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Mass versus superconducting-gap generation: The operator formulation for Pf =2
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We consider the operator realization of dynamical mass versus superconducting-gap generation
in a two-dimensiona1 O{2}-symmetric model. We show the existence of two phases which are
characterized by a topologically conserved charge. The equivalence to the massive/super-
conducting Thirring mode1 is established.

I. INTRODUCTION

In recent years, the discovery of many applications of
two-dimensional quantum-field-theory models in realistic
systems of condensed-matter physics showed that these
theories were more than just theoretical laboratories, but
genuine theories capable of making experimental predic-
tions. ' Thus, the recent and increasing role played by
two-dimensional field theories in the physics of con-
densed matter and the fact that many of them may be ex-
actly solved enhance the interest in the study of models
which are potentially relevant from the application point
of view.

Following this philosophy, in the present paper we will
consider the O(N)-symmetric model which was intro-
duced in Ref. 3, and is defined by the Lagrangian density

N

&(x)= g it/)a(x)y„t)"g, (x)
a=i

N

X [gl a( )(()t (x)(2Ab(x)(2)eb(x)(1)
a, b

)())1 a( )(2Ab(X)(2)fb(X)())l

where (1) and (2) are spinor indices. In addition to the
O(N) symmetry, the model (1.1) exhibits U(1) and chiral-
U(1) invariance.

For g =g, the model (1.1) reduces to the model studied
in the Ref. 4 and can be written as

N N
X(x)= g it/), (x)y„d"t/), (x)+ —g J( x)„, Jb( x)", b

(1.2)

When g =0, it was shown that in the large-N limit the
model given by (1.1) exhibits dynamical generation of a
superconducting gap. It was conjectured that this mech-
anism would occur for all values of N, as in the analogous
case of mass generation in the chiral Gross-Neveu model
(g =0) (Ref. 6).

When gAO and g%0, the model given by (1.1) exhibits
in the large-N limit the dynamical mass versus
superconducting-gap generation mechanism. For g =g
and large N, the chiral conjugation symmetry is dynami-
cally broken. ' In this paper we will consider the case
N =2. When g =g, the model given by (1.1) is
O(2) X chiral O(2) invariant.

When g =0, it was proved in Ref. 5 that the
equivalence of the O(2)-symmetric model given by (1.1) to
the superconducting Thirring model at g Th

= —m/
2(P = 8m ) (Ref. 7).

Via an operator formulation, we will show the ex-
istence of two phases: one presenting dynamical mass
generation and another presenting dynamical
superconducting-gap generation. The phases are charac-
terized by a topologically conserved charge and the two
mechanisms being competitive for duality reasons. In the
massive phase (g )g ), the O(2) charge appears as the U(1)
charge of the massive Thirring model. In the super-
conducting phase (g & g ) the O(2) charge appears as the
chiral U(1) charge of the superconducting Thirring mod-
el. When g =g, the model is free and gapless. As a
consequence, for N =2, chiral conjugation symmetry is
not dynamically broken.

II. THE O(2) BOSONIZATION SCHEME

To begin with, consider the O(2) transformations act-
ing on the field )t, :

with the O(N) currents given by

J(x)„,b =t/), (x)y„t/)b(x) i/Jb(x)y„t/), —(x) . (1.3)

(/')(x) =$)(x)cosQ+t/j2(x)sinQ,

(bz(x) = —tb)(x)sinQ+(/z(x)cosQ

which can also be written as

(2.1)

The Lagrangian density (1.2) is invariant under the chiral
conjugation C5, which transforms charge into chirality
and is defined by

(ba(x)() ) t/'a (x)(1)
C5.

' (1.4)
Oa(X)(2) t/'a(")(Z).

[t/')(x)+i(/~(x)]=e' [f)(x)+i/~(x)],
[t/jI(x) if', (x)]=—e ' [t/)(x) —it/t~(x)],

(2.2)

where 1 and 2 are O(2) indices. Following Ref. 5, in or-
der to obtain fields transforming with irreducible repre-
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where m is an arbitrary finite mass scale,

ri, (x) = J (}0/,(x,z')dz' .
1

(2.16)

y(x) = —[))'j)(x)+ifz(x)],= 1

2 The Klein factors are defined by
(2.3)

e(x)= [q, (x)—) q, (x)] .
1

v'2 K( )(P, ) =exp i——y:exp i K, :, (2.17}
. &7r

4 2

sentation of O(2), we introduce the two independent fields

y(x) and e(x) as

The original O(2) transformations given by (2.1) acts on
the g and 6 fields as gauge transformations of the first
kind:

where

E, =q, I ()i(t), (z)dz' (2.18)

y'(x)=e'"y(x), e'(x)=e '"e(x) . (2.4) with q = + 1 ( —1) for a = 1 (2), and

From (2.4) we see that the y and e fields have opposite
Abelian (O(2)) charges and transforms irreducibly under
O(2).

