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We calculate the multipole ratios El+/M&+ (electric quadrupole to magnetic dipole) and

Sl+ /Ml+ (scalar quadrupole to magnetic dipole) for the reaction y„N~E. We use the nonrela-
tivistic transition operators but wave functions expanded in a large harmonic-oscillator basis which
are the solutions of a "relativized" Hamiltonian (relativized wave functions), in order to test the
dependence of the results on truncation of the wave-function basis. Our results show an M, + mul-

tipole closer to the experimental data at the photon point, El+(0)/Ml+(0) — 0.2, and smaller
values of these ratios than previous calculations at all Q . The current-conservation condition be-
tween Sl+ and Ll+ (the longitudinal quadrupole multipole) is also satisfied to a better approxima-
tion with the relativized wave functions at values of Q' where the model is believable.

I. INTRODUCTION

It has been acknowledged for some time' that in the
quark model the presence of a nonzero electric quadru-
pole multipole in the photodecay amplitude for the 5
(i.e., b, ~Ny) is a signal for the presence of D-wave com-
ponents in the wave functions of the nucleon or the h.
Since these are both spatial ground states in the quark
model, these D-wave components are mixed in by the ten-
sor part of the color-magnetic spin-spin interaction. Tak-
ing the ratio of the strength E,+ of this multipole to that
of the dominant magnetic dipole multipole M &+ removes
some of the model dependence, and is a sensitive test of
the presence of color-magnetic interactions in these
states; it has been investigated by many authors in vari-
ous models. We will focus in this paper on
nonrelativistic-quark-model calculations, ' ' ' ' which
predict a ratio at the photon point of roughly —0.3% to
—0.8% (see Table I), which agrees very roughly with the
present, rather uncertain experimental situation.

If the inverse process is considered, that of production
of the 6 by a nucleon absorbing a virtual photon from a
scattered electron (electroproduction of the 6), then as
well as these amplitudes (due to photons with helicity + I)
there is an additional helicity-zero amplitude allowed.
This can be calculated using the zero component of the
four-vector electromagnetic current, or the three-vector
part, and these should be related by current conservation.
Bourdeau and Mukhopadhyay tested this relation using
two different sets' of nonrelativistic-quark-model
(NRQM) wave functions, and made conclusions about
the validity of these wave functions and of the NRQM
based on their results. In particular they conclude (as
pointed out earlier by Drechsel and Giannini ) that trun-
cation at the first excited level of the oscillator basis, or

I

perhaps the nonrelativistic approximation, " is responsi-
ble for the failure of this relation. They use an extension
of the Siegert theorem' to approximately equate the sca-
lar multipole S&+ with E&+ calculated at the photon
point, since their results suggest that the S&+ multipole
depends weakly on the details of the wave functions. In
this way they make a prediction for E&+ /M &+.

We feel it is interesting to test these assertions by en-
larging the oscillator basis. Is the lack of current conser-
vation only due to this truncation, and is it justified' to
use the Siegert theorem? How does the extension of the
basis (and the difference in the source of the wave func-
tions) affect the multipole ratios at the photon point and
their behavior as a function of —K ?

II. THE MODEL

A. The helicity-1 nonrelativistic transition operator

Our starting point is the nonrelativistic interaction
Hamiltonian

e;
H = —g [p A(r, )+ A(r, ) p ]

1

+p, .VX A(r;)

where p, ; =e;o;/2m; is the magnetic moment of the ith
quark, e;, m;, o;/2, and p,. are its charge, (constituent)
mass, spin, and momentum, and A(r; ) is the electromag-
netic potential at position r, For definiteness we will ad-
dress the process of (for now real) photoproduction of the
6 in its center-of-mass frame. Then the amplitudes A»2
and A3/p are defined in terms of the helicity states of the
nucleon and 5 by

~ z
= ( b (J = —', M =A )

l H;„, I y ( 1L.,= I )N (J = -,', M = —
XN ) &, (2)
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Reference

Gershtein and Dzhikiya (Ref. 1)

Isgur, Karl, and Koniuk (Ref. 2)
Weyrauch and Weber (Ref. 5)
Bourdeau and Mukhopadhyay (Ref. 7)
Gogilidze, Surovtsev, and Tkebuchava (Ref. 8)
This work

