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We show that a small bubble of false vacuum can tunnel to the critical size for inflation, and

calculate the amplitude in leading WKB approximation. An initially nonsingular space becomes

an exterior space plus a baby universe (which contains the bubble), joined by a black-hole singu-

larity. We work in a Hamiltonian formalism; the corresponding Euclidean bounce is shown to
have a degenerate vierbein.

I. INTRODUCTION

In this Rapid Communication we study the nucleation
of false-vacuum bubbles by quantum tunneling. Our in-
terest in the process is twofold: as the possible origin of
matter in our Universe and as a thought experiment for
investigating various technical and conceptual issues in

quantum gravity.
Various mechanisms have been proposed' to explain

the vanishing of the cosmological constant, but only at the
cost of predicting an empty universe, with no matter or ra-
diation. It has been suggested that the observed Universe
may have arisen from such an empty or nearly empty
state by a gravitational instability, negative gravitational
potential energy offsetting the positive energy of
matter. ' In particular, a large enough bubble of false
vacuum (AF )0) embedded in true vacuum (AT 0) will

grow indefimtely, the tendency of the false vacuum to
inflate overcoming the inward force on the bubble from
pressure and tension. The observed Universe arises
from subsequent decay in the interior of the bubble. No-
tice that this is the reverse of the familiar process of
false-vacuum decay by the growth of bubbles of true vac-
uuID.

It has been sho~n that such a growing bubble cannot
develop classically from a nonsingular initial configura-
tion. It might, however, be produced in a quantum pro-
cess: ' an initial bubble, too small to inflate, tunneling
to the critical size for growth and then evolving classically.
It is this process that we study, using Hamiltonian %KB
methods. We 6nd that occurs, and we calculate the ex-
ponential suppression factor. Other groups have studied
this process using diff'erent methods: the Euclidean path
integral and a quantum-mechanical description of the
bubble. ' In the Conclusion we discuss the relation of
these papers to our work.

The final state after false-vacuum bubble nucleation is
two spaces connected by an Einstein-Rosen bridge, which

collapses classically to form a black-hole singularity.
Whether the spacetimes become topologically disconnect-
ed due to black-hole evaporation is an open question.

In a future publication we will discuss this work in

greater detail, and give further applications to quantum
cosmology.

II. WKB GRAVITY

We are interested in the amplitude for a small false-
vacuum bubble to tunnel to the critical size for inflation.
We will assume that the initial and final bubbles, and the
path of least action between, are spherically symmetric, so
in the leading WKB approximation we need only consider
metrics of the form

ds —N'(t, r) dt +L(t,r) (dr+N"(t, r)dt's

+R(t,r) 2(de +sin Hdp ) . (I)
In (I), N' is the lapse, N" the shift, L the ratio of proper to
coordinate length in the radial direction, and R the trans-
verse radius [e.g., the area of a shell at fixed t, r is
4ttR (t,r)]. Quantum gravity restricted to spherically
symmetric fields is a version of minisuperspace known as
the Berger-Chitre-Moncrief-Nutku (BCMN) model. "
Construction of the Hamiltonian formalism is stan-
dard:" '3 the action for gravity plus a general matter
system, with metric (1),can be brought to the form

S p;q'+ „dr dt (ttLL+ttRR —N'lf, —N"'P, ), (2)

where q' are general matter degrees of freedom. The pri-
mary constraints are tttvi 0 and ttiv. 0, and the secon-
dary constraints are P, 0 and P, 0. In Dirac's canon-
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ical quantization, ' these are imposed on the state:

trlv, w (r) W &~,.(r'&t. ,&R,p, L,R,q) i' 0. (3)

Hamilton-Jacobi equations:

bZO bZO bZO

BL BR 8q
These four equations essentially fix the dependence of y
on 1V', 1V', L, and R, leaving the matter coordinates q as
dynamical degrees of freedom. By the primary con-
straints, i'(1V',¹,L,R,q) is independent of 1V' and 1V', so
that y depends only on the spatial geometry and the
matter configuration. The P, constraint is also simple,
setting the amplitudes equal for configurations which
diff'er only by an r reparametrization. The S', constraint
is more complicated because it is second order in momen-
ta.

In the WKB approximation, set

i'(L, R,q) exp[iZO(L, R,q)/0+0(h )] .

To leading order in 5, the /f, and S, constraints become
I

One can solve these equations to determine (up to the usu-
al sign choices) the gradients of ZD with respect to the
gravitational fields, BZp/hL and bZO/bR, and integrate to
obtain the L and R dependence at fixed q. (The equations
are integrable because the algebra of constraints closes. )
The next-order WKB approximation would require treat-
ment of nonspherical metrics, operator ordering, and cen-
tral charges in the constraint algebra. We will not at-
tempt this; it is vastly simpler in the path-integral formal-
ism, if the latter can be developed.