In terms of these new variables, the conserved currents
corresponding to the U(l), chiral U(1), and O(2) sym-
metries are given by

J(x)„=g P, (x)y„P, (x)

[ri, (x),Kb]=ifi, b .

Introducing the two independent scalar fields

—(0i+4z»
1

2

(2. 19)

(2.20)

(2.21)

a=1

=j(x)y~(x)+6(x)y„e(x),
J (x )„=e„J(x)",
J(x)p =0)(x)y„qz(x) —yz(x)y„q, (x)

=j(x)y@(x)—6(x)y„e(x) .

(2.5)

(2.6)

(2.7)

' 1/2
2J(x) =— e„„B'(}I)(x), (2.22)

which satisfy canonical commutation relations, and using
the point-splitting prescription, we obtain the conserved
currents as

2

rr(x) = X 4a(x)(»0a(x)(z)
a=1

(2.8)

Following Ref. 3, we introduce the mass (m ) and super-
conducting (o ) gap operators by ' 1/2

2
e„„B'P(x) .

(2.23)

(2.24)

2

(r(x}=2 4a(x)()A'a(x)(z) . (2.9)

rr(x) =y (x )( i )y(x )(z)+e (x)( i)e(x)(z),

o(x) =q(x)„,e(x)„,+e(x)„q(x)„, .

The chiral conjugation symmetry is realized by

C,:q„,-e,*„;y„,-q„,;e„,-e„, ;

that is,

(2.10)

(2.1 I)

(2.12)

o(x)~~(x) . (2.13)

Because of the "Abelian" structure of the conserved
currents (2.5)—(2.7), we can introduce the Mandelstam
representation for the g and 6 fields. ' In order to ensure
the correct anticommutation relations between g and 6,
Klein factors are also introduced:

' 1/2

K(gz):e
i +n [y @&(x)+F11(x)] (2.14)

In terms of the fields y and 8, these operators can be
written as

As a consequence of the continuous U(1) and chiral U(1)
symmetries, P(x) is a free massless field. From Eqs. (2.22)
and (2.24) we see that the conserved current introduced
in the Klein factors (2.18),

K(x)„,=e„,3'(}(,(x), (2.25)

corresponds to the combinated U(1) and O(2) transforma-
tions:

K(x)„,=J(x)„+q,J(x)„. (2.26)

y(x ) =Kgo(x )Ky(x ),
e(x)=Kg,(x)Ke(x),

where

(2.27}

(2.28)

e(~)=y*(x) . (2.29)

Po(x) is a noncanonical free massless fermion field with
spin —,':

i+-, i /2f y (t)(x}+yi(x)].
( ) (2.30)

Writing the fermion fields y and 6 in terms of the field
(}I( and P, they factorize as

e(x) =
1/2

K(gi ):e
i +rr[y b&(x)+yt&(x)]

(2.15)
with

e„(iv(t(x) =(}„g(x) (2.31)
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and

7?l
y(x) =

2'
1/2

i +m/2[y re(x}+q(x)]. (2.32) + ( m /vr ):cos[&8~/(x )]: (2.45)

which also carries Lorentz spin —,'. The factorized Klein
factors are given by

The bosonized Lagrangian density is given by

aE(x}=L(x)+L(x), (2.46)

i )/ n/SQ.
~ ) (2 33} where

K=exp i —y—: exp(i +n./8Q):,
4

(2.34)
a= 1+—(g+g }

2

L (x ) = —,':[a„P(x)]:
(2.47)

(2.48)

where Q and Q are, respectively, the U(1) and O(2) con-
served charges.

The chiral conjugation symmetry is now given by

and

2

E(x)= —,':[a„P(x)]:+ G:cos[&8n $(x )]: (2.49)
CS=C5XC5 . (2.35)

with the effective coupling constant 6 given by

The conjugation C5 corresponds to the free chiral conju-
gation symmetry and is given by 6 g

m. /2+g+g
(2.50)

00(x}(1) ti0(x)(1)~
CO. ~

.1 0(x)(2) ~0(x}(2)

which means that

P(x)~2}(x) .

(2.36)

(2.37)

When graf, the physical content of the model is given
by a sine-Gordon theory with P =8m.. When g=t(), the
model is invariant under the chiral conjugation (1.4) and
is free and gapless (G =0). It corresponds to the massless
Thirring model according to Eqs. (1.2) and (1.24).

