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Smooth-rough transition in Polyakov-Kleinert string
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A nontrivial saddle-point value of the dynamically generated string tension is found which, near
the critical temperature, approaches zero and depends on the zero-temperature string tension
linearly, implying that the Hausdorff dimension of the string surface is two. A smooth-rough transi-
tion is then found in the Polyakov-Kleinert string with the critical temperature in numerical agree-

ment with the previous result.

A kind of phase transition in the Polyakov-Kleinert
string""? has been predicted by Tse,’, Kleinert,* and the
present author and Viswanathan.® The critical tempera-
ture of the transition has been found. However, the na-
ture of the phase transition remains unclear. The reason
is that it is unclear if the Polyakov-Kleinert string could
be smooth at large distances below some finite critical
temperature. This problem has fundamental importance
since if a string is not smooth at large distances it seems
unlikely that it belongs to the correct universality class
for QCD strings to describe the large-N QCD.! The same
question can also be asked in the context of membranes.®

A persistence length has been implied by the property
of asymptotic freedom of the Polyakov-Kleinert

string"">7'8 as well as membranes’:
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where A is the ultraviolet momentum cutoff, a(A) is the
extrinsic coupling (inverse rigidity) at this scale, u a re-
normalized energy scale, and a(u) the corresponding ex-
trinsic coupling. It has been claimed that”° the string
surface appears smooth at scales smaller than £ and
crumpled at scales larger than . The question is if it is
possible for £ to be infinite at or below some finite critical
temperature. Polyakov argued that,"!'0 if there were a

fixed point in the theory, at a critical point A would go to
zero with a critical exponent v which is related to the
Hausdorff dimension of the string surface. There would
be long-ranged correlation among the normals to the sur-
face, implying that the string is essentially smooth. The
average size of the surface would increase as some power
of its area.

Although the question of an infrared fixed point is now
difficult to answer we are going to deal, in this Brief Re-
port, with this problem in terms of the saddle-point ap-
proximation in the large-d limit. A nontrivial saddle-
point value of the dynamically generated string tension is
found which, near the critical temperature, approaches
zero and depends on the zero-temperature string tension
linearly, implying that the Hausdorff dimension of the
string surface equals its topological dimension. We then
arrive at the conclusion that the Polyakov-Kleinert string
is smooth at large distances at or below the critical tem-
perature. A critical temperature is found which agrees
with the previous result numerically.»* Above the criti-
cal temperature, the generated string tension (which has
the physical significance of being the inverse-squared per-
sistence length) becomes finite, implying that the string is
rough. It is thus shown that there is a smooth-rough
transition in the Polyakov-Kleinert string. The essential
difference between the Polyakov-Kleinert string and the
Nambu-Goto string is also discussed.

We start with the string action in the first-order form':

SO(X“,gab,Aa,,)zaofg‘/2d2g+—2(11— [ g2 E1(AX"—2g,, —8,X 3, XM)] , 2

where AX* is defined by

I
AX*=—1750,8 g0, X" 3)

and A“® is the Lagrange multiplier which ensures the con-
straint that the metric is the induced metric of the sur-
face. We notice that the path integral

Z= [ [dgadh,dX*]expl —So(X¥ g hey)] @)

contains the integral over X* which is Gaussian and can
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then be calculated in standard fashion. We find

Z= [ [dg,,d X, ] expl —Ser(8uprras)] (5)
and
— d ’ 2 ab
Ser(8aps hap )= 5 In det' (A2 =D, A%’Dy)
}\abg
+ 17242 _ ab , 6
[ g'7%d% |o, T (6)
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where d is the dimension of the bulk space and the prime
on the determinant omits the zero modes. If we take d to
be large, then since it enters the exponent of (5), we have
reason to expect that the saddle-point approximation will
be applicable. This is indeed the case. For the same
reasons we neglect the ghost contribution for our pur-
poses. To find a reasonable saddle point, we make the
Ansdtze.
(a) A% is proportional to g°® (Refs. 7 and 8):

A%(E)=Ag(&). (7)

[In this work we only discuss an isotropic Ansatz as an
approximation. In Refs. 3 and 4 it is shown that an an-
isotropic A®®=A%% (without the sum over a here) is
necessary for an exact solution but the anisotropy turns
out to be small. This is why we shall neglect it.]