For

5 (16nG) ' d x&g(R —2A)+S~,
where M denotes matter, the secondary constraints be-
come

2G«t, «t. trR + 1 2RR'
2R2 R 2G L

/i~, ~R xg —Ltrt. +/f, ~,

L+ALR— + Pg~,
R'R'

2

(5)

where a prime denotes d/dr. Vanishing of the linear com-
bination R'S, /L+ Gott. &„/RL implies A' R'S,st
+Girt. S,~/R, where

«t. + R
2R 2G

2R'
+ AR

L 3
(6)

By considering a static slice (tr 0) in the absence of
matter, one identifies At as the mass parameter in
Schwarzschild or Schwarzschild-de Sitter geometry. For
the problem at hand, the spatial topology is R, with the
origin a nonsingular point and with cosmological constant
zero and Schwarzschild mass M at infinity. This gives the
boundary conditions A(r) 0 as r 0, At(r) M as
r~ .

and mt and ztt to be nonsingular there leads to

V(r+e) —V(r —e) -—V~, (8)

where Vst (G(p +m 2) '1 /R, Gp/R), R R(r), and
Vst Y~ G m /R.

Equations (7) and (8) allow a simple description of the
allowed and forbidden regions as a function of R R(r")
If V(r"+e), V(r" —e), and V~ satisfy the Lorentzian tri-
angle inequality (one length greater than the sum of the
other two), the matching conditions have a solution with
real momenta; if they satisfy the usual Euclidean triangle
inequality, the momenta are imaginary.

IV. TUNNELING

III. VACUUM BUBBLES

1 —AR /3, r &r",
V V

, 1 2GM/R, r&r, — (7)

where V (R'/L, Get. /R) and V V V~ —Vj. The con-
straints also imply matching conditions at the domain
wall. Requiring the metric to be continuous at the wall

For a spherically symmetric bubble in the thin-wall ap-
proximation, the only matter degree of freedom is the
coordinate radius r". The cosmological constant takes a
positive value A for r & r" and vanishes for r & r". In addi-
tion, the energy density of the bubble wall gives
P,st(r) 8(r —r)(L p +m )'1 and P,~(r) —b(r
—r")p, where m 4xrrR (r"), o being the tension in the
bubble wall. Equation (6) and the boundary conditions
enable us to solve for xt (r) in the interior and the exteri-
or. The solution can be written as

The classical motions of the false-vacuum bubble have
been studied extensively in Refs. 4-6. One conclusion,
which can be obtained readily from Eqs. (7) and (8)
above, is the following: For M sufficiently small (M & Mq
in the notation of Ref. 6), there are two allowed regions,
R ~ R~ and R~ R2, where the turning radii R~ and R2
are related to the exterior Schwarzschild and interior de
Sitter radii by Rs &R~ &R2&RD. At R R~ and R2,
there are spacelike slices which are static de Sitter inside
and static Schwarzschild outside. These geometries are
shown in Figs. 1(a) and 1(b). For the R& turning point,
R(r) is monotonically increasing. For the R2 turning
point, R'(r" +e) is negative, and R(r) in the exterior re-
gion decreases to Rs 2GM before increasing. The sub-
sequent classical motion of the Ri bubble is to collapse
into a Schwarzschild singularity. The subsequent classi-
cal motion of the R2 bubble is to infiate indefinitely, while
the neck in the geometry collapses into a Schwarzschild
singularity.
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It is shown in Ref. 7 that the R ~ geometry is
buildable —it can be constructed classically in a universe
without past singularity —and that the R2 geometry is not
buildable. We are interested in the amplitude to tunnel
from the former geometry to the latter. The relative am-
plitude for these two geometries is obtained by integrating
VXO along any smooth path connecting the two. An exam-
ple of such a path is provided (for A &48rr2cr2G2) by
choosing L 1 and by the minimal slicing' rt,' LrtL
+2RtrR=0. With the P, constraint and the matching
conditions this implies tzL(r) 0 for r &r" and rtL(r)

p(R—/R(r) j 't2 for r ) r". Solving the matching condi-
tions, p and R'(r"+e) are smooth functions of R for

A

R
~

& R & R2. For example,

R'(r" +c) = (1 —AR /3)

x [1 —GM/R —G(8tr Gcr +A/6G)R l . (9)

