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The equivalence theorem states that amplitudes involving longitudinal vector bosons are equal to
those with the corresponding unphysical scalars in the limit M~/s ~0. There are two ways to ap-

proach this limit, depending on whether M~/MH ~0 or MH /s ~0. We show that the theorem has

a different physical interpretation in each limit, but its validity in both depends only on the wave-

function renormalization of the unphysical Goldstone bosons. We derive a condition that the re-

normalization parameters must satisfy in order for the theorem to hold. We show that this condi-

tion is satisfied in the first limit, appropriate to the heavy-Higgs-boson regime, if momentum sub-

traction at a scale m &&MH is used. With this prescription, the theorem is true to lowest nonzero

order in g and to all orders in the Higgs-boson coupling.

I. INTRODUCTION

The standard SU(3) X SU(2) XU(1) model of the strong,
weak, and electromagnetic interactions has been very
successful in describing almost all experimental results to
date. Despite this tremendous success, however, little is
known about the mechanism that drives the weak-
interaction symmetry breaking. The careful investigation
of this symmetry breaking has become an essential task
for both experimental and theoretical physics.

One intriguing possibility is that SU(2) X U(1) is broken
in such a way that the weak interactions actually become
strong at high energies. ' The new strong interactions
manifest themselves through the interactions of the Higgs
particle H and the longitudinal polarizations of the 8'
and the Z. This possibility led to the discovery of the
equivalence theorem for the weak interactions. ' '

In essence, the equivalence theorem states that S-
matrix elements involving longitudinal vector bosons are
equal, in the limit M~ &&s, to S-matrix elements with the
longitudinal vector mesons replaced by their associated
Goldstone bosons. At 6rst glance, this seems to be a
straightforward consequence of the Higgs rnechanisrn.
After all, vector bosons obtain their mass by absorbing
Goldstone bosons, so the longitudinal parts of the vector
mesons should retain a memory of the scalar interactions.
At high energies, where the vector-boson masses are
negligible, one might expect that the longitudinal parts of
the vector bosons could be replaced by the Goldstone
scalars from which they came.

The equivalence theorem can be written formally as

S[Wt 's, physical]=i "XS[p's, physical],

where M~ &&s. The left-hand side of this equation is the
true S-matrix element for the scattering of n longitudinal
vector bosons WL with any other physical particles (in-
cluding the Higgs and the transverse vector bosons). The
right-hand side contains the same S-matrix element, with
the external longitudinal vector bosons replaced by un-

physical Goldstone bosons p, computed as if the Gold-
stone bosons were real physical particles.

There are, however, two problems with this statement
of the theorem. The 6rst is that we must be more speci6c
about how the large-s limit is taken. There are three
physical quantities of interest, which we choose to be M~
and the dimensionless couplings g and A. =—g MH/8M'.
[For simplicity we consider just an SU(2) theory. ] Since
we are performing a perturbation expansion in both cou-
plings, we need to know their relative strengths:

~w/s
g /8A, =

MH /s
(1.2)

As we take M~/s~O we must also take either (1)
g /A, ~O, or (2) MH/s~O. Although this is a simple
point, it is crucial to understanding the physical intuition
behind the theorem. At the tree level the theorem holds
in either limit, but at higher loops the situation is more
subtle.

The second problem in the above statement of the
equivalence theorem is that it ignores the renormalization
condition for the unphysical Goldstone bosons. Of
course, in all physical calculations this is irrelevant, but
in computing the right-hand side of (1.1), it makes a big
difference. For example, if we change renormalization
conditions, the right-hand side gains a factor of
(Z' /Z ) ",where Z is the old wave-function renor-
malization constant and Z' the new. [Note that Zz, is
completely determined by the fact that the left-hand side
of (1.1) is a physical S-matrix element. ) If the equivalence
theorem is to hold for higher loops, it can only be true for
one choice of renormalization prescription.