El+ /M)+ (%)
—Q. 32
—0.41

—0.69, —0.81'
—0.6, —0.3

—0.65
—0.21

TABLE I. Values of the ratio E&+ /M&+ at the photon point
(E =0) in various quark-model calculations.

where we have used the polarization vector
e=( —1/&2)( l, i, 0), and written a single term for the
derivative operator by noting that p3+ commutes with

lIcl 3e '. To write (4) as a simple integral over the internal
coordinates we must perform the integration over the
center-of-mass coordinate R. To do so we insert plane
waves for the center-of-mass motion of both baryons (one
with momentum zero) and note that r3=R —V2/3A, ,
with the result that

' 1/2
'This first value is with the color-magnetic hyperfine interaction
only; the second has a one-pion-exchange contribution without
the zero range part. Both are calculated with the
electromagnetic-charge operator, and not the current.
The two values quoted for Ref. 7 are those calculated using

S&+ and the Siegert theorem to estimate E&+, and the usual ap-
proach.

e30'
m k

—ik +2/3k ~ 3+
Ps+

Then, finally the multipoles E&+ and M&+ are given by

1E,+ = —( A3/s
—+3A &n) ~

2 3

(6)

where to conserve helicity we have (see Fig. 1) A, iv
= —

—,
'

for A, /z and A,iv= —,
' for A, /z, where the (incoming)

photon's three-momentum k is in the z direction. If we
insert, as in Ref. 1, the field

' 1/2
ikr + y

—ikr
rf (ek, k~k, ke +ek, Ãk, ke (3)

into Eqs. (1) and (2), then we can write the amplitudes as

Ak= g (b(J=,'iM=A)IH;IN(J= —,
' M=i(, 1)) (4)

e3 7TH', =
m k

' 1/2
ikr3 0'3+

e " @3++k (5)

Here the expectation value is taken to mean integration
over the coordinates p=(r, —rz)/v 2, l(, =(r, +rz
—2r3)/&6, and R=(r, +rz+r3)/3, and expectation
value of spin- and Qavor-dependent quantities between
the spin wave functions ya and y~ and the Havor wave
functions Pz and Piv. We have already specialized to the
equal-mass case of interest, and we will show that it is
suScient to know the form of the operator for the third
quark in the sum in Eq. (1}. H3 in Eq. (4) can be written

1
M]+ (3 A 3/p+ &3A, /~ ) ~

2 3

If we wish to present results for the multipoles them-
selves and not just ratios of multipoles, for the general
case away from the photon point E =0, then we must'
use an ansatz for the "normalization of a virtual photon. "
We adopt the convention of Bourdeau and Mukho-
padhyay, that &n./k in Eqs. (5) and (6) is replaced by
Qn /Ko, where Ko =(Ma MN )/2M—&, the value of k at
the photon point. The k in the exponential in (5) and (6)
is given by conservation of energy to be

M2~+ M%2 —K2
k = (&)—M 2

B. The helicity-0 nonrelativistic transition operators

The helicity-0 operators are found in much the same
way as the helicity-1 operators. We again concentrate on
photoproduction of the 5 in its center-of-mass frame,
now with the photon polarization vector e=(0,0, 1). The
equivalent of (4) for the longitudinal multipole is

L&+ = Q —(&(J=-,' M =-,')IH IN(J =-,',M =
—,')),1

where Kz is the square of the photon four-momentum (0
for real photons).

where 03 has the form
l
2

0 ~ A~ ———
2

1
AN ———

34 ~ A~ ———
2

2~
m k

' 1/2
ikr3 ikr3

2
—(p3, e '*+e "p3, ) . (10}

FIG. 1. Momentum and helicity assignments in the
center-of-momentum frame for the (photon) helicity-1 transi-
tions.