Equation (7), the minimal gauge condition, and Eq. (9)
determine R' as a function of R. This can be integrated to
fix the whole geometry as a function of R; it interpolates
continuously between Figs. 1(a) and 1(b). The amplitude
is now found from

—i h, bing pbr+ dr(rtLbL+ rtttBR),

which, with some effort, integrates to

y+ (R)
hGln T- . dr R(l —R' +2GM/R) 't —RR'arccos

lff+ (R~) (1 —2GM/R) '"
PR A A R'(r" +e)
n dR R arccos (10)

gR& (1 —2GM/R) '

A

where R'(r"+e) is given as a function of R by Eq. (9), and where the arccos always lies between 0 and tz. The upper sign
represents tunneling from R ~ to R2. The first WKB approximation to the tunneling rate is e

8 —21n (R) —4G M2) — dRR arccos
yp(R~) tt 2 2 2 '"~ - - R'(r"+e)
I//+ R] Gott( 1

—2GM R

Rl
I

I

(b) Rs
I I
I

I

R~ I

FIG. 1. Turning-point geometries: de Sitter interior,
Schwarzschild exterior, with a kink produced by the bubble
wall. These 6gures are obtained embedding the three-geometry
in Euclidean four-space, and drawing a slice at fixed 8,&. (a)
The buildable geometry: the bubble subsequently collapses. (b)
The unbuildable geometry: the bubble inflates inde6nitely.

This is in the range

tz(R —4M G )/AG & 8 & tt(r) -4M G )l/aG '

e ~ is &( I unless the bubble parameters are near the
Planck scale.

As a check, the derivation of (10) also applies in a case
studied by Coleman and de Lucchia, ' namely M 0 and
A & —48tz2G2cr2, in which case our Hamiltonian analysis
agrees with their Euclidean result.

V. CONCLUSION

We have shown that false-vacuum bubble nucleation
does occur, given an appropriate seed. The cosmological
implications of this will be considered in future work.
Note that, provided the bubble parameters are small com-
pared to the Planck mass, all curvatures are small and the
calculation should be trustworthy. However, the subse-
quent classical evolution leads to a singularity, and the
final state consists of two universes: an interior universe
and a closed "baby universe" with the inflating bubble,
joined by a black-hole singularity. ' If black-hole eva-
poration proceeds to completion then topology change has
occurred; it is not clear that there is any other consistent
final state.

Farhi, Guth, and Guven have studied this process us-

ing the Euclidean path integral. (Euclidean solutions
have also been considered in Ref. 9 but these do not repre-
sent false-vacuum nucleation; they are closed, without ini-
tial and final hypersurfaces, and so their interpretation is
unclear. ) A puzzle arises because they show that there is
no (nondegenerate) Euclidean bounce solution for this
process. On the other hand, given any Minkowski tunnel-
ing process such as we have found, one can always con-
struct a Euclidean bounce solution: label the successive
configurations in the history by a parameter z, which fixes
the spatial metric components L(r, z), R(r, z). The lapse
and shift, N'(r, z) and N"(r, z), are derived from the rela-
tion between velocities and momenta. %'hen this is done
in the present case, the Euclidean vierbein is found to be
degenerate in places. In particular, the determinant of the
vierbein must change sign on the final slice, Fig. 1(b), be-
tween the bubble wall and the narrow point on the neck.
Reference 8 describes this Euclidean spacetime in terms
of a bounce solution which is nondegenerate but double
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valued, and gives a prescription for the bounce action
which agrees with our tunneling result. From the Euclide-
an point of view, it is not clear whether such spacetimes
should be allowed, but the Hamiltonian analysis indicates
unambiguously that the process occurs: we have simply
integrated the constraints, and it is not possible to forbid
the process without doing violence to the constraints. This
is evidence that one must necessarily include degenerate
vierbeins in the path integral; this possibility has been con-
sidered from a different point of view in Ref. 16.

Because spherically symmetric gravitational fields have
no dynamics, one would expect to be able to reduce the
system to a quantum mechanics of the bubble radius.
This has been attempted in Refs. 8 and 10, but the result-
ing quantum-mechanics problem has certain pathologies.
Our Dirac quantization can be reduced to a quantum-
mechanics problem by choosing a gauge —the pathologies
in Refs. 8 and 10 are due to the gauge choice. This will be

discussed in more detail in our forthcoming work.
Goncharov, Linde, and Mukhanov' have discussed the

nucleation of baby universes in a somewhat different con-
text, a chaotic-inflationary potential, whereas we are im-
plicitly considering an old-inllationary potential. It seems
likely that this process will occur in any kind of infla-
tionary system.
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