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We review the physical basis of dual QCD and solve the equations describing a QCD SU(3) flux

tube. We use the solution to elucidate the physical connection between QCD and dual supercon-
ductivity.

I. INTRODUCTION

Understanding the physics of QCD at long range re-
quires solving a strongly coupled gauge theory, since the
usual gauge potential A„becomes singular at long range,
and there is no known analytic approximation procedure
available for calculating the correlation functions of A„
in this regime. Nevertheless physical quantities exhibit a
smooth and nonsingular behavior in a confining theory.

There is, in a gauge theory, however, the alternate pos-
sibility of using dual potentials to describe the long-
distance regime. If we denote the Yang-Mills coupling
constant by e so that a, =e /4m, then the coupling con-
stant for the dual potential is g =2m. /e. The dual poten-
tials are weakly coupled at long range and hence should
be better variables in terms of which to describe long-
distance physics.

The Yang-Mills Lagrangian, which in principle can be
expressed in terms of dual potentials, ' is invariant under
dual gauge transformations of the dual potentials C„,
given by

C„~Q 'C„Q+ —Q 'B„Q,

where 0, for N colors, is an SU(N) matrix. However, the
transformation A„~C„ is not explicitly known, and
consequently one does not in practice know how to ex-
press the Yang-Mills Lagrangian in terms of dual poten-
tials. In other words, "dual Yang-Mills" theory (i.e., the
Yang-Mills Lagrangian as a function of the dual variables
C„)cannot be explicitly written down.

We are interested, however, in solving Yang-Mills
theory only in the long-distance regime. For this purpose
it is only necessary to find the Lagrangian describing
long-distance Yang-Mills dynamics in terms of the dual
potentials. Let us denote this Lagrangian by X(C). Since
we expect that the C„description of long-distance Yang-
Mills dynamics is nonsingular, and that the C„ fields in-
teract weakly, X(C) should be a minimal dual gauge-
invariant extension~ of a quadratic Lagrangian X' '(C).

Nonminimal additions to L(C) should not be relevant at
long distances.

The first step, then, is to construct the quadratic term
X' '( C) of the long-distance Lagrangian X(C). The
quadratic term describes a relativistic Abelian gauge
theory characterized by a momentum-dependent magnet-
ic permeability p(q ) which is the inverse of the dielectric
constant e(q ) appropriate to the Abelian part of the con-
ventional Yang-Mills gauge theory with which we began.
In order to specify p(q } we must have some information
about long-distance ordinary Yang-Mills dynamics. Dur-
ing the past ten years a number of authors ' have cal-
culated e(q ) in the simplest self-consistent truncation of
the Schwinger-Dyson equations of Yang-Mills theory
compatible with the requirements of gauge invariance.
These calculations have been carried out in different
gauges and differ in technical details; nevertheless they all
give a solution for e(q ) which as q ~0 has the behavior

(1.2)

(Here M is an undetermined parameter with the dimen-
sions of a mass squared, and represents some of the un-
known influence of short distances on long distances. }

The result (1.2) is certainly not an exact consequence of
Yang-Mills theory. In fact, the corrections to this sim-
plest self-consistent truncation of the Schwinger-Dyson
equations are large at long range and are essentially un-
calculable. This is a reflection of the unsuitability of the
A „description of long-distance Yang-Mills theory.

Our basic assumption is that the long-distance expres-
sion (1.2) for e(q ) can be used to give the magnetic per-
meability p(q ), thus determining the quadratic part
X' '(C) of the long-distance Lagrangian X(C) in the C„
description. We therefore have

M
p(q )= ——+1,

q

where the choice of the constant 1 for the nonleading
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contribution to p(q ) represents a choice of normaliza-
tion of the fields. Eq. (1.3) tells us that

ables is

z'"(c)= —
—,'(a.c„—a„c.)p(a.c„—a„c.), (1.4)

X(C)= F G" + 'F —+ F"" '—G—G""
PV 4 p 4 PV

where p=1+M /8 . This Lagrangian produces a C
propagator hc of the form"

+y,'(n')y, +y'a~n~ (—a„—c„)', (1.6)

1
b,c(q)-

q
—M

(1.5)
where 2)„ is the total covariant derivative given by

(x„)., =s.,a„+gf.„ct,
The next step is to construct the full long-distance La-
grangian X(C) as the minimal gauge-invariant extension
of X' '(C} [we write the explicit form for X(C) below].