In Sec. II we will develop our intuition about the
equivalence theorem by briefly discussing it from a physi-
cal point of view. We 6nd that the physical interpreta-
tion of the theorem is different in each of the two limits,
and that the two problems mentioned above are related.
We use this discussion to gain some insight into the prop-
er renormalization prescriptions for the Goldstone bo-
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sons. We find that momentum subtraction at a scale m,
where m ~0 as g /A, ~O, is a physically sensible
prescription for limit (1). We find no natural prescription
for limit (2).

In Sec. III we examine the equivalence theorem to all
orders in perturbation theory. We follow the arguments
of Chanowitz and Gaillard, but we correctly amputate
the Green's functions and renormalize all physical pa-
rameters in a physical way. Using Ward identities de-
rived in the Appendix, we obtain

S [ JVL 's, physical] = (iC)"XS [p's, physical], (1.3)

a result which is true in either of the above limits. At the
tree level, C =1 and the equivalence theorem holds, but
with quantum corrections, the value of C depends on the
choice of the renormalization constant Z .

We show that it is always possible to dePne Z so that
C = 1; however, one would rather choose a prescription a
priori, and check that the prescription preserves the
theorem. In Sec. IV we prove that in limit (1) the
theorem is indeed preserved if we use a momentum sub-
traction scheme at a scale m (&MH. This is just the
prescription suggested by the physical arguments. It is
also the prescription used by Yao and Yuan in their
verification of the equivalence theorem at one loop.
Thus, using this prescription in the limit appropriate to
heavy-Higgs-boson studies, the equivalence theorem is
correct to lowest nonzero order in g and to all orders A,

(Ref. 7). This is of critical importance to any calculation
which uses the equivalence theorem including radiative
corrections.

Section V contains our conclusions. We extend the
theorem to include the standard model by adding an ex-
tra U(1) gauge boson, as well as fermions. We also exam-
ine the gauge dependence of the theorem, and suggest
that, despite appearances, the theorem in limit (1) does
not rely on the use of the R

&
gauge.

II. PHYSICAL INTERPRETATIONS

In this section we will try to understand the origin of
the equivalence theorem by making physical interpreta-
tions of the quantities on both sides of Eq. (1.1). Certain-
ly, this should not take the place of the rigorous argu-
ments which we will supply in the next two sections.
However, it will serve as a useful guide, indicating where
subtle points will arise in the rigorous arguments.

Let us first discuss limit (1), where g /A. ~O with
MH/s fixed. In this limit, $[WL's, physical] is an S-
matrix element of a spontaneously broken gauge theory
at very weak gauge coupling. The longitudinal vector bo-
sons are physical particles, while the Goldstone bosons
are unphysical particles, included to ensure renormaliza-
bility. At g =0, S[p's, physical] is an S-matrix element
in a theory where the Goldstone bosons are completely
decoupled from the gauge sector. In this theory the
Goldstone bosons are physical particles, while the longi-
tudinal polarizations of the vector bosons are unphysical,
included to maintain manifest covariance. Now, if we as-
sume that the physical observables of these two theories

III. RIGOROUS ARGUMENTS

Although the physical arguments of the last section are
helpful in understanding why the equivalence theorem
should work, they are no substitute for a careful analysis.
Therefore, it is necessary to examine the theorem from a
more rigorous point of view. For simplicity, we consider
an SU(2) gauge theory, spontaneously broken by the vac-
uum expectation value of an ordinary Higgs doublet.

We take our Lagrangian to be

+total +gaugc++scalar++gf++ghost &
(3.1)

written in terms of bare fields and parameters. The gauge
field Lagrangian Xg,„g, contains the standard SU(2) kinet-
ic energy. The scalar Lagrangian is simply

are the same in the g~0 limit, we must identify the
physical longitudinal vector bosons of the first theory
with the physical Goldstone bosons of the second. This
iinplies (1.1) at g =0. We shall see in the next two sec-
tions that (1.1) also holds to lowest nonzero order in g for
those amplitudes which vanish at g =0. This might be
expected because to lowest order in g there are no gauge
bosons in loops, so they can be treated as purely classical
fields.

