix A [see Eq. (A19)], namely,

F =F ~ 'f'f 'ff
0 Z. &.

2f

g V~ Vl

V~ g Y)

(c)

V, V, g

P

Pl

P2

g VI V~

(b)

Vl V~ g

Pl

l f2f V2ff l

12 0 ~ ~2 (ylf
Fo=~i~». .(4p u~)'"

(2.6)

P2

(e)

P)

The gf runs over all contributing quark llavors when
Cabibbo mixing is included. The last term in Eq. (2.5) de-
scribes the effect of the triple-weak-boson vertex. In-
terference effects between photon and Z exchange in the
case of 8'+ 8' production are included by summing the
four-vector I (k „kz )„over the contributing virtual
gauge bosons and weighting with the product of V fer-

V~ V)

(g) (h)

FIG. 2. Feynman diagrams for the V& V2q, q2g process. For
V, V, =yy, ZZ, Zy diagrams (g) and (h) do not contribute.
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A, =g,
2 l2l I

[
—F2, &2,gl($2) lk„l& —F,2&2,gl(g, ) lk2, 1& —F2, &2, k2I(/) lk, , l& —F]2&2,k]l(/) lk2, 1&

—F2g&2, k2I(&))., lg, 1 &
—F)2&2,k) l(&2)., lg, 1 &

+F.&2,gl[F(k„k, )].I»+F.&2l[F(k„k,)]. Ig, » I, (2.9)

where E», F&2 and Fo are given by the respective expres-
sions in Eq. (2.6), and the additional factor of the strong
coupling constant g, is given explicitly in Eq. (2.9). The
eight terms in Eq. (2.9) correspond to the eight diagrams
in Fig. 2. For yy, Zy, and ZZ production the triple-
vertex terms [the last two terms in Eq. (2.9}]vanish iden-
tically and for W+ W production either F&2 =0 or
E2) =0.

~i i21 43

n=1

where the four amplitudes

A. = A. (Pi&if i P2+2f2 P3+3f3 P4rr4f4)

(2.10)

the q&q2 line in Fig. 3. The resulting amplitude can be
written as

C. VVqqqq = A„(1,2, 3,4) (2.11)
The VVqqqq subprocess is one of two subprocesses that

contributes to weak-boson pair production in association
with two jets (see Fig. 3). We start with the simple case
of the WVq; q; q; q; amplitude where V=y or Zand the

flavors of the two incoming quarks l and 3 as well as of
the two outgoing quarks 2 and 4 are different. Fixing the
flavors of the external quarks, the W can only couple to
one of the two quark lines, which we have chosen to be

Vl Vg

+&2,r(k„k, )l(J ).
,
Il &],

A2(1, 2, 3,4)=C„[&2I(J43),lk2 k) 1&

+ &2, k, , k, l(J„) ll &

+ &2 k2I(J43), lk), 1&],

A3(1,2, 3,4)=C,2[&2I(J43) lk), k2, 1&
(2.12)

correspond to the four rows of Feynman graphs in Fig. 3:

A, (1,2, 3,4)= —C, [&2I(J ) II(k„k ), 1&

(0)

Vg Vt V2 V,

P~
= =

P~

Pt

v, v,

+& 2, k), k21(J43).
,
ll &

+ &2, k, l(J43), lk„l &],

A, (1,2, 3,4}=C24[& 21(~'). I k ), 1&+ & 2, k ) I «").
I
1 & ]

(b)

P

iO

P~
= =

P~

P)—

P~

P)

) ~

P~

=
P) x [&4I( „} Ik, 3 &

+ &4, k, I(0, ) I3 &]
(Pi —

P2
—ki }'

(c)

YI V~ VI V~

=p, p, =

0

Ps

P)

, i
jl

P~

V) V~
A

&
represents diagrams with a triple-gauge-boson cou-

pling, A 2 and A 3 describe the emission of two gauge bo-
sons from a single fermion line, and A4 corresponds to
emission of one gauge boson from each of the two quark
lines. The coefticients C; contain the overall normaliza-
tion factor

V) v, VI Co=g, SiS2S3S45 5 (16P )PzP3P4)' (2.13}

P~
' ~
, s

p
iR

4 P4

Pa =

,
i= P~ P4

(I

V~

P~ P~

FIG. 3. Feynman diagrams for the Vl V2qiq2q3q4 process.
For Vl V2=yy, ZZ, Zy diagrams (a) do not contribute. Dia-
grarns obtained by interchanging the quark lines (1,2)~(3,4) are
not shown.