(b) The Liouville mode does not propagate.

The Ansatz (a) says that A% is isotropic which is con-
sistent with the reparametrization invariance of the
theory. The Ansatz (b) can be made possible by working
the theory in the critical dimensions if they exist.’

We now have to solve a set of saddle-point equations
corresponding to the conformal changes of the metric g,,
and the changes of A,:

&S ¢
and
SSeﬁ-
gab(é') Bgab(g): 9)

Under the Ansdtze (a) and (b) and in the ‘“‘conformal
gauge”’

8ab =PBap (10)

these equations reduce to

SSeﬂ‘

o =0 (8"
and

BSEﬁ‘

5 =0 . 9")

[We use the term ‘“‘conformal gauge” although the theory
is not conformally invariant.!’ In Refs. 3 and 4, one
needs g,, =p,8,, (without the sum over a here) because
of the anisotropy of A%. See also the parenthetical re-
mark following Eq. (7).] Equation (8) is easy to solve; we
find

}\*ZAzexp(-S‘n'/daOL, (11)

where A is the ultraviolet momentum cutoff. The result
of (11) agrees with (1).1277°

To solve Eq. (9') we note that, in the effective action
(6),

% Indet’(A*—D,A%D,)

D, A®D,

rpin| a4 2200 |

=§Tr’1n(—A)+5Tr’ln

A
(12)

The first term on the right-hand side (RHS) of (12) con-

tributes to the effective action a finite value, for a rectan-
12,13

gle, >

(d/2)Indet’'(—A)=—pdm/6, (13)

where we have set R>>T and T =pR=VpB=Vp/0
and the sheet C is defined by

C={(EEH0O<E'<R}/~, (14)
where ~ represents the equivalence relation defined by
(ELEH~(E'2T+&Y) . (15)

Using the {-function regularization we obtain, for the
second term on the RHS of (12),!?

1 det’ A+D")‘abDb =pdrl(a)
> ndet A =pdml(a
da’ A?
+5 1 4m=- |,
8 A
(16)
where
_ . dy 172 1/2
Ita)=4 [ [ oy ranam? W Ta/m
a &1
=—= 3 —K
— El " (na) (17)
and
a’=ip?, (18)

while K |(na) is the modified Bessel function and I (a) has
the limiting values

—+ asa—0, (19a)

@)= 1o a5 4o . (19b)
Gathering all these pieces gives

S.z=0 ;pB’+(terms independent of p) (20)
with

A, dA A? md
=0pg——+—— |1+In— | ———=[1— )
Og=0 a n In . o5 [1—6I(a)]

(21
Then the saddle-point equation (9’) reduces to

0ei=0. (22)
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The result of (22) has also been found by Pisarski’ and
David and Guitter.® However, these authors discussed
little on its implication on the phase transition. The
reason is that, by using dimensional regularization, none
of their results for o is as complete as our expression
(21): In Egs. (2.9) of Ref. 7 and (2.23) of Ref. 8, the B-
dependence term, the last term on the RHS of our Eq.
(21), was overlooked by using dimensional regularization.
This led the author of Ref. 7 to claim that, for A >0, the
bare string tension must be negative and no phase transi-
tion can be identified. [Compare Eq. (2.11) of Ref. 7 with
our Eq. (24) below.] In Eq. (2.23) of Ref. 8, two extra
terms are also contained. One is a quadratic divergent
term which should be absent in dimensional regulariza-
tion as well as in {-function regularization. The otherisa
1/p term which should not contribute to the saddle-point
equation 8S.5/8p=0, since S.g <o 4p, the 1/p term in
O.p is a p-independent term in S5 We still do not un-
derstand how such a p-independent term could lead the
author of Ref. 8 to determine the saddle-point value for p
[see Eq. (2.24Db) of Ref. 8 and below].

As argued by Pisarski,” the value of p is not deter-
mined by the saddle-point equation (9’) which is merely
an expression of general coordinate invariance of the
theory. (More precisely, it is a result of a global scale in-
variance. For details, see Ref. 13.) An effective action
can only be formed from invariant quantities such as a
cosmological term ~V'g, an Einstein term ~V'g R, etc.
For a surface with a fixed topology, the Einstein term
does not contribute to the saddle-point equations and, as
a result, the effective string tension vanishes and
S.g=const at the stationary point, which depends only
on the topology of the surface.