The self-consistency of the above procedure can be
checked by using X(c) to calculate the exact long-
distance C„propagator b, c(q}. We find that aside from
mass and wave-function-renormalization effects, hc(q)
has the same long-distance behavior as hc(q). Further-
more, the effect of nonminimal additions to X(C}can be
included at long distances by a redefinition of the cou-
pling constants in X(C). This means that use of the ex-
pression (1.3) for p(q ) as the first step in obtaining the
long-distance behavior of Yang-Mills theory in the C„
description yields controllable results which are fixed by
gauge invariance and which do not produce (other than
through renormalization) changes in the starting point,
Eq. (1.5}.

Our view is that the impossibility of using (1.2) as a
first approximation to long-distance Yang-Mills theory
rejects the inadequacy of the A„description in that re-
gime. Instead, by using its transcription (1.3) as the first
approximation to long-distance Yang-Mills theory in the
C„description, we have found a procedure for calculat-
ing physical processes in that domain. [We should em-
phasize that the relation ep = 1, valid only in an Abelian
theory, has been only used to find X' '(C}. Hence we
cannot use this relation to determine e(q) from the full
calculation of the long-distance behavior of p(q) includ-
ing the corrections imposed by gauge invariance in the
dual description. ]

Next let us write down the explicit forin of X(C) ob-
tained from the above procedure. It is the simplest possi-
bility for X(C), incorporating the solution (1.2) of trun-
cated Yang-Mills dynamics with the imposition of gauge
invariance under the non-Abelian transformation (1.1),
and it is the only known candidate for X(C}. Further un-
derstanding requires detailed study of the quantum field
theory based on X(c), which we have begun to do.

To write down X(c) we must first identify the dynami-
cal variables. Because we start with a Lagrangian
describing a medium with magnetic permeability
p(q)=1 —M /q, X will be a nonlocal function of the
dual potentials C&, where a is the SU(N)-color index. It
thus contains additiona1 degrees of freedom which must
be made explicit in order to write X in local form. These
are represented by a set of tensor fields F„'„=—F'„„and a
set of ghost fields P;. and f;, where the index i runs from
one to three. We also introduce a gauge-fixing term
—(A, /2)(a„c"') appropriate to a generalized Landau
gauge and the corresponding Faddeev-Popov ghosts g'.

The explicit expression for X(C) in terms of these vari-

and G„' is the dual field tensor constructed from the po-
tentials C„' by the equation

G„'„=a„C'„—a„C„'+gf,bd C„C„. (1.8)

To see that (1.6) is the desired Lagrangian we form
exp(i J dxX) and carry out the quadratic integration
over the variables F„'„,f;, and g;. As a result, the terms
in X(C) depending upon these variables are replaced by

ab

I Ga GPvb
4 i4~ g)2

which precisely corresponds to the non-Abelian generali-
zation of a dielectric medium with perineability

It is useful to introduce three-dimensional notation for
the tensors G„and F„„.We define the color-electric dis-
placement vector D' and the color-magnetic H' field by
the dual equations

Dk =
2 klm Glm& k =GOk (1.9)

Equations (1.8) and (1.9) then give D and H in terms of
the potentials C„. Correspondingly, we define color-
electric and -magnetic field vectors as E' and B', respec-
tively, by the equations

Ek ——
—,
'

&klm Flm, Bk ——FO (1.10)

The variables E and B are independent of the dual poten-
tials C„and serve as a convenient relabeling of the com-
ponents of F„'„. The constitutive equations relating D
and H to E and B follow as equations of motion obtained
by varying F„„in the Lagrangian (1.6). It is these equa-
tions which justify the identification of E and B as color-
electric and -magnetic fields.