and the electroweak coupling constants

C] C05f f
~2f2f VI ff I

C2i Co g go go
f

if2f 2ffi
C12 Co X go2 go( ~f3f4f

1 f2f 1 2f4f3
24 Og (xl g 02

(2.14)
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J~43 is the quark current corresponding to the lower parts
of the Feynman diagrams in the first three rows of Fig. 3:

J~43 = (, 41(o'")., 13 &

1
(2.15)

In the case at hand only the color factor

21 43

2 2
(2.16)

appears. Nevertheless it is useful for later generalization
to the identical flavor case to expand A in terms of the
orthogonal color tensors

2 2 2 2 2
(2.17)

i.e., we write

which are implicit in the electroweak coupling constants

g
' ' appearing in the C s and in I"(k, , k2)" of Eq. (2.7).

t

%hen considering particular channels, these flavor re-
strictions simplify the resulting expressions considerably.
For the V, V2 =yy, Zy, ZZ amplitudes, the diagrams
containing the triple-boson vertex do not contribute, i.e.,
A, —:0. For %+8'+ or O' W production only A4 can
contribute (emission of one W from each of the two quark
lines) and the same is true for W+ W production when
the Aavors of, e.g. , quarks 1 and 2 are di8'erent. For
W+ W production with f, =fz and f3

=f4, on the oth-
er hand, A4=0 and either A2 or A3 vanishes, while both
photon and Z exchange contribute to the triple-gauge-
boson vertex graphs which are summed into A, . For the
WV amplitudes (V=y, Z) that we considered first one
finds that Eqs. (2.22) and (2.23) reduce to Eqs. (2.20) and
(2.21) due to the flavor restrictions.

with

~(m)0(m) (2.18}

D. VVqqgg

4
A'+'=A, ' '= g A„(1,2, 3, 4) .

n=1
(2.19)

When either the two incoming quarks (or the two outgo-
ing quarks) have the same flavor, f, =f3 (or f, =f4), the
complete amplitude has to be antisymmetrized in
momentum and color indices. Since 0'+ (0 ') is sym-
metric (antisymmetric) in color, the coefficients are

The VVqqgg subprocess is the other subprocess that
contributes to VV plus two-jet production (see Fig. 4).
The triple-gluon vertex (g~g, g2) is introduced through
a four-vector similar to the one for the triple-weak-boson
vertex; we define

4A(-''= g [A„(1,2, 3,4}+A„(3,2, 1,4)]
n =1

for f( =f, and

(2.20)
P2 4 ~4 4~ 4

~ 0~ ~

91 92

Vt V2

I
9)

V) V2

(b)

=
P)

92

P2

V, Y,
(c)

j' 1

~ '

92

4~(+)= y [A„(1,2, 3,4)+ A„(1,4, 3,2)1
n =1

(2.21)

V) V2

Pl P2

V2 9) 92

P)

«r fr=f4.
For the general V, V2q, q, q, q, amplitudes the con-

1 2 3 4

tributing Feynman graphs are those shown in Fig. 3, as
well as the ones obtained by interchanging the quark
lines. This interchange of quark lines is easily taken into
account by adding the amplitudes A„with (1,2)~(3,4) in-
terchanged. Thus one obtains

P2 =
4

Qt 2 91 92 1

(g)

(e)

P2
=

1 2 92 1

4
~if( '= g [—A„(1,2, 3,4)+ A„(3,4, 1,2)]

n =-1
(2.22)

P2

V2 V)

)=Pl
4 ~

9) 92

P2
=

I
=

Pl P2
e

V2 91 Vl g2 91 2 1

~,
=

P)

j
92

for f)&f3 and f&%f4, while in the case of identical
flavors (f, =f3 and/or f2

=f4) the amplitudes need to be
antisymmetrized with respect to identical fermions:

4.lf'+—'= g [A„(1,2, 3,4)+ A„(3,2, 1,4)
n =1

+ A„(3,4, 1,2)+ A„(1,4, 3,2)] . (2.23)

P2

V2 Y)

91 92

P2
=

V2

9) 92

(m)

P
1 P2

v, v, gg
91 Q2

(n)