Although Egs. (9) or (20) does not determine the value
of p it, as combined with (11), determines the value of A.
The solution of (22) is

8m/d

e _S7/d (23)
%o InA?/A,
and
a8 2
A= +‘;—’B’2[1—61(a)]. (24)

Equations (23) and (24) are consistent with the famous re-
sult of asymptotic freedom found in Refs. 1 and 2.
Equation (24) is reminiscent of the situation in the Ising
model'* and must be solved numerically to determine the
critical temperature. However, it is easy to see that
there is always one solution, by using the limiting value
of I(a) in (19a), if

172
3o,

026c=|—
T

(25)

As 0— 0. from above, A decreases and we may obtain its
asymptotic dependence by using the limiting value of
I(a)in (19a), that is,

oo8T 852

A=— .
d 3p?

(26)
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We see that A approaches zero in a singular fashion as 6
approaches 6. from above, vanishing asymptotically as

v=1

(27)

It is interesting to compare the critical temperature (25)
with that found in Refs. 3 and 4. We find that even
though we have used an isotropic Ansatz for the
Lagrange multiplier A,, and the metric, the critical tem-
peratures almost coincide numerically. The only
difference being that d —2 in the formulas of Refs. 3 and
4 is replaced by d in (25). This discrepancy is because a
physical gauge has been taken in Refs. 3 and 4 and is not
important for large d. (We remind the reader that the
isotropic and anisotropic systems under consideration are
generally different in nature.)

The exponent for the power-law behavior of the order
parameter in (27) is given the symbol v=2/H according
to Polyakov!'%:

v=2/H
O 0cr

A~ 11— (28)

g

with
o=dm0*/3 and oy, =0 =dm6%/3 .

Here H is the Hausdorff (or fractal) dimension. Compar-
ing (28) with (27) gives H =2; that is, for the Polyakov-
Kleinert string, the Hausdorff dimension equals its topo-
logical dimension at or below the critical temperature.
(Note that ax/aﬁlﬁaﬁc =—27%/3B <0, but A cannot be

negative; we conclude that A remains zero at or below the
critical temperature.)

We now show that the critical temperature (25) associ-
ates with a second-order smooth-rough transition. To
prove this we need to calculate the mean fluctuations
( U, ) of the string world sheet from a reference plane, say
the (£',£%) plane, near the transition. This issue was
studied more than a decade ago by Helfrich.!> The result
is, in terms of our notation,

a
(g [Py ==
A(g*+Arg?)
with
A=L? and q=2% , (29)

where L is the length scale of the string world sheet. In
the regime of temperature 6 <6., A=0, and, therefore,
;=0 [e.g., (23)]. We thus have (|u,|*)=0 for <6,
which means that the string is smooth for 6 <6,. [We
recall H(0,)=2.]

In the regime of temperature > 6. and 0<A,<1/L2,
we have a,> 0 and so that

LZ
(lu,|?) ~ ~L?. (30
] Q1 +AL2/(27)] )

Equation (30) means that the string is rough for 6> 6,
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and 0<A<1/L2

We see from (27) and (28) that A plays a role of an or-
der parameter in the Polyakov-Kleinert string: At or
below the critical temperature, A approaches and remains
zero, implying that the system is in the global
O(d —2)XO(2)-symmetric phase and the string surface
is essentially smooth with Hausdorff dimension two.
Above the critical temperature, on the other hand, A in-
creases, implying that the global O(d —2)X O(2) symme-
try is broken and the system is in the rough phase with
Hausdorff dimension larger than two.

One might wonder that since thermal fluctuations
soften the rigidity at large distances, what mechanism
controls the fluctuations? To answer this question we
substitute the saddle-point solutions (23) and (24) into the
expression of the effective string tension (21) to get

dA

Oeg=0p+ —871'

— T 1—6I(a)] . 31)
6
The B-dependent terms in (31) arise from the zero-point
transverse oscillations (undulations) of the stretched
string which tends to lower the string tension. On the
other hand, the term with A, the dynamically generated
string tension, tends to increase the string tension. Here
we see the important role in controlling the thermal fluc-
tuations in the infrared region played by the dynamically
generated string tension. This is quite different from the
Nambu-Goto string where no such dynamically generat-
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ed string tension exists which can control the fluctua-
tions. Because of this, the string is severely creased in the
infrared region at any finite temperature. Although there
exists a ‘‘critical temperature” in the Nambu-Goto
string,'® it does not associate with a smooth-rough transi-
tion.

