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The quaternionic generalization of the Dirac equation is investigated. From elementary con-

siderations of unitarity and Lorentz invariance it is demonstrated that potentials with quaternionic

parts are not consistent with representation independence. This result leads to the conclusion that

either quaternionic quantum mechanics singles out a special class of Dirac representations, or that

allowed potentials appearing in the problem have no j or k components. If the latter alternative is

the case, consideration of nonrelativistic wave mechanics casts doubt on the existence of simple ex-

perimental tests of quaternionic quantum mechanics.

Given certain reasonable assumptions it was shown by
Birkhoff and von Neumann' that quantum mechanics
may be formulated over real numbers, complex numbers,
or quaternions. However, as shown by Finkelstein
et al. , real quantum mechanics is not rich enough to ac-
commodate the required properties, which leaves the
choice between the complex numbers and the quater-
nions. One would hope that some experimental test may
differentiate between the two theories, to give a unique
quantum theory (although recently the idea of formulat-
ing p-adic quantum mechanics has been advanced ).

In terms of calculations of physical quantities, some at-
tention has been paid to nonrelativistic quaternionic
quantum mechanics (QQM). It has been found that some
interesting effects occur when quaternion-valued poten-
tials are present in the Schrodinger equation for quater-
nionic fields. Specifically, we write the potential in the
form

with H now anti-Hermitian (i.e., H = H) (R—ef. 9). The
free Hamiltonian takes the form

H= i(a —p+pm), (3)

where a and p are to be determined. We will henceforth
work in 1+1 dimensions for ease of exposition. It is not
too difficult to show that the conclusions hold in 3+ 1 di-
mensions. To maintain complete generality we make no
assumptions regarding the form of the y matrices which
will appear. In particular, the y matrices may have
quaternionic entries, which to our knowledge has not
been investigated previously, and hence we will detail the
steps required to obtain the correct properties of the
Dirac equation in this case. Also, the spinor f is in gen-
eral quaternion valued, which leads to a "doubling" of
solutions ' and has been used by Adler in a novel formu-
lation of QED.

Anti-Hermiticity of 0 then leads to the relations

V(x) = Vo(x)+i V, (x)+jV2(x)+k V3(x), et=a and P i =iP .f ~

(4)

where the units i, j, and k satisfy the quaternion algebra
&' =j =k = —1, &j =k = —

j& and cyclic. Adler has
shown that if V2(x) and V3(x) are linearly independent
functions, then time-reversal-violating effects may be
present in the scattering S matrix. A model of CP non-
conservation in K-meson decays due to the presence of
V2(x) and V3(x) terms in the K mass matrix has been
constructed, also by Adler. It has also recently been
shown that a necessary condition for inversion of
reflection to give a reflection coefficient which differs in
magnitude is the existence of a spatially varying phase
difference between V~(x) and V3(x) (Ref. 6).

It is thus obviously important as far as possible experi-
mental tests of QQM versus the standard complex theory
are concerned to examine possible restrictions on the
values of potentials which appear in the theory. It is the
purpose of this note to consider the introduction of po-
tentials into the relativistic theory.

We begin with the Dirac equation '

a =1, iPiP= —1, and aP=Piai . (6)

These relations reduce to the usual Dirac algebra when
the unit i commutes with the matrices ct and p, which
will be true whenever a and p are real or complex. An
example of a representation which satisfies (6) but not the
usual Dirac algebra is a =o 3, P=j tr „which has P = —1,
where the o. are two of the Pauli matrices. An important
corollary of the conditions on ct and p is that p must be

We also take the standard definitions of the operators
P",' the unit i being chosen with no loss of generality:

Po~, ~4 Pi~
Bt Bx

(For the metric, etc. , we follow the conventions of Itzyk-
son and Zuber. '

)

The Dirac equation must lead to the correct relativistic
relation between energy and momentum. Requiring the
Klein-Gordon equation to arise from twice applying the
Dirac operators to the field f leads us to the quaternionic
version of the Dirac algebra which must be satisfied by a
and P:
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unitary. (To see this consider iPiP= —1, which leads to
pip=i .Then taking the Hermitian conjugate of this
gives i =P i 13 =/3 13i, or P P= 1.)

Introducing the y matrices y =P and y'= —aP, we
can write the free particle equation in the form

y"B„Q= im—f . (7)

We now turn to the question of Lorentz invariance of
the Dirac equation. We follow the construction of Sec.
2-1-3 of Ref. 10. Writing (7) in another frame as

y"i)„'1i'= —im g' (8)

and assuming the relation g'(x') =S(A)f(x) to hold, we

may derive the form of S(A). We write

S(A) =1—
—,'co""X„„,

where the infinitesimal matrix c/ is antisymmetric and
real, and the operator X is to be determined. Imposing
Lorentz invariance on (7) and (8) yields the relation

S(A)iy"S '(A) =iy "(A '),",
with (A '),"=g,"—cu„", g being the metric tensor. In
terms of X, this becomes

1+ —(a+ iai)
2

again using the properties of a and P. So fP is a Lorentz
scalar if and only if a commutes with the unit i. Thus, a
consequence of demanding that Pg be a Lorentz scalar is
that the matrix a must be complex —that is, it has no en-
tries which have j or k components.

We now turn to the case of a Dirac particle interacting
with an external potential, which may be quaternion
valued. We will deal with scattering problems with no
source terms; hence, we require a conserved current as in
(12).