—ik +2/3A,
&2/3pk, + —e

k2m

m k

The sca1ar multipo1e is defined by

Performing the integration over the center-of-mass coor-
dinate in (9}we find that

1/2
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C. Calculational methods

(12)

' 1/2
3 2' ikr3

e
m k

(13)

which when we integrate over the center-of-mass coordi-
nate gives

es 2m
H3 —+ ——

m k

' 1/2 —ik +2/3A,
e (14)

where the operator H is the zero component of the
electromagnetic-current four-vector that has H,-' as its z
component. The correct operator may be found by ex-
amining the electromagnetic current for the quark-
photon vertex, putting in the explicit form of the four-
spinors for the quarks in terms of Pauli spinors and Pauli
matrices, and the result is that in the nonrelativistic limit
the current is proportional to (1,(p;+p,')/2m;), where p;
and p,

' are the initial and final momenta of the struck
quark, as in Eq. (10). This gives the correct form of H3
to be

The operators in Eqs. (6), (11),and (14) need to be eval-
uated between the relativized quark-model wave func-
tions. Details of the spectral calculation used to generate
these wave functions may be found in Capstick and
Isgur' (CI), along with a complete description of the
model itself, and the conventions used in the CI wave
functions. The main differences between the CI model
wave functions, apart from the obvious differences in the
baryon Hamiltonian used to generate them, are (1} the
wave functions are found by performing a variational cal-
culation in a large harmonic-oscillator basis, up to N =6
(the third excited level in the harmonic oscillator) for the
6 and nucleon, yielding a large number of substates in
each wave function, (2) the CI calculation did not explic-
itly symmetrize the spatial-spin-flavor wave functions un-
der exchange of u and d quarks, but rather allowed the
Hamiltonian, with m„=md, to sort the basis into states
with total symmetry in their spatial-spin wave functions
(b, 's) and those with mixed (A.-type) symmetry (nucleons).
The flavor wave functions for the nucleon and 6 states. of
the same charge are the same, uud for p and 5+ and ddu
for n and 6 .

Because of (1}it is obvious that the matrix elements of
the transition operators should be calculated analytically
with invariance methods and then evaluated with a com-
puter. Once the matrix of individual oscillator substate
transition amplitudes is known, then we need only calcu-
late the matrix sum, e.g., for A 3/2,

A 3/z
= g & b, ( —'„—', ) l

a ( —', , —,
'

) ) & a ( —,', —', ) l
H

l b ( —,', —,
'

) ) & b ( —,', —,
'

) l N( —,', —,
'

) ),
i, a, b

where la ) and lb ) are the oscillator substates that make
up the 5 and nucleon wave functions. In the Appendix
we list the formulas used to find the oscillator substate
transition amplitudes & a( —2, A, ) lH3 lb( —,', A,

—1)),
& a ( —', , —,

'
) l H 3 l

b ( —,', —,
'

) ), and & a ( —'„—,'
)

l
H 3 l b ( —,', —,

'
) ) needed

to find the third quark transition amplitudes above.
At first sight it would appear that because of the lack

of total permutational symmetry in the spatial-spin wave
functions for the nucleon in (4), (9), and (12) that we
should have to evaluate the contributions from transi-
tions involving both quark 3 and quark 2 (the wave func-
tions, excluding color, for the nucleon and 5 are always
symmetric under exchange of the first and second quark;
see Ref. 15}. However one can simply argue that these
should be the same for the wave functions used here; we
will prove in what follows that for the transition yN~A
the transition matrix elements of the operators e;0,- are
the same for all i. If we write the full wave function for
the 5 as

lh) =C„(uud) pc, +, (p, A, )y,

=C„(uud)lM ), (17)

with the sum over b having mixed A.-type symmetry (M )

under quark exchange. We wish to calculate the transi-
tion amplitude

Ze, O, N)=(S [2(—', Oe(+( —'Oe)]IM

where the 0; are operators which depend only on vari-
ables associated with quark i. Now from the properties
of the M representation of the permutation group S3 we
have that, under the permutation (23},

then if we ignore the color and flavor wave functions the
sum over a is totally symmetric (S) under quark ex-
change. Similarly we can write the nucleon wave func-
tion as

lN ) =C„(uud) g c~+~(p, A, )y~
b

=C„(uud} g ct, lb )
b

=C„(uud} g c, la ) &slo, lM') &slo, (19)

=C„(uud)ls), (16) and since 03 cannot affect (12) exchange symmetry the
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first term is zero. Therefore III. RESULTS

(S[0,fM'& —
—,'(S /O, fM" &

and so

(20)

(21)

The eventual result is that the amplitude for all three
quarks is the same, for this transition, even though the
wave functions themselves are not totally symmetric un-
der quark exchange. This a11ows us to retain the
simplification of calculating only for the third quark.
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FIG. 2. The multipoles El+, L 1+, Sl+, and (L &+ )~ (calculat-
ed from Sl+ using current conservation) with the wave func-
tions of IKK. We have used a=0.41 GeV and m„d=0. 336
GeV. The multipoles are given in terms of the mN scattering
phase factor a; see Ref. 13.