This analysis also suggests the proper renormalization
procedure for the Goldstone bosons. Since at g =0,
S[p's, physical] can be interpreted as an S-matrix ele-
ment in a theory with physical Goldston bosons, the
theorem should hold if we use a renormalization
prescription which preserves this interpretation. Such a
prescription is given by momentum subtraction at a scale
m, where m ~0 as g /A, ~O. In Sec. IV we shall see that
this physically sensible renormalization for the Goldstone
bosons ensures the validity of the theorem.

The version (2) of the equivalence theorem is relevant
to the limit where MH/s~O. This is the high-energy
limit, where hard-scattering processes do not feel any
effects of the vacuum expectation value. In this regime,
S[WL 's, physical] is an S-matrix element of a spontane-
ously broken gauge theory, in the limit of vanishing vacu-
um expectation value (VEV). The longitudinal vector bo-
sons are physical particles, while the Goldstone bosons
are unphysical. In contrast, we can think of S [p's, physi-
cal] as an S-matrix element in an unbroken gauge theory,
in the limit where all scalar masses are zero. In this
theory, the Goldstone bosons are physical particles, while
the longitudinal polarization of the vector bosons are un-

physical. As above, one might expect that the first theory
(in the limit of zero VEV) and the second theory (in the
limit of zero mass) should produce the same S-matrix ele-
ments. At the tree level, where the bare states are the
asymptotic states, this intuition is indeed correct, and the
theorem holds. With radiative corrections, however, the
situation is more subtle: The renormalization of the
asymptotic states depends on whether or not the symme-
try is broken. Nevertheless, we shall see in the next sec-
tion that the equivalence theorem does hold up to a con-
stant wave-function renormalization, at least in the R&
gauge. However, we have no clue as to which renormal-
ization prescription will ensure that the constant is one.
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igo7'IVo" )40~' —~o(~4'0[2 —u,'/2)' . Do ~~(k)K (Wo (k}~physical) =0 . (3.10)

(3.2)

After shifting the Higgs field, we use the replacement

Po 'Po
40 ~- H + + 3 ~

2 p Up lpp
(3.3)

where uo/3/2 is the full vacuum expectation value of the
field $0, obtained by ininimizing the quantum eff'ective
potential. Note that U0%uo.

The gauge-fixing Lagrangian is given by

We can now use the Ward identity (A7) from the Appen-
dix to find

X'(k}&Wo'"(k)lphy I) =0, (3.11)

where we set k =M~, and the five-dimensional vector
Xb( is defined in Eqs. (AS) and (A9). '

The next step in proving the theorem is to replace the
bare parameters with their physically renormalized coun-
terparts. fo do this we define the wave-function renor-
malizations

(3.4)
1 (6060),

0

where 60 denotes the gauge-fixing condition, and go is
the gauge-fixing parameter. The 8

&
gauge is defined by

~a Z1/2~a a=Z1/2 a
op 8' y & Po p P

H =Z' H q'=Z'

and coupling-constant renormalizations, '

(3.12)

Go =&IVo(a igokozopo (3.5)

where zo is completely arbitrary. Usually, zo is chosen so
that (IV0„(—k)pt(k)) =0 at the tree level. We will
brie6y discuss gauge dependence in Sec. V.