Pt

Equation (2.23} holds for any combination of electroweak
bosons and quarks when the restrictions on quark flavors
are taken into account, which are made explicit in terms
of Kronecker 5's in the coefficients C, of Eq. (2.14) or

FIG. 4. Feynman diagrams for the Vl Vzqlq2glg2 process.
For V, V, =y y, ZZ, Zy diagrams (a) —(e) do not contribute. Di-
agrams obtained by interchanging g, ~g, in diagrams (a) —(k)
and Vl~V2 in diagrams (f)—(n) are not shown.
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f'(g, g )"=—[ . (g —g )"+2g

1—2gi ezdi] 2(gi +g, )' (2.24)

define the coefficients B„ofthe color tensor

2 2

where we have chosen the Feynman gauge for the virtual
gluon.

For the V, V2q; q, g 'g ' process it is convenient to
1 2

as the basic quantities. The terms in the amplitudes
B„(1,2) =B„(g((7(gz(7z) are written here in the same or-
der as the corresponding diagrams appear in Fig. 4:

8((1,2)=gzFoI&2, g, gzl[F(ki kz)], ll &+&2,gil[F(k„kz)], lgz 1&

+ &2I[F(k,k )]., Igi,g, 1 &
—&2, 1'(g(,gz) l[F(k k )].

,
11&—&21[F(k(,kz)], ll'(g(, gz), 1&},

8,(1,2)=g,'F„I—&2,g„g, l(/z) lk„l &
—&2, kz, g(l(/z)~, lk(, 1&

—&2,g(, kzl(&z). Ik(, 1& —&2, kz, k(l(&(). Igz, 1 &
—&2, kz, g(l(&(). Igz, 1 &

—&2,g(, kzl(l(). Igz, 1 &

+&2I[F (g(,gz)] lkz, k(, 1&+&2,kzl[F' (g(,gz)] lk(, 1&+&2,kz, k(I[re(g(, gz)] ll &}, (2.25)

8,(1,2) =g,'F„[—& 2,g(,gz I()((( ) I k, , 1 &
—

& 2, k(,g( I(/z) lk„ 1 &

—&2 gi, k(l(/z) lkz, 1 &
—&2, k kil(z8 ) (Igz 1& &»ki gil(/z)~, lgz 1& &»gi kil(&z)~, lgz 1&

+ &21[1"(g(,gz)]. Iki, kz, 1 &+ &2, k)l[F'(gi, gz)]. Ikz, 1 &+ &2, ki kzl[F'(gi, gz)]. I»]

Here Fo, F21, and F,2 are given by the respective expres-
sions in Eq. (2.6). Symmetrizing the amplitudes in the
two gluons, the complete amplitude is

3

A, = g t[8„(1,2)+8„(2,1)]6(
n=1

+[8„(1,2)—B„(2,1)]0'

e"~j"=—g D(.(k )s(sz5
V12 I

X(4~li~lz ) i/zxp (lz)(eu) p Xp (Tl )

vl, I,
g Dv(k )s(szIip p

x(4I,Iz)' '& Izl(rr")p II( & ~

Pl
(2.27)

—~(+ )(r)(+ )+~(—)g( —
) (2.26)

where the orthogonal color basis (r)( +—' is defined in Eqs.
(B5) and (B6). For yy, Zy, and ZZ production, the sum
should start at n =2 since there is no contributing dia-
gram with a triple-weak-boson vertex in these cases.

Here s1 and s2 are the sign factors relating the physical
momenta I, and lz to Ii and Iz, i.e., si = —,sz =+ in the
decay process, and p, =s1p, and p2=s2p2 describe the
physical helicities of the V decay leptons. The V propa-
gator factor Dv(k ) is written in terms of the momentum

E. 0Ã-shell weak bosons

The amplitudes in the previous sections were written
for on-shell vector bosons, for which the polarization vec-
tors, e"(k, A) for electroweak vector bosons and e"(g,F)
for gluons, can be calculated directly from the momen-
tum vectors k and g (see Appendix A). The correspond-
ing amplitudes for virtual weak bosons decaying into fer-
mions are obtained by replacing the polarization vectors
e,~ with the decay currents. This replacement is indicated
in Fig. 5. The additional elements of the Feynman graph
including V decay are the V propagator factor and the
lepton current describing the decay process V~11l2. In
our two-component %eyl-spinor notation the effective re-
placement hence is

P)