We close this Brief Report by concluding that there is
a smooth-rough transition in the Polyakov-Kleinert
string. This transition is second order in nature (the
correlation length tends to infinity as the critical point
reached). There remain two questions to be answered.
First, since our result, particularly the order of the transi-
tion, arises from single-string theory, will the result
change as an ensemble of strings (which QCD seems to
be) is considered? In general, this is possible.!” However,
detailed investigation'® shows that our single-string result
agrees with that of an ensemble of strings if the topology
of the string world sheets is fixed. Second, can we identi-
ty the smooth-crumpled transition with the QCD
deconfinement transition? This question is extensively
studied in Ref. 13. Here we only report the conclusion
that there is a close resemblance between these two tran-
sitions.

The author is grateful to Professor K. S. Viswanathan
and Dr. Madan Rao for valuable discussions. This work
was supported by Simon Fraser University.

1A. M. Polyakov, Nucl. Phys. B268, 406 (1986).

ZH. Kleinert, Phys. Lett. B 174, 335 (1986).

3Sze-Man Tse, Phys. Rev. D 37, 2337 (1988).

4H. Kleinert, Phys. Lett. B 189, 187 (1987); Phys. Rev. D 40,
473 (1989); G. German and H. Kleinert, Phys. Lett. B 220,
133 (1989); 225, 107 (1989).

5Zhou Xiaoan and K. S. Viswanathan, Mod. Phys. Lett. A 4,99
(1989).

SF. David and E. Guitter, Europhys. Lett. 5, 709 (1988); Y.
Kantor and D. R. Nelson, Phys. Rev. Lett. 58, 2774 (1987);
(1987); Phys. Rev. A 36, 4020 (1987); D. R. Nelson and L.
Peliti, J. Phys. (Paris) 48, 1085 (1987).

7R. D. Pisarski, Phys. Rev. D 38, 578 (1988); see also Phys. Rev.
Lett. 58, 1300 (1987); 58, 2608(E) (1987).

8F. David and E. Guitter, Nucl. Phys. B295, 332 (1988); see also
Europhys. Lett. 3, 1169 (1987); 5, 709 (1988); F. David, ibid.
2, 577 (1986); H. Kleinert, Phys. Lett. B 197, 351 (1987); Phys.
Rev. Lett. 58, 1915 (1987); F. Alonso and D. Espriu, Nucl.
Phys. B283, 393 (1987).

9W. Helfrich, J. Phys. (Paris) 46, 1263 (1985); L. Peliti and S.
Leibler, Phys. Rev. Lett. 54, 1690 (1985); D. Forster, Phys.
Lett. 114A, 115 (1986); H. Kleinert, ibid. 114A, 263 (1986); S.
Ami and H. Kleinert, Phys. Lett. A 120, 207 (1987).

10A, M. Polyakov, Gauge Fields and Strings (Harwood Academ-
ic, New York, 1987).

1y, S. Myung, S. H. Yi, and B. H. Cho, Phys. Rev. D 36, 2586
(1987).

12M. Luscher, K. Symanzik, and P. Weiss, Nucl. Phys. B173,
365 (1980); O. Alvarez, Phys. Rev. D 24, 440 (1981).

13Zhou Xiaoan, SFU Report, 1989; Ph.D. thesis (in prepara-
tion).

145, G. Brush, Rev. Mod. Phys. 39, 883 (1967); M. Plischke and
B. Bergersen, Equilibrium Statistical Physics (Prentice-Hall,
Englewood Cliffs, New Jersey, 1989).

I5SW. Helfrich, Z. Naturforsch. C 30, 841 (1975).

16R. D. Pisaraki and O. Alvarez, Phys. Rev. D 26, 3735 (1982);
P. Olesen, Phys. Lett. 160B, 408 (1985).

17H. Kleinert, Phys. Lett. B 197, 125 (1987).