The ghost Lagrangian Xsh„, is just

Xs„„,= —goi}0'(560/58 }rio, (3.6}

where 560/58 is the change of the gauge-fixing condi-
tion under a gauge transformation parametrized by 8 .
For our particular gauge condition, this becomes

q,-a~(a„~—,'+g,~' IVb„q,')

+-4g okozorlo't&"porjo (&0+U—o»o~ . (3.7)

In general there is mixing between the vector-boson
fields 8'„' and the Goldstone fields p'. For this reason it
is useful to define a five-dimensional field %oz as a nota-
tional convenience, where Wobr =( IVo„,po). The five-
dimensional mixed propagator' is then

Dowwi (k} Dowp, i (k)
Dab

OMiv Dab (k) Dab (k)Op%, v
(3.8)

(0(60(k)(physical) —=K (O~Wobd(k)~physical) =0,
(3.9)

In this notation, the 8
&

gauge condition can be written as
Go(k)=K Wow(k), where K =(ik", go(ozo/2)

Now we are ready to study the equivalence theorem.
For the moment, we restrict our attention to the case of a
single longitudinal vector boson. We begin by noting
that the Lagrangian (3.1} is invariant under the set of
Becchi-Rouet-Stora-Tyutin (BRST) transformations
given in the Appendix, and that the physical states are
defined to be BRST invariant. For the case at hand, this
reduces to the statement

go =g}(4'(1+5s),
Co=zwk

—,gouo —Mw(1+5M ),
go&0 =Mw(1+5. }

2A.ou02=MH(1+5br +5,),
2A,0)u02=MH(1+5~ +35, ) .

(3.13}

The parameter p is the renormalization scale introduced
for purposes of dimensional regularization, with the di-
mension d =4—2e. For ease of notation, we also intro-
duce the parameters 6„62,and h3.

d4
a, (')'= I, , (0IH( —k qln (q)lq"—(&))',

w

d4 —2a
g 5ab gP ~aad

2Mw (2ir)4

X (O~p'( —k —q)ri (q)~ri"(k)),
(3.14)

d4 —2e
g 5abik g a~aad

3 p (2 }4 2a

X (0~ W„'( —k —q}rl (q)~rj' (k)),
where the antighost states are amputated, and we take
k =Mw2. In defining 63, we use the fact that kz is the
only available four-vector. It is easy to see that the pa-
rameters (3.14) vanish at the tree level. At one loop, they
are given by the Feynman diagrams shown in Fig. 1.

We now substitute (3.12)—(3.14) into (3.11), and divide
through by the ghost propagator, to find

ik"( IV„'~phy—sical) =CMw(p'~physical), (3.15)

where
c=(z /z )'"

p

where "physical" refers to any physical state, such as the
Higgs and longitudinal or transverse gauge bosons. ' '"

To relate this to the S matrix, we extract the five-
dimensional propagator and evaluate the residue on the
8'mass shell. Extracting the propagator gives

I+5bi +E,ZH (1+5 )+b2Z' (1+5g)

1+b3zw (1+5 )

(3.16)
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(a)

(c)

malization condition which automatically ensures that
C =1.

In the M~ /s, MH /s ~0 limit of the equivalence
theorem, the ratio g /k-1. This implies that we must
set C =1 to all orders in g and A, . As discussed in Sec.
II, we know of no physical renormalization prescription
that enforces this condition.

In the limit M~/s, g /A. ~O, however, we only need
C=1 to all orders in A, . Previously, we suggested that a
reasonable prescription might be momentum subtraction
at a scale m, with m ~0 as g ~0. In this section we shall
see that this prescription gives C =1 in the limit g~0.

The first point to note is that b, , -g . From Eq. (3.14)
and Fig. 1(a}, is it easy to see that evaluating the Green's
function at any order requires at least one insertion of the
H g*'g' vertex. Thus,

~i-(gWa )
W

(4.1)

FIG. 1. The one-loop Feynman diagrams associated with the
parameters (a) 5&, (b) b, 2, and (c) h3.

S[WL 's, physical]=(iC)" XS [p's, physical], (3.17)

as Ma /s~0. This obviously follows for the case of a
single longitudinal vector boson. For the more subtle
case of more than one longitudinal vector boson, the ar-
guments of Ref. 4 can be used to derive (3.17) from a gen-
eralization of (3.15), in each of the limits discussed in the
previous section.