A failing of the nonrelativistic calculation which is
simply corrected here is that of the size of the dominant
multipole M&+ at the photon point. If we follow the cal-
culation of Rondon-Aramayo' for the m.N scattering
phase factor a, then the model of Isgur, Karl, and
Koniuk (recalculated here) and that of Gershtein and
Dzhikiya' give 15.4 and 15.6, respectively, for Mf+ (0) in

units of 10 m +. In the present calculation we And

M, + (0)=27.2 in the same units which is closer to the ex-
perimental value' of 25.5+0.2. The main reason for the
improvement is very simple; we have used the
relativized-quark-model light-quark (constituent) mass

m„d =0.22 GeV, whereas the NRQM value" is approxi-
mately 0.33 GeV. There is also some slight increase re-
sulting from the use of the CI wave functions.

In Fig. 2 we show the results of using the Isgur-Karl-
Koniuk (IKK) model parameters' and wave functions
for the multipoles E,+, L &+, and S,+. %e have adopted
the procedure of Rondon-Aramayo' and calculated for
—K~ less than zero (in the unphysical region) to demon-
strate the convergence of these amplitudes in the limit
that k = ~k

~
~0. Note that the Siegert theorem

E~+( E)=S&—+( E) at ——K =0 is roughly satisfied
here, although with other wave functions this may not be
the case, and we will see that it fails in our calculation
also.

Also plotted in Fig. 2 is (L,+ ), the L &+ multipole cal-
culated by assuming current conservation. If current
conservation holds for the electromagnetic current at the
quark-photon vertex then we should have that
kpS&+ =kL &+, so that an alternate way of calculating
L, + is (L &+ ) =koS, + Ik. We can see that this relation
is approximately satisfied for small —E, but becomes
less and less valid as —K becomes larger. Also note
that' all of these multipoles start to fall off rapidly by—K =2.0 GeV, and are effectively suppressed by 4.0
QeV, due to the exponential form factor e
present in all of the transition amplitudes from a given
oscillator substate to another. This decrease is faster
than that of the expected dipole form factor. ' '

In Fig. 3 we have plotted these multipoles calculated
with the CI wave functions expanded up to N=6 for
both the nucleon and h. In the spectral calculation the
wave functions were calculated for a coarse grid of a
values so that the energies could be roughly minimized in
u (one test of the convergence of that calculation is that
the energies were soft functions of a). Accordingly, to
get some idea of the sensitivity of the calculation to the
wave functions we have calculated for o.' =0.6 GeV
(where the b, energy was minimized with a grid of 0.1

GeV) and for a =0.7 GeV (where the nucleon energy was
minimized). Although the general shape of the mul-
tipoles as a function of —E is roughly the same as for
the IKK mode1, we see that the dependence on —K is
now much softer, with the multipoles falling off slowly
after —K =2—3 GeV . This is as expected, since in this
basis the spatial wave functions have the form of a sixth-
order polynomial in p and A, times a Gaussian with a
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larger a; this means that the resulting amplitudes are
sixth-order polynomials in k /a multiplied by a Gauss-
ian form factor which falls off less rapidly (of the form
e " ~ }. We see from Fig. 3 that current conservation
is satisfied to a better approximation in this calculation
up to about 1.5 GeV . The Siegert theorem does not hold
(even approximately} for these wave functions, with

E,+ (0) and S,+ (0) differing roughly by a factor of
E&+(0)/S&+(0)=2.5. Of these three multipoles, E&+ is
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FIG. 4. The multipole ratios El+/M&+ and S&+/M&+ for
the IKK model (dashed lines) and with the relativized wave
functions (dotted-dashed lines). The upper E,+ /M, + line is for
a=0.7 GeV, the lower for a=0.6 GeV; the two lines for
S,+ /M&+ are coincident on the scale shown.
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the most sensitive to the details of the wave functions.
In Fig. 4 we have plotted the multipole ratios

E,+ /M, + and S,+/M, + as a function of —K, for both
the IKK model and with the CI wave functions. We see
that these ratios are again much softer functions of —K ~,

and that E, + /M, + and S,+ /M, + are smaller than in
the ILK model. Again we have plotted the ratios for
a =0.6 and 0.7 GeV to illustrate their sensitivity to the
details of the wave functions, and we see that E,+ /M, +
is more sensitive than S&+ /MI+, as we expect from the
sensitivity of EI+. We should point out here that these
ratios are much less model dependent than the multipoles
themselves, for instance, they do not depend at all on our
ansatz for the "wave-function normalization" for virtual
photons.