The chiral conjugation C5 leaves g invariant and acts
only on the operators K as

r ~
K{]}~K1 )(

C5. '—
K{2 }

~K(2 }.
(2.38)

~(x) =n.0(x):cos[&2n.g(x)]:,
o(x)=o0(x):e' ~ ~::sin[&2mp(x)]:,

(2.39)

(2.40)

The mass and superconducting-gap operators (2.10} and
(2.11) are obtained by the point-splitting limit procedure
and are given by

III. VACUUM STRUCTURE AND CONSERVED
CHARGES

J(x)„,= 1',(x)y„g,(x),
J (x}„,=g, (x)y„y 1',(x)

are not conserved at the classical level and one has

(3.1)

(3.2)

The mass operator n.,(x) breaks the chiral [U(1)] sym-

metry and the superconducting gap operator 0, (x)
breaks the [U(1)] invariance. As a consequence, the
currents

where cr0(x) and n0(x) carry the free U(1) and chiral U(1)
charges and are given by

(X)—.eiV 2ng(x)

a„J(x)&=gy [~.(x)~b(x) ~, ( x)~.'( x)]-,
b@a

a„J (x)",=gg [n, (x)mb(x) .
m(, (x. )~,'(—x)] .

b&a

(3.3)

(3.4)

~ (X)—.eiV2ng(x).
7TO X (2.42)

In terms of the y and e fields, the currents (3.1) and (3.2)
are given by

In terms of the o and ~ operators, the Lagrangian densi-
ty (1.1}can be written as

Z(x)= y )q. (x)}„a~q.(x)

J(x)„,=J(x)„+q,J(x)„,
J'(x)„,=e„,J(x);,

where

(3.5)

(3.6)

+g:o (x)o *(x):+g:m(x)~*(x):. (2.43)

Using (2.39) and (2.40), we obtain by the point-splitting
limit prescription

(3.7)

(3.8)

(3.9)

J(x)„=y(x)y„e(x)+e(x)y~(x) .

The divergence of the currents J„,and J„,are given by

a„J(x)"=a J(x)+ —a+J(x )

a„J '(x)"=—a J(x) —a J(x)
—(m /m ):cos[&8mg(x)]:, (2.44) with
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J(x}+=—..sin&2' (P(x }+q(x) ): .
7T

(3.10)

When g =g, both currents are conserved. This follows
from the fact that

a-(y(x)+q(x))=+ f" y(n, ,z, )dz' (3.11)
xl

and in this case the field P is free and massless. Thus, for

X =2, the chiral conjugation symmetry is not dynamical-
ly broken and both currents J„,and J„,are conserved at
the quantum level.

When gag, some care must be taken in considering
the divergences (3.8) and (3.9). In order to be able to use
the difFerentation formulas for exponentials of "bona
fide" operators, we use the methods given in the Refs. 11
and 12 and obtain

8+J(x)+=f [:cos&8np(z):, :sinv'8n(p(x)+g(x)):]„, dz (3.12)

The nonzero contributions to the commutator (3.12) come from the neighborhood of the point z 1
=x

1 (Refs. 11 and 12).
Using the equal-time commutators

[P'+'(x), P '(z)]=[ri'+ (x), 7)' '(z)]= — [lnm(x, —z, +is)+lnm(x, —z, ie)]—, (3.13)

[ri'+'(x), P' '(z)]= [lnm(x, —z, —ie) —lnm(x, —z, +ie)], (3.14)

we obtain, from (3.2),

8 J(x)"= B,J(n)',
2m.

(3.15)

a„i'(x)~= a,i'(x)'. (3.16)

Integrating over x ' and using the fact that

ri(xo, x i
= + co ) =0

we obtain the time derivative of the corresponding charges as

(3.17)

Q =c [2:sin&2m g(xo, + oo ):—:sin&2n(P(xo,—oo ) ri(x ——00 ) ) —sin&2n(P(xo, —ao )+g(xo, —~ ) ):], (3.18)

Q =c[—:sin&2n(P(xo,—~ )
—ri(xo, —~ )):+:sinv'2m(P(xo, —~ )+ri(xo, —ao ) }:], (3.19)

where

q(x„)=f—'"a,-y(x', z')dz' . (3.20)

Considering finite-energy solutions, the values of
P(xo, x&=+~) must correspond to the vacuum
configurations. The physical potential is given by

I

the potential are given by
1/2

(P)„= —,=0+1,+2, . . .
2 2

and we find

(3.25)

7'U[P]= —G:cos[&8ng(x)]: .
27T

' (3.21)
Q =2c [ I+:cos[&2vrri(xo, —~ )]:],

5 p

(3.26)

(3.27)

(P& =n&~n, n=o, +1+2, . . .

and we obtain, from (3.18}and (3.19},

(3.22)

(3.23)

Q =2c:sin[V2vrg(xo, —0D )]: . (3.24)

In the limit when g ~0, we obtain the O(2) sector of the
pure chiral Gross-Neveu model.