Thus, the theorem is valid if C =1. At the tree level,
this is obviously the case. At higher loops, the theorem
depends on the renormalization constants introduced
above. Most of these constants are fixed. The parame-
ters 6,, A2, and h3 are derived quantities that cannot be
varied. The parameter 5~ is determined by the fact

W

that M~ is the physical W mass. The parameters Z~,
ZH, and 5 are determined by the fact that we are consid-
ering S-matrix elements for the scattering of physical W's

and H's. The only free parameter is Z, the wave-
function renormalization of the unphysical Goldstone bo-
sons. Since this parameter is not determined by any
physical argument, it can be dined so that C = 1. When
this is. done, the equivalence theorem holds in both of the
limits discussed above.

Finally, we obtain our desired result: Using (3.15) and
the fact that the longitudinal-polarization vector satisfies
eL(k)~k "/M~ as M~/s —+0, we find

At higher loops, there may be additional factors of g and
A, (as well as logarithms), but there are no poles in g .
Similar arguments can be used to show that 62-g g and

A3 g . Hence, the terms can all be neglected.
We can also neglect the radiative corrections to Z~.

To see this, note that any wave-function renormalization
diagram must have two factors of g, one from each of the
external vector bosons. A typical one-loop diagram is
shown in Fig. 2(a}. This yields a leading contribution of
the form g g„k . Again there are additional factors of
g and A. at higher loops, as well as logarithms. However,
these terms all give at most 0 (g ) corrections to Z~, and
can therefore be ignored.

We cannot, however, neglect the vector-boson mass re-
normalization that comes from Figs. 2(a) and 2(b). It is
of the form g g""MH-Ag""M~, which implies that
there are strong corrections to 5M . Strong corrections

W

to Z also occur, as shown by the one-loop diagram of
Fig. 3. Thus, we find

(a)

IV. HEAVY-HIGGS-BOSON LIMIT

We have just seen that a renormalization condition ex-
ists for the unphysical Goldstone bosons which guaran-
tees that the equivalence theorem holds in the presence of
radiative corrections. However, this involves defining Z
order by order in perturbation theory, using (3.16) with
C =1. It would be better if we could find a simple renor-

(b)

FIG. 2. The one-loop contributions to the W inverse propa-
gator, to lowest order in g . Figures (a) and (b) contribute to
mass renormalization, while only (a) is relevant to wave-

function renormalization.
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C =( 1+5~ )Z ' +O(g ), (4.2)

to all orders in k.
To compute the value of C, we will use a Ward identi-

ty, valid to 0 (g ), which relates the W and p inverse
propagators. To obtain the identity, we need the effective
action. We start by writing the generating functional in
terms of the bare fields

FIG. 3. The one-loop contribution to the wave-function re-
normalization of the p inverse propagator, to lowest order in g .

Zrcra~[Jg„J, JH]= i l—n f [2)pQ][XlHQ] exp i f d x X„,~„(&0,WQ)+X,„,( WQ) — (8"WQ„)
1

2 0

+-'go o~"~o„po+Jw" ~o„+J,'po+ JHHp (4.3)

where $0 is defined in Eq. (3.3). In (4.3), we integrate
over pp and Hp only, for graphs with internal gauge or
ghost loops are suppressed by powers of g . We neglect
the p mass since its effects are also suppressed by 0 (g ).
The effective action is given by the Legendre transform of
Ztotal &

I

I'„„(k )

i5—' g [k —M —gM F(k /M )]

—k k 1 ——+gF(k/M )p v
g

2 H (4.8)

rrora][ ~Qr pQ~HQ] rscalar[ ~Or pQr HO+ UQ l

4 ~ p~a 2

0

to O(g2). The dimensionless functions F~ and F2 are an-
alytic for k (&MH, and can be expanded in power series:

F, (k /MH)=aQ+a, (k /MH)+a2(k /MH) +

F2 ( k /MH ) =b 0 +b ) ( k /MH ) +b q ( k ~/MH2 )2+
(4.9)

where I „„is the Legendre transform of Z„,]„,the gen-
erating functional for an unshifted scalar theory coupled
to a background gauge field:

Zscalar[ Jpr JH ]
= —i ln pp Hp

where the coefficients a, and b, depend implicitly on A,

and ln(MH /p). The physical mass condition,
F~(M /wM )H=0 to O(g /A, ), implies that a0=0.

If we now substitute (4.8) and (4.9) into (4.7), we obtain

I'"(k )C =i5' Ik +(g k"/M )[(a, +b )

+(aq+b ) )(k /MH )
X exp i d x sea]ar p& ~p + pp + . ]I (4.10)

+JH(HQ+UQ)] . (4.5) The momentum subtraction condition for wave-function
renormalization at a scale m is

The effective action I „,]ar is manifestly gauge invari-
ant. Using this, it is straightforward to derive the Ward
identity

ar'(k )P

Bk
gab

A; =m (4.11)

k"k'r' (k )=—'(g U ) r'"(k )
— 5'ik4

p

Using this condition on (4.10) gives us
(4.6)

C =1+(g m /Mw)[2(a, +bQ)

~ 4
krak&r ~b (p~) —~2 Z & {1+$ )&I ab(p2)—wpv w p ww

4
=M' c'r'"(k') —'" 5'"

W p (4.7)

where I'Qw„„(k ) and I 0 (k ) are the inverse propaga-
tors of the bare 8'and p, respectively. In terms of renor-
malized quantities, this becomes

+3(a2+b, )(m /MH)+ . ] .
(4.12)

(4.13)

V. CONCLUSIONS

Thus, if we choose the subtraction at the physically
reasonable scale m -Mw ((MII, we obtain the desired
result

C =1+0(g ) .

We will now evaluate C, using (4.7), the physical prop-
erties of the W inverse propagator, and the momentum
subtraction condition for the p inverse propagator. At
low energies, the 8'inverse propagator can be written

In this paper we have seen that the equivalence
theorem can be considered in two distinct limits, depend-
ing on the ratio g /A, . The two limits have different
physical interpretations, which are very helpful in eluci-
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dating the fine points of the theorem. In both limits, we
have found the theorem to hold to within a constant fac-
tor for an SU(2) gauge theory in 8& gauge. This factor,
given in Eq. (3.16), can be set to one by an appropriate
choice of Z . Furthermore, in the heavy-Higgs-boson re-
gime, where g /A. ~o, we have shown that this factor ap-
proaches unity when the unphysical Goldstone bosons
are renormalized using a momentum subtraction scheme
at a scale m &&Mz. In this ease, the equivalence
theorem is true to lowest nonzero order in g and to all or-
ders in A.. '

The simplicity of scalar amplitudes makes the
equivalence theorem a useful tool for calculating cross
sections in the heavy-Higgs-boson limit. However, since
the full symmetry of the electroweak interactions is
SU(2) XU(1), it is necessary to add a U(1) gauge boson.
Certainly, the physical arguments of Sec. II do not de-
pend on the symmetry group of the theory, so the
equivalence theorem should still hold. The rigorous ar-
guments require a straightforward extension of what we
have done. Using the rediagonalized physical gauge
fields, Z" and A", it is easy to derive the analog of (3.15)
from the BRST transformations associated with the bro-
ken generators. Then, because we are neglecting all
gauge-boson loops, the arguments of Sec. IV carry
through for the SU(2) XU(1) theory.