FIG. 5. Feynman rule for replacing the polarization vector of
a real gauge boson with the production or decay current; see Eq.
(2.27).
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k =l2 l& =$2l2 s~ I& and it is given by

D (k )=[k —M +iM I (k )] (2.28)

X(4l, l, )'"(l,~(0~) ~l, },PI

The sign factors s; are needed when using the amplitudes
for crossing related processes, e.g. , Eq. (2.27) with

s, =s2=+ describes the virtual electroweak boson in

e p scattering.
For V, V2 production (in association with n =0, 1,2

jets) the full amplitudes, including the decays of V, and

V2 into final-state leptons, are obtained by replacing the
polarization vectors of both virtual bosons by the respec-
tive decay currents

e, ~j, = —g D~ (k, )s, s25
V

1 1211

C9

- tO

10

10

200 400
M(77} (GeV}

V~1413 2e2 j2= —
gz D~ (k2)s3$45p

x(4l, l, )'"(l,~(~~), jl, ) .

(2.29)
10

b
I0

For neutral currents the full amplitudes should be
summed over V=y and Z exchanges.

III. APPLICATION

)0

-4
)0 0 200 400

M'"'(77} (GeV}

We have applied the formalism of the previous section
to calculate the cross sections for V& Vz+n jet (n-=0.1,2)
production in pp collisions at &s =1.8 TeV and in pp
collisions at &s =17 and 40 TeV. At the outset we
checked that the parton-level cross sections are indepen-
dent of the gauge parameter g and that they are invariant
under Lorentz boosts. Since our amplitude expressions
lack manifest Lorentz invariance these two tests are very
powerful checks of the correctness of our computer pro-
grams. Folding the parton cross sections with the struc-
ture functions of the incoming hadrons, we reproduced
previous calculations of pp ~ V, V2 production with
zero' ' and one jet. '

In the following we use the SM parameters Mz =91.1

GeV, Ma, =80.0 GeV, and a(Ma, )=1/128. These mass
values are consistent with recent measurements at the
Tevatron, the SLAC Linear Collider, and the CERN
e e collider LEP (Ref. 25). The QCD running cou-
pling constant is evaluated in lowest order with 6ve ac-
tive flavors. The scale A is taken to be 200 MeV for four
flavors. The Q scale of a, (Q ) is taken to be the squared
average pT of the outgoing particles: Q =[(I/n)AT] .
Uncertainties in the cross-section predictions associated
with the Q choice will be similar to those recently dis-
cussed for 8', Z +n-jet production in Ref. 8. The choice
of Q =s gives the smallest cross sections, while other
choices can increase the VV+2-jet cross sections by up
to a factor of 2. %'e have chosen the parton distribution
functions of Eichten-Hinchliffe-Lane-Quigg (EHLQ) set I
(Ref. 2), with Q =s.

To make an approximate detector simulation we irn-
pose the following acceptance requirements on the trans-
verse momenta pT, rapidities y, and pair separations
bR =[(bP) +(by) ]'~ at v's =1.8 (17 or 40) TeV:

FIG. 6. Cross section for pp~yy+n-jet production at
&s =1.8 TeV: (a) as a function of the yy invariant mass

M(yy); (b) cross section integrated above a minimum M(yy).

\
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FIG. 7. Cross section for pp ~yy+ n-jet production at
&s =1.8 TeV: (a) as a function of the smaller of the transverse
mornenta of the two photons; (b) cross section integrated above
a rninimurn pT(y); (c) as a function of the smallest jet p~,' (d) in-
tegrated cross section above a minimum pT( j).
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TABLE I. Predicted cross section (in pb) for pp~ VV +n
jets at the Tevatron. Kinematical cuts imposed in the calcula-
tions are ly(y)l &1; ly(W, Z}l &2.5; ly(j)l &2.5; priy) &10
QeV; pT( j) & 15 GeV; AR vj & 0.7; AR„&0.7.