IV. DISCUSSION

—12 '

0.2 0.4 0.6

—K~ (GeV)

0.8 1.0

FIG. 3. (a) The multipoles El+, Ll+, Sl+, and (Ll+ )~ with
the wave functions of Ref. 15, expanded to N ~6. In all cases
the line with the largest absolute value at —K =4.0 GeV is the
calculation for a=0.7 GeV, and that with the smallest a=0.6
GeV. %'e have used m„d =0.22 GeV, and the multipoles are
given in terms of the m.N scattering phase factor a. (b) As in (a)
but with the low —K region expanded. For L, + and E&+ the
upper line is for a=0.6 GeV and the lower for a=0.7 GeV in
both cases. For (L,+ ) and S&+ the lines for these two values of
a are coincident on the scale shown.

The analyses of the experimental data for these mul-

tipoles concentrate on extraction of the ratio E&+ /M&+
at the photon point (from photopion experiments}. This
process is very complicated, although it would appear
that they support a small negative ratio there of about
—1%. Our calculation (see Table I) gives a somewhat
smaller value of approximately —0.2%. The analyses of
the rather poor data away from the photoproduction
point are not of suScient precision that they can make a
meaningful test of these models. From Fig. 4 and Table I
we can see that the planned experiments need to be able
to measure these ratios at low —E to an accuracy of a
few tenths of 1% if they are to distinguish the various
models.

In our calculation the use of relativized wave functions
has not removed the problem of lack of current conserva-
tion, but only improved it, as evidenced by the improved
agreement of (L &+ ) with L,+. This does not indicate a
problem with the quark model. Rather it indicates that,
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as shown by many authors, ' ' we have not used a transi-
tion operator with the correct physical behavior. As
pointed out by Close and Li, it is inconsistent to use the
nonrelativistic limit of the transition operator, but to
treat correctly the problem of configuration mixing, as
these corrections are of the same order. We can also see
that the lack of current conservation may in part be due
to integrating the electromagnetic current four-vector
over the three-space wave functions. Even if this was
done without taking the nonrelativistic limit of the
current operator, the result would not transform as a
four-vector and current conservation would be lost.

There are also other reasons to be cautious about mak-
ing conclusions about the quark model based on the
breakdown of current conservation. It is interesting that
our results show fairly good agreement between (L,+ )

and L&+ for smaller —E which breaks down above
—E =1.5 GeV . This is a signal that the entire calcula-
tion can be trusted only below this scale, and in particu-
lar indicates that one cannot simply boost the center-
of-mass wave functions by multiplying by a plane wave
exp(iP R). Once the momentum of the recoiling baryon
exceeds its mass (in the center-of-momentum frame of the
6, k = 1 GeV for —K = 1.0 GeV ) this simple prescrip-
tion must start to break down. And, of course, our calcu-
lation has little light to shed on Carlson's perturbative
QCD (high E) limit —E,+ /Mi+ =1.

One worrying feature of the results which is best illus-
trated in the analytic calculations of Refs. 1, 2, and 7 is
that the E,+ moment, which is an electric quadrupole
transition, vanishes in the limit of small k like k (with a
factor e i ), and not like k which we would expect
for quadrupole radiation. However, this behavior has
been calculated for k fixed by the mass difFerence of the b
and nucleon, which in these models is itself fixed by the
strength of the contact part of the hyperfine interaction.
The same strength multiplies the tensor part of the
hyperfine interaction which is responsible for the D-wave
mixings which have led to a nonzero coefficient of k. If
the hyperfine strength is reduced by reducing a, the b,-

nucleon splitting and so k are reduced roughly linearly,
as is this nonzero coefficient induced by the tensor in-
teractions. In the limit of small a, and so k, the product
of this coefficient and k will go to zero like k . We see
that there is implicit dependence on k in E&+ which

j

could allow for E,+ to have the correct scaling behavior
in the long-wavelength limit.