When g )g, the model presents dynamical generation
of a superconducting gap. In this phase, the minima of

When g )g, the model given by (1.1) exhibits dynami-
cal mass generation. In the massive phase the minima of
the potential (3.21) are given by the constant
configurations

J(x)„,=q, J(x)„. (3.28)

In the limit when g~0, we obtain the O(2) model dis-
cussed in Ref. 5.

The decoupling of U(1) and chiral U(1) degrees of free-
dom implies that the physical content of the model must
be solely in the interacting fields y and e, which satisfy
neither Fermi or Bose statistics, but have Lorentz spin —,.
These two interacting objects are not independent, ac-
cording to (2.29), which is the analogue for N =2 of the
larger-N feature of antiparticles being bound states of
N —1 particles in similar systems. ' As long as the physi-
cal content of the model can be described in terms of just
one of those objects, say, y, the two currents J„& and J„2
are also not independent:
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The conservation of the charges Q and Q emerges as a
quantum effect obeying the topology of the dual (com-
petitive) vacuum structure generated by the dynamical
mass versus superconducting-gap generation mechanism.

The massive and the superconducting phases can be
described in terms of a spin- —, Thirring field. In terms of
the field g, the interacting piece of the Lagrangian densi-

ty can be written as

«x) =& 'X«)7'„(}"X(x}.:+—[:g '(x), g(x)„,j(x)„g'(x)„, +H. c. ] . (3.29)

In the massive phase we can make the identification

~( ) .q(X )
ei&~/2$(x)

~(X ) .y( X ) e
—i )/n/2$( x')

where the spin- —,
' fermion field operator P(x) is given by

' 1/2

(3.30)

(3.31)

P(x) =
2m'

exp i —y—:exp [i[&2ny P(x)+&m/2'(x)]]: .
4

(3.32)

Thus, we may relate the O(2) current given by Eq. (2.24)
with U(1) current for P(x),

J(x)„= &2/—ne„,B it)(x) = P(x)y„P(x) . (3.33)

Inserting (3.32) into (3.29), we may express the physical
Lagrangian density in the massive phase in terms of g as

L(x)=i g(x)y 8"g(x) +—G.:g(x)P(x).:p 7T

(3.36)

1/2e:e—i(m/4). i[")/2n. g(x)+'(/ n/2y gtx)]j. (3.37)

+gT„:.[g(x)y„p(x) ][/(x )y"li (x) ]:. (3.34)

which corresponds to the massive Thirring model with
coupling constant grh = —(m/2)(p =8m) (Refs. 10 and
14).

In the superconducting phase we identify

+ e( )
—.)Ti( )

—i+a'/2$(x). (3.35)

~(X )
.)T((X ) e

—i&a/24(x).

where

[Q,H]=0, [Q ', H]%0, (4.1)

where Q is the topologically conserved charge character-
izing the massive phase. The model is then described in
terms of the spin- —,

' fermion operator P(x) given by (3.32).
When g )g, the discrete y and parity symmetries are

dynamically broken. The model exhibits supercon-
ducting-gap generation and is equivalent to the supercon-
ducting Thirring model with p =8m. In this phase, the
Hamiltonian operator satifies

breakdown of he corresponding continuous U(l} and
chiral U(1) symmetries, in agreement with the Coleman-
Mermin-Wagner theorem. ' When g =g, the two mecha-
nisms cancel each other and the chiral conjugation sym-
metry is not dynamically broken.

When g & g, the discrete y symmetry is dynamically
broken. The model presents mass generation and is
equivalent to the massive Thirring model with p =8m. .
From Eqs. (3.12), (3.23), and (3.24) we see that the Hamil-
tonian operator H satisfies

[Q,H ]NO, [Q,H ]=0, (4.2)
and we may relate the O(2) current with the chiral U(l)
current for 0:
J(x)„= &2/ne„„B'$(x—) = :(T)(x)y„y %(x—).:. (3.38)

The physical Lagrangian density in the superconducting
phase is given by

X(x ) =i %(x)y„i}"q((x)

where Q
' is the topologically conserved charge charac-

terizing the superconducting phase. The model is then
described by the spin- —,

' fermion operator %(x), given by

(3.37).
The two (dual) phases are related by the chiral conjuga-

tion C~, i.e.,

C~: (t)(x)~%(x) (4.3)
+ G[ 0 (x)(()% (x}(2).'

+ ', 0 *(x)(2)% (x)(i),']
+gT„.:(q((x)y„y 0'(x) )((I((x)y"y qi(x) ): (3.39)

which corresponds to the superconducting Thirring mod-
el with coupling constant gT„= n/2 (Ref. 7). —.

IV. CONCLUDING REMARKS

The model given by (I.l) exhibits dynamical mass
versus superconducting-gap generation without the

which transforms the mass operator into a supercon-
ducting-gap operator.
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