&s =1.8 TeV

rr
r W++r W

rz
W+W

ZW++ZW
zz

11
5.4
7
6.7
1.7
0.7

n=1

5

2.7
2
2.3
0.6
0.3

2.4
0.9
0.5
0.5
0.2
0.05

pT(y)) 10 (25) GeV, pT(j )) 15 (100) GeV,

ly(y)l &1.0 (2.5), ly(W, Z)~ &2.5 (2.5),
ly(j)l &2.5 (2.5), b,R, )0.7, hR )0.7,

(3.1)

TABLE II. Predicted cross sections {in pb) for pp~ VV+n
jets at the LHC. Kinematical cuts imposed in the calculations
are ~y( V)~ &2.5; ~y(j)~ &2.5; pr(y) &25 GeV; pr(j) & 100 GeV;

Rvj &0'77 ~Rjj &0 7

where j denotes a jet. The predicted V, V2+n-jet cross
sections for these cuts are given in Tables I-III for
Tevatron, LHC, and SSC energies. At supercollider ener-
gies the rate from tt ~WWbb may be expected to dom-
inate the WW+n-jet electroweak processes. The latter
process cannot be reliably calculated until the top-quark
mass is known; consequently its contribution is not in-
cluded in the tables.

The results in Tables I—III are mainly for illustration,
since for particular applications different choices of ac-
ceptance cuts may be required. Nevertheless a few re-
marks are appropriate about the cross-section predic-
tions. The cross sections for n =1 and 2 jets are substan-
tial in comparison to the 0-jet rate. This enhancement of
the n=1,2 jet rate is due in part to the appearance of
channels (gq and gg in the initial state) which are not
present for n =0. In addition, the radiation amplitude
zero in the Wy case gives a suppression of the n =0
cross section, explaining the fact that yZ and y W pro-
duction have comparable cross sections for the zero-jet
case. (Naively one would expect a larger Wy rate due to
the larger coupling of W's to the quarks. )

At the Tevatron energy the yy channel gives the larg-
est signal, with a cross section that can be measured.
With the current luminosity of 4.7 pb

' and the cuts in

Eq. (3.1), we expect about 50, 20, and 10 yy events with
n =0, 1,2. For an eventual luminosity of 100 pb ', there
would be 1000, 400, 200 events with n =0,1,2. The

TABLE III. Same as Table II, but at &s =40 TeV (SSC).

&s =40 TeV

rr
r W++r W

rz
W+ W-

ZW++ZW
zz

n=0

32
37
33

101
38
17

n=1

5.3
35

5.7
33
27
3.1

n =2

4
11
2.4

10
8.3
1.1

M(yy) invariant-mass distributions are shown in Fig. 6.
The dashed curve in the n =0 case includes the contribu-
tion from the gg~yy loop diagram which enhances
the yy cross section by a factor of about 2 for
M(yy) &50 GeV. Similar enhancements at low gauge-
boson pair invariant mass are present for gg~ WW, ZZ
at supercollider energies. Figure 7 gives the depen-
dence of the yy cross section on the lowest photon pT
and the lowest jet pT. Note that the cross sections de-
crease steeply as the y and jet pT-acceptance cuts are
raised.

A more detailed discussion of the relevance of these
pertubative-QCD calculations for physics at pp supercol-
lider energies will be presented elsewhere.
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APPENDIX A

4=(tj'+ 0'-»

In this appendix we explain the shorthand notation
used in the text and we explain how external spinors and
vector-boson polarization vectors are obtained from the
momenta of the external particles in an arbitrary Lorentz
frame. The resulting expressions can be directly used in a
numerical program.

The helicity-amplitude formalism developed in Ref. 22
is used to handle the Dirac algebra. We start with a brief
review of the spinor calculus. By using the chiral repre-
sentation of Dirac matrices for all fermions, two-
component notation becomes very convenient. Four-
component Dirac spinors f(p, o )[= u (p, o ) or U (p, o }]
are then expressed by two two-component Weyl spinors

&s =17 TeV

rr
r W++r W

rz
W+ W-

ZW++ZW
ZZ

n=0

18
19
18
50
18
7.8

n=1

2
11
2

10
8
0.9

1.1
2.8
0.7
2.4
2
0.2

with

u(p, o )+=co+ (P)y (P),

U(P, o)+= o~ —-(p)y -(p) .
(A2}

Here cr denotes the helicity of the on-shell fermion with
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four-momentum p"=(E,p„,p,p, ), y (p) is a normalized

helicity eigenspinor explicitly given by

p +pz
x+(p)=[2lpl(lpl+p, )] '" . ', (A3a)

px +'py

shorthand notation should be used with extra care.
The emission of two vector bosons with momenta

k, , k2 and polarization vectors e~&, e~2, from the external
fermion i [see Fig. 8(c)] is also described by a unique com-
plex two-vector which we denote by

and

px+vx-(p)=[2lpl(lpl+p. )]-'" '"+ '
p +pz

~+(p)=(&+Ipl)' ' .