V. CONCLUSIONS

We have seen from the above that we expect our re-
sults to be generally reliable below approximately 1.5-2.0
GeV . The extension of the nonrelativistic calculation
performed here, that of using wave functions expanded in
a large harmonic-oscillator basis (which are solutions of a
realistic "relativized" Hamiltonian), is a necessary first

step, and has shown that the truncation of the wave func-
tions does contribute to the lack of current conservation,
but there are many reasons why current conservation
should fail. It has also shown that extension of the wave
function basis has little effect on the adherence to the
Siegert theorem, and that using this theorem to evaluate
E,+ /M, +, at least for this set of wave functions, would

lead to error. The next step is to correct, consistently
to 0(p /m ), the transition operator. The result of this
first step is that the ratios E,+/M, + and S,+/M, + are
quite small and negative at —E =0, and have soft
dependence on —E away from the photon point.
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APPENDIX: OSCILLATOR SUBSTATE TRANSITION
AMPLITUDES

In this appendix we give the formulas for the transition
amplitudes between a pair of oscillator substates of the
wave functions for the 6 and nucleon.

1. Helicity-1 amplitudes

We decompose the amplitude ( A z ),&

=3&a(2,A)iHPb(2, A,
—1)) into a derivative term

( A ( ),& and a spin term ( A & ),&. The states
~
a ( —3, A, ) ) and

~
b ( —,', X —1) ) are given by the sums (for example, for ia ))

i a ( —,
'

k A ) ) =Cq ( uud) g C (L„S„M)A, M; 23 k A ) (IIL sr „ I
—„ —

I (p, A )ys g
M

so that

(A 1)

1/2
1 k(A') =3 ———— a( —', A. ) e

A. ab

—k1 2/kk, kk b(, b l))2 2'

Q C(L„S„M,A, M; 3, A, )C(Ls,S—s,M, A, 1 —M; (,A,
—1)—

M

—ik&2/u, ,
&q'L. ,M,., l, , I, le I+Lb, M,., I, , 1„

~b ~b b b

X C (S, (,b, —1 —M, (;S„b—M )(S,
~3+

Sb (A2)
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Here the notation and conventions for the spatial wave functions 4', and the spin wave functions y is as in Ref. 1 5. The
spin-reduced matrix element in (A2) is given by

S,
03+

2
Sb

—&5/6 0
0 —&3/2

2
v'3

&2 /3
0
1

(A3)

where the ijth entry in the matrix corresponds to

with g& =y3/2 g2 J]/2 and y3 =y& /2 ~ The spatial matrix elements are given by
S p

I +1
b

L,M n, l,n~, l~ L,bMn, l, n~, l~ n, n I,I
)oa ~a a a ~b ~b b b

b

Lb +1 —K —
l~

X(2K+1)C(Lb,K,M, O;L„M)( —1) ' '+2Lb+1

X W(lI, , II, ,L„Lb,K, 1 )+2lg +1C(K,1I,O, O;lI, O)

X n~ l~
zKdK

(zdz) 2
nl

b b
z = —ik +2/3A,

(A4)

where the last factor in (A4) is a radial integral, with

(n, l, l f (l)lnblb ) =JV„ I JV„ I f d(ak)(aA. )
' 'e "L„' (aA, )f (A. )L„' (ak) (A5)

with the definition of the normalization coefficients A'„I and the Laguerre polynomials L„' '/ also given in Ref. 15.
The calculation of the derivative term ( A ( ),b proceeds similarly, except that the spin matrix element is trivial and we

must make an insertion of 1= g„ I in& lz )(nz lz l
between the phase factor and derivative operator in this part of

n ' A, C C C C
C C

H3 [see Eq. (6)]. We have, therefore,
1/2

( &()nb = —3 ———— (a ( —,', A)le '( —', ) pq+ lb( —,', A,
—1) )

1 1 K ik+2/3A, }/2

1

m k
5q q g C(L„S„A, M, M; ,', A, )C—(Lq, Sb,—k 1 M, M; ,', A,

——1)——

The last factor in (A6) has the value

—lk +2/3A'z
2 J /2L,k M, ,l, , l — ( ) pg+ l+L g —I M„ I „ I —)

~b ~b b b

(A6)

2 2 1/2(-', ) pg+ I iIIL, ,g, M „
~b ~b b b

=5„„5I I g C(l~, lz, AmM —m;L„.—ll, M)C(l, l„,m, g——1 —M —m L g —1 —M)a~ p

—i k +2/3A,x X &n~l~~ M ml —'l„~—l~g —M )
a u C C

n, , I
C C

X (ni lq ~—M —m l( —', )' 'p&+ ln& l~ A,
—1 —M —m ) .