For simplicity, first consider a potential which is added
to the mass term in (7). In the usual complex theory such
a potential transforms as a Lorentz scalar, just as the
mass does. Introducing the potential V(x) into the Ham-
iltonian we find

H= i[—aP„+P—m+PV( x)] . (13)

For Eq. (7} to be Lorentz invariant with this potential we
would require V(x) to satisfy

S '(A)V'(x')S(A)= V(x) .

[iy. X„.]=2i(y~.. yX.„—) (9) For infinitesimal transformations this implies

gy"B„g= —mgig . (10)

Taking the Hermitian conjugate of this equation and us-

ing the identity yoy„yo=y„(obtained by considering sep-
arately p=0, 1), we get the equation

(B„g)y"P=m gi f .

Adding (10) and (11) we obtain a candidate current for
the Dirac equation:

It can be checked that, using the operator S(A) derived
earlier, J" transforms as a Lorentz vector, as we require.
Consideration of the quantity gg, which in the complex
Dirac theory is a Lorentz scalar, leads us to a new result.
Consider infinitesimal transformations, where S(A) takes
the form (co infinitesimal)

S(A }= 1+ i ai = [S(A—)]
2

It is easy to check that

In 1+1 dimensions there is only one component of
X„„=XO,=X. Then relations (9) become

[X,iyo]=2iy, and [X,iy, ]=2iyo,

which are satisfied by X= ,'[iyo, i—y,] Alit. tie algebra
gives the result [using properties (4) and (6) of a and P]
X= —i+i. Of course, in the case where i commutes with
the y„, X becomes equal to i 00, = ,'[yo—, y—,], as per the
complex case.

We now turn to constructing a conserved current.
Defining the conjugate spinor g=f yo, and multiplying
(7) froin the left we obtain the equation

iaiV(x)=V(x)iai . (14)

This equation is not true in general when V(x) has j and
k components, since even if we require a to be complex
only, Eq. (14) reads a V(x) = V(x)a, which is representa-
tion dependent. For instance, in a representation where
a is real, V can have any quaternionic form, whereas if a
is pure i imaginary we find that the j and k components
must vanish.

We can also ask about unitarity with V(x) present.
Anti-Hermiticity of H then implies

iPV(x) =[V(x)]'P i = [V(x)]'iP, (15)

which reduces to (12) whenever (15) is satisfied.
The same considerations hold for a Lorentz-vector po-

tential. We assume that the minimal substitution
P„~P„—eA„ is the correct prescription in the quater-
nionic theory. In this case

where the asterisk represents quaternionic conjugation.
Again, this equation is representation dependent unless
V(x) is real. To see this, consider a representation where
P is real, which leads to (15) becoming iV(x) =[V(x)]'i,
which implies that the i component of Vmust vanish, but
the j and k components are allowed. This is the same as
the restriction on potentials in the nonrelativistic
theory. However, if we consider a representation in
which P is pure i imaginary, then (15) becomes
V(x)=[V(x)]*,which implies that V is real. Clearly, if
V is real (15) is always satisfied, regardless of the repre-
sentation. As a consistency check, working through the
derivation leading to Eq. (12) again, this time with the
potential V included, one finds
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~free Xo~p A (16)

Anti-Hermiticity implies that iAo = A oi and ia A '

=A "ai. The first condition is satisfied if the ~ com-
ponent of A vanishes, A =A o+jA 2+kA 3, but the
other is representation dependent. Again the only
representation-independent potential A which satisfies
this requirement is real. To maintain this condition un-
der Lorentz transformations we require Ao to be real as
well; otherwise quaternionic parts of A' will mix into
A . Thus we are not allowed to have any quaternionic
parts in the four-potential, unless we restrict ourselves to
certain classes of representations. Also, assuming that
A„ transforms as a Lorentz vector, the Lorentz invari-
ance of the Dirac equation requires A„iai=iaiA„,
which is again representation dependent, but is always
satisfied if the j and k components of A vanish.

If we were to demand representation independence of
the Dirac equation, the situation would be somewhat
worrisome regarding the nonrelativistic quaternionic
theory, which must emerge in the appropriate limit of the
Dirac theory. The Schrodinger equation takes the
form

i —+ V(x) 4'(x) =4'(x)iE,
dx

(17)

and

%(x)=% (x)+j%&(x),

(18)

with V&, +, and %'& complex, and V real, by unitarity.

where %(x) is the quaternion-valued wave function, V(x)
is a quaternion-valued potential, and E is the real energy.
We can use the so-called symplectic representation of
quaternions to write all of our equations in terms of com-
plex numbers:

V(x) =i [ V (x)+jV&(x)]

The Schrodinger equation (17) may now be written as a
pair of coupled complex equations for the symplectic
components:

d2
, +V. %.—V~%~=E%. ,

dx
(19a)

d
, —V. %~—V~%.=E%~.

dx
(19b)
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If the j and k part of the potential V& is vanishing, then
the quaternionic part of the wave function 4& completely
decouples from the complex part %' and hence cannot
modify the results of complex quantum mechanics.
Clearly this is somewhat alarming regarding the possibili-
ty of observing effects due to QQM. One thus concludes
that either the quaternionic Dirac equation is representa-
tion dependent, which is not a problem of principle, but
lacks the elegance of the complex theory, or that the
quaternionic part decouples from the i-complex part of
the wave function.

In conclusion, we have argued from unitarity that the
potentials appearing in the Dirac equation for quater-
nions must not have any j and k components if the phys-
ics is to be representation independent. If this is the case,
the quaternionic part of the wave function decouples in
the nonrelativistic limit, which raises questions regarding
the possibility of observable effects from QQM. Other-
wise, the quaternionic Dirac equation admits the most
general form of potentials only in specific classes of repre-
sentations.
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