(A3b)

(A4)

(P;+@i )

(i,k„k, l=x'. (p, )(&, ).
(p~+k, )

(p', +k, +k~)

(p, +k, +k~)
(A 10)

y(p & )+ =S6,++2EI (p ) (ASa)

In the massless fermion limit co (p) vanishes and the spi-
nors (A2) simplify considerably. Using the sign factor S
introduced in Eq. (2.1) (S =+ for fermions, S = —for
antifermions) both u and U spinors can be expressed as

(P; —ki —k'p )

lk„k„i)=, (8, )
(p, —k, —k~)

(p; —
t'ai )

X — 2'(~1).x. (p, )
(p —k )

with

(Asb)

Note the recursive relationship between the bra's and
ket's in the last three equations:

which yields the simple crossing relations used
throughout this paper.

The contraction of a four-vector a" with a y matrix is
given by

(i,ki, . . . , k„ l

= (i, ki, . . . , k„ il(g„)

(gf +k' + . +ti„)
X

(p, +k, + +k„)
(Al 1)

gf =any
(/)

where, explicitly,

(A6) lk„, . . . , k„i)=
~ ~ ~

I

(p; —k, — —k„)2

x(g„) lk„,, . . . , k„i) .

a'Wa'
({{i)+=a„rr~~=

(
i+. 2)

W(a' —ia )

a'+a' (A7)
-" =(2I p = I&)

In a numerical program the sign factor S;, the physical
momentum p; =S;p;, and the physical helicity o.; =S;o;
of any external (anti)fermion can be identified by a single
integer i. Hence we use the bra-ket shorthand notation
[see Fig. 8(a)]

(b)
Pg

k,

=
I k), &)

(p;), li&=x. .(p;). (A8) (c)
Pa-

&(2,k), k~l
PI

l = Ik, ,k„t)

The emission of a vector boson with momentum k&

and polarization vector e"„ from the external fermion i
[see Fig. 8(b)] is described by a unique complex two-
vector which we denote by

(P;+@i )

(i, k, I =y.' (p, )(a, ).
(p, +k, )'

ks ka

(2, I' (k) k~)l

kz k,

- Ir"(k„k,), ~ &

(P; —k, )

,
'
(a, ).y. (p, ) .

(p; —k I )

(A9) 2

gI g~

* (2, I (g, ,g )I

ga

= II (g, ,g ), 1&

Notice the different relative signs between p; and k& due
to the convention that boson momenta are chosen as out-
going whereas the fermion momentum is taken along the
fermion number Aow. Since for a given process a particu-
lar external fermion appears as either bra or ket, but nev-
er as both, no confusion will arise due to the fact that
( i, k i l

A
l
k i, i ) in Eq. (A9). In theories with fermion-

number violation (e.g. , with Majorana fermions), this

FIG. 8. Feynman rules for the abbreviations used in the text:
See Eq. {A8) for {a),Eq. {A9) for (b), Eq. (A10) for {c),Eq. {A12)
for (d), Eq. (A13) for {e),and Eq. {2.15) for (fl.
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This recursive relationship makes it especially easy to
evaluate the bra's and ket's in a computer program; (i~
and ~i ) are evaluated first and are then used to evaluate
(i, k& ~

and ~k&, i ), which are in turn used to evaluate
(i,k, , k, ~

and ~k„k, ,i &.

The emission of two vector bosons via the triple-boson
coupling can also be described by a unique complex two-
vector which we denote by

(p;+k, +k~)
(i, I (k~, k2)~=y (p;)[F (k„k )]

(p;+k i+kq)
(A12}

(p; —k) —k2)
~I (k, , k ),i)= [F (k, , k )] y (p, ) .

(p, —k, k, )— I

Here k„kz are the momenta of the two external bosons,
I (k„kz) is the four-vector defined in Eq. (2.3), and i is
the external fermion [see Fig. 8(d)]. Similarly, we also in-
troduce complex two-vectors associated with the emis-
sion of two gluons via the triple-gluon coupling [see Fig.
8(e)]:

thogonal basis (&.= 1,2, 3, and i= 1,2) that we choose as a
standard basis since then their components are all real.
For complex wave functions, e.g. , in the helicity basis,
one should introduce one more crossing notation for e"
and e" by defining the "physical" wave function e" and

Since in our amplitudes all vector bosons are chosen
outgoing by convention, one has the crossing relations

e"(k,A)=e "(k,l)* if k =k (S =+),
e"(k,A. ) = e ~(k, A, ) if k = —k (S = —),

(A17)

and similarly for e"(g,x.). They are needed only when one
measures polarizations of Vs or gluons. When the V
wave function e" is replaced by the decay current j"of
Eq. (2.27), the crossing is taken care of by the relations
for the fermion legs alone.