Here the phase-factor expectation value is given by a formula similar to (A4),

(A7)



2774 SIMON CAPSTICK AND GABRIEL KARL

—ik&2/3X,
(n» I» A, —M —mIe 'In» I» A. —M —m )

a

I +I
A, A, 21~, +i

(2K + 1)C(I»,K, A, —M —m, O; l», A,
—1 —M)

ac=/I, —I, /

21~ +1

X C( zl», 0, 0; ~},0}(n~ }~

and the momentum operator integral is given by

(n» I» 1M,
——m I( —,

')'/ p»+ In» I» A,
—1 —M —m )

z d sinhz

(zdz) z
n» I», (AS)

z =—ik 1/ 2/3A,

= —~2aC(l», I, A,
—1 —M —m, 1;1»,AM,— m)—C(1», 1,0,0;l», 0)[i(—')' ) n» I» i+ n» I» . (A9)

c c b c c ~ b b

In Eq. (A9),

is a radial integral [similar to (A5) but over the Fourier-transformed radial wave functions] which is nonzero only when
l'= I —1, where it takes the values

&n +—I +1/2 if n'=n,
nl i n'I —1 —&n+1 if n'=n+1, (A 10)

and when I'=I +1, where

&n if n'=n —1,
nl i+ n'1+1

&n +1+3/2 if n'=n . (A 1 1)

Note that (A7) [and so ( Ae»), b] is always real since the last factor in (AS) is pure imaginary for the odd values of
I» +I» which apply there [and real for even I» +I» which apply in (A4}].

2. Helieity-0 amplitudes

The helicity 0 amplitude ( Al ),b =3(a( —,', —,
'

) IH3 Ib( —,', —,
'

) ) is calculated in a similar way to the helicity-1 amplitude; we

decompose ( Al ),b into a derivative term ( A ),b and a constant term ( A, ),b. An analysis similar to that yielding (A6)
gives, for the derivative term,

' 1/2

( At' ),b =3 ——— (l2( —' —')I( —', ) p», e

' 1/2
1 2m.

m k M

—ik+2/3A,
( +L, l/2 Mn, l—, , , l„ I( 3 ) P»eI L, l/2 M, .n, l,n,l—

(A12)

Again the last factor in (A12) can be written

2 ] /2
—ik +2/3hz

( +L, 1/2 —M, n, l,n»l& I( 3 } P»z I+
&,L1 2 —/M, n, l, », l&nI b ~b b b

=5„„5l l g C(l, l», m, ,' M —m;—L—„—,' —M)C(l, l», m, —,
' —M —m;Lb, ,' M}——

a b a b
a' 2 IO'a b 2

X g (n» I» —,
' —M —m I( —,

')'/ p», In» I» —,
' —M —m )

—ik&2/3X,
X(n» I» —' —M mIe — *In» I» —,

' —M —m) .
C

(A13)
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The phase factor expectation value can be adapted from (A8) with A, = —,', and the momentum operator integral is given

by

(n~ l~ —' —M —m ~( —')' p~ ~(n& 1~ —' —M —m ) =aC(1&,1,—', —' —M —m, 0;l], , —' —M —m)
a a 2 c 2 2 a 2

XC((&, 1, 0, 0;I&, 01[((—', ('~2](n~ l~ i n~(n ), (A14)

with the last factor the radial integral of (A10) and (Al 1).

The constant term ( Af ),b has the expansion
1/2

e — ~ ~ 2' 3 ] k —ik +2/3A, ,
( A') =3

l ab 3 m
a( —', —') —e ' b( —', —')

k
2m

2m

k

x(eL,M, n, l, n&, l& Lb M n, l, n&, l&
~a ~a a a ~b ~b b b

(A15)

where the last factor can be found from (A4).
The calculation of the scalar amplitude ( A, ),b =3(a(—'„—,')~H3 ~b( —,', —,') ) is trivial once we have the constant tertn

( A]'),b in (A15), since

2
( A, ),b = ——„(A]'),b . (A16)
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