Of course, the standard model also contains fermions,
so we must examine their effects. When fermions are in-
cluded, there is an extra perturbation expansion in the
Yukawa coupling f=gMF /2M~. As might be expected,
the statement of the theorem depends on the ratio g /f.
When glf ((I, arguments similar to those of Sec. IV
can be used to show that the theorem is true in the
heavy-Higgs-boson limit to lowest nonzero order in g and
to all orders in A, and f, provided the Goldstone bosons
are renorrnalized at a scale m &&MF. On the other
hand, when glf -1, the theorem is correct to lowest
nonzero order in g and f, and to all orders in A, .

Finally, we note that the theorem in the heavy-Higgs-
boson limit does not require use of the R& gauge. The
physical arguments of Sec. II do not depend on the
gauge, except for the requirement that the unphysical
sealars become Goldstone bosons in the limit g /A, ~O.
More formally, the arguments of Secs. III and IV hold
for any "axial" gauge condition of the form
Go(k)=N Wo~(k), where N~ is a five-vector of the
form N~=(n„, gon5), with n„and n5 arbitrary. ' The
steps that lead to (3.11) follow from the BRST transfor-
mations (Al), and do not depend on the choice of gauge.
The equivalence theorem is a direct result of the gauge
invariance of the physical theory.
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APPENDIX: WARD-TAKAHASHI IDENTITIES

In this appendix we will derive a set of Ward identities
for an SU(2) gauge theory in terms of the bare fields and
parameters. The Lagrangian is given in Eq. (3.1). It is
invariant under the following BRST transformations of
the fields in momentum space:

5Wo„(k)= ik„rio(k)
1

go

d4q b+e'"' f Wo„(k —q)rio(q),

d4q b5po(k)= —,
'e'"' f po(k —q)iso(q) —

—,'Uorio(k}

d4q
4HO k q'goq

d4q
5Ho(k) =

—,
' f ~ po(k —q)bio(q), (Al)

d4q b5rio(k}= —,'e' ' f— rio(k —q)bio(q),

5rio'(k) = — Go(k) .
1

goto

=0. (A2)

The expectation value is taken in the presence of the
sources J;, one for each of the fields 4; above. To obtain
our first identity, we differentiate (A2) as follows:

5 bZ(J;) =0
5Jw( —p)5J ~( —k)

J, =O

(A3)

This gives us

(Ol Wo„( —k }G"(k) l 0 )

= —ik„go(olr)o( —k)i}o (k) lo) +gogo@"

d4
x f "q, (OlS'o„( —k —q)go(q)go (k) 0) .

(2m )

Similarly,

(A4)

The Ward identities we desire are obtained from the
equation

bz(J;)= y f " q, J, ( —q)(015m, (q)lo)J
J
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5 hZ(J;)
5J ( —p)5J, (

—k)
=0.

P I J, =O

yields

(A5)
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d4q
&O~ pp(

—k) G,'(k) ~0 &
= —

—,'gogoUo & 0~go( —k)go*'(k) ~0) —
—,'gogo f (0~Ho( —k —q)gp'(q)go*'(k) ~0)

(2tr )

d4q+ ,'go—goe""f 4 (O~po( —k —q)r)o(q)go (k)~0) . (A6)

Equations (A4) and (A6} are the Ward identities that we need. If we use the five-dimensional notation of Sec. III and
we restrict to 8

&
gauge, these equations can be combined into the single equation'

Dp' (k}/+=X~M(k),

where K and Dp siz are defined in (3.8),

4
X„'"=—ik„go(0~rip( —k)rlo (k)~0)+go(pe'" f, (0~ W;„(—k —q)rip"(q)r} (k)IO&,

(A7)

(A8)

and

d4q
X5 = T'gogoUo&Olrjo( k)1o (k)IO& —,'gogo f 4 &OIHp( k q)rIp(q)rip

(2n. )

d4q+—,'gogo@" f ~ (O~po( —k —q)rlo(q}gp (k) ~0) . (A9)

As a check, we have verified that the equivalent Ward identities in an Abelian theory are satisfied at one loop.
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