The helicity amplitudes also contain the electroweak
coupling constants. The left- and right-handed coupling

Vf;f
constants g

' ' are described by the V-fermion interac-

tion Lagrangian

lI'(g~, g2), 1}=, [F'(gi g2)l. x. (pi »
(pi gi gz }

(A13)
(f2+d i +f2 )—.,

~2, r (g„g, ) =q'. (p, )[F (g„g,)].' (s»+gi+g~)'

&;.i= —g g, ' 'fir" ,'(I+—&rs)&~I'„.

The relevant couplings in the standard model are

g+ =eQf, g + = eQf tan8gr

g =e T,f /( sin 8~cos8 ~ )
—eQf tan8 ~,

(A 1 8)

k"=(E,k„,k, k, ), E=(~k~ +m )'

k, =(k,'+ k,')'",
we choose, as a rectangular polarization basis,

(A14)

All of these abbreviations are summarized in Fig. 8.
In analogy to the spinors describing external fermions,

vector-boson polarization vectors can also be obtained
directly from the vector-boson momentum k ", in an arbi-
trary reference frame. With

g "'=g "=e/(&2sin8 ),
8'u, d Wd u,

g
' ' =(g ' ')*=eU,, /(&2sin8~),

(A19)

where Qf and T3f denote the electric charge (in units of
the proton charge, e) and the weak isospin of the fermion
f, 8~ is the weak mixing angle, and U~ denotes the
Cabibbo-Kobayashi-Maskawa matrix elements with the
notation (u„u2, u3)=(u, c, t) and (d, , d2, d3)=(d, s, b) for
quark mass eigenstates.

e"(k X 1) (~k~kr) (0 k k kyk kr) (A15a) APPENDIX 8

e "(k,A, =2)=(kr) (0, —k„k„0),
e"(k,X=3)=(E/m~k~)(~k~ /E, k„,ky, k, ) .

(A15b)

(A15c)

The A, =3 polarization vector of (A15c) represents longi-
tudinal polarization for a massive vector boson. For
massless vector bosons only the A, = 1 and 2 polarization
states are physical.

Helicity eigenvectors are obtained from the above po-
larization vectors by forming the sum

In this appendix we describe the orthogonal color ten-
sors used to write the VVqqqq and VVqqgg amplitudes. A
complete discussion of orthogonal color tensors can be
found in Ref. 30.

The amplitudes for the VVqq and VVqqg processes
have a very simple structure in color space. Only one
tensor (in color indices) appears, namely, 5;; or —,'A,;, .

21 2 21
Hence, when performing the sum over colors in the cal-
culation of cross-section formulas

do. —g /Jkt/

colors

we merely get an overall factor of
e "(k,X=+)=+ —[e"(k,X=1)+ie "(k,A=2)] . ,

2

(B1)

(A16)

The polarization vectors of the rectangular basis (A15)
can be used for both incoming and outgoing vector bo-
sons since a11 their components are real numbers.

Note that we ignore complex conjugation for outgoing
vector-boson wave functions, e"(k,A) for V and e"(g, i7)

for gluons, throughout this paper. This is valid in the or-

g I~... I'=trl=X

=tr =(N' —1}/2
2 2

for the VVqq process and

X

(B2)

(B3)
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for the VVqqg process in an SU(N) gauge theory.
The VVqqqq and VVqqgg amplitudes are both linear

combinations of two color tensors, namely,

quarks: p; =S;p, ,

gluons: g, = r,-g, ,

leptons: I, =s, l, .

(Cl)

T(l )
— 2 1 4 3 T(2)

2 2

for the VVqqqq amplitude, and
T

l213 l4l ]

2 2
(B4)

2 2
(B5)

2 1

T(2)
2 2

for the VVqqgg amplitude. In order to get compact ex-
pressions for the color-summed squared matrix elements
it is more convenient to expand the Feynman amplitudes
in terms of the symmetric and antisymmetric combina-
tions

y ~(m)8(m) (C2)

where the 8' ' are orthogonal color tensors. After fixing
the sign factors, the sum over colors is common to all the
processes that are related by crossing

The sign factors can be summarized as follows: for
quarks and leptons, S,-, s, =+; for antiquarks and antilep-
tons, S,-, s, = —;for gluon in final state, r; =+; for gluon
in initial state, r, = —.

For virtual vector bosons, the boson polarization vec-
tors must be replaced by the decay currents as indicated
in Eq. (2.29). The amplitudes given in Sec. II are for fixed
polarizations of the external particles and have the gen-
eral form

8(+) (
( T(l)+T(2) )2

(B6)
colors m

(C3}

The coefficients Jkt' 'of,
t—his expansion

~(m)8(m) (B7)

with the weights c given by Eqs. (B2), (B3), (B9), and
(B10). For any process the parton-level differential cross
section assumes the generic form

which contain the full momentum dependence of the arn-

plitudes, have been given in Sec. II. Because of the
different symmetry properties of 8'+' and 8' ' no cross
terms occur in the amplitude squared and one obtains,
for the color sum,

(B&)
colors

with simple numeric coelcients c
More explicitly, for the color group SU(3), one finds,

for the VVqqqq process,

y [u/'= 2fw'+'/'+', fw'-'f',
colors

(B9)

while the result for the VVqqgg cross sections is given by

(B10}

APPENDIX C

This appendix describes how cross sections are calcu-
lated from the amplitudes given in Sec. II and fixes our
normalization conventions for phase-space integrals,
states, etc. The amplitudes presented describe more than
100 different processes at e+e, e —

p, and hadron collid-
ers, even when scattering processes involving different
flavors are not counted. Of course, most of them are re-
lated by crossing, and in order to specify a given process
one merely has to state which momenta are incoming and
which are outgoing; i.e., one has to fix the sign factors re-
lating the physical momenta p;,g;, I; (with positive time
component) to the momenta p, ,g;, 1; used in the ampli-
tude formulas:

d&= —A, Fs g g g g gc ~At( )~'d(I)„.

(C4)

The factors appearing above are explained in the follow-
ing

—,: average over initial-state helicities.

A, : average over initial-state colors. A, contains a
factor 1, —,', —,

' for each incoming electron, quark, gluon.
Fz. the statistical factor for identical particles in the

final state. A factor —,
' for every pair of identical quarks,

for every pair of identical antiquarks, I/k! for k
gluons, and —,

' for a pair of identical electroweak bosons.
In the prescription for treating electroweak-boson decay
in Sec. IIE the amplitudes are not antisymmetrized in
identical decay leptons arising from the decay of different
electroweak bosons, and hence no factors of —,

' should be
included for identical leptons or antileptons in the final
state.

nf ~ summation over different quark ffavors in the
final state which given rise to the same experimental sig-
nature.

summation over lepton helicities. This sum is

to be replaced by a sum over electroweak-boson polariza-
tions if the bosons are not decayed.

summation over quark polarizations. Notice
cT 1,0'3

that the Kronecker deltas 5 5 or 5 5, which
1 2 3 4 1 4 3 2

arise from chirality conservation, are already taken into
account, and the helicities o2 and cY4 are determined
uniquely in terms of cr l and o 3.

: summation over gluon polarizations.
K1,K2
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dP„: n b-ody Lorentz-invariant phase-space element.
The amplitudes are normalized such that for any process
involving bosons and fermions, the n-body phase-space
element is

n n gp.
dg„=(2m. ) 5 P —g p

;=i (2') 2p,
(CS)

where P denotes the total incoming four-momentum and

pP (i, 1, . . . , n) denote n final-state four-momenta.
The phase-space integration will usually be done by

Monte Carlo integration. %hen dealing with more than

2 or 3 particles in the final state, it may be advantageous
to perform the polarization sums by Monte Carlo in-
tegration as well. For qq ~ggZZ, for example, this
means that each event requires the evaluation of the ma-
trix element for one fixed set of polarization indices only.
A direct summation over polarizations would require
2 3 =72 evaluations for each Aavor combination and
may hence reduce the speed of the program significantly.
The Monte Carlo approach simply simulates reality,
where the sum/average over different polarizations is ob-
tained only statistically.
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