Usual power-counting and gauge-invariance arguments
show that the only divergences requiring additional coun-
terterms in X arise from graphs containing either two or
four external F„„orP;. lines. To satisfy the requirement
of renormalizability, we therefore make the replacement

X~X—W(F, g, Q )= (1.11)

where W(F, g, P } is a fourth-order polynomial in F, g,
and f . In this paper, where we discuss the SU(3) flux
tube in the classical approximation, we wi11 only need the
terms in W(F, f,f ) which depend only upon F. This
contribution to W(F, g, P ), which we denote as W(F),
has the form
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N-W(F)= — F + W4(F), (1.12)

where

F =F„'g""'=—2[(B') —(E') ], (1.13)

and where W4(F) is a quartic function of F„'„whose ex-
plicit color and Lorentz structure is given in I (see Ref.
2). The parameter p has the dimension of a mass
squared and k is dimensionless. These new parameters
represent the remaining effects of short-distance physics
not already incorporated in the parameter M . From
Eqs. (1.6), (1.11), and (1.12), we see that the fields F„',,
play the role of Higgs fields and W(F) that of the Higgs
potential. We emphasize that these fields appear au-
tomatically once X(C) is written in local form and the
"potential" 8' arises from renormalization effects. For
stability we must have

A, )0. (1.14)

Because of (1.12) and (1.14), the minimum of W always
occurs at a nonzero value Fa„„ofF„,:

5W =0 at F„=F0„„.
5F„„

(1.15)

The value of W at this minimum is the vacuum energy
density in the classical approximation. Using (1.12),
(1.15), and the explicit tensor structure of Fa„„we find

e„„:—W(F0„„)= —
—,'A, (F0 ) (1.16)

Second, the trace anomaly for SU(N) Yang-Mills theory
gives the relation'

E'
vac

11NG2

96
(1.17)

Equations (1.16) and (1.17) give

33 &G2

32 (F )2
(1.19)

The QCD vacuum is magnetic ( FD )0), which, —from
Eq. (1.12), implies that p is negative. This spontaneous
symmetry breaking, namely, FDWO, present at zero tem-
perature, disappears at a finite temperature T„and,
therefore, so does confinement. '

Up to now we have discussed the origin and meaning
of the quantities in the Lagrangian X(C) describing
long-distance SU(X) pure Yang-Mills theory in terms of
electric vector potentials C„. We must next add quarks.
Quarks couple to the dual potentials C„ in a manner
analogous to the coupling of photons to magnetic mono-
poles. The interaction between the dual potentials and
quarks therefore necessarily involves strings. This great-
ly complicates and severely limits the applications we can

where G2 is the gluon condensate. The value of 62,
determined by applying QCD sum rules in heavy-
quark —antiquark systems, is approximately'

G2-(330 MeV)

make to problems involving quarks. In fact Mandel-
stam's definition of the dual potential C„ in terms of 3„
is no longer applicable in the presence of dynamical
quarks. However, we can treat quarks approximately
and show' that chiral symmetry is spontaneously broken
provided we are in the confining vacuum FDWO.

It is essential to understand the consistency of the
quantum theory described by the Lagrangian X(C). Be-
cause of the Lorentz metric, the kinetic energy term in
L(C) involving the fields F„'„has the wrong sign for the
fields E'. This might lead to a violation of unitarity if the
fields E' corresponded to physical degrees of freedom.
We have not yet worked out the quantization procedure
for X(C) in sufiicient detail to determine whether this
will in fact become a problem. However, when M=O,
the theory possesses an additional symmetry, as a conse-
quence of which the contribution arising from F„ inter-
nal lines to graphs containing only C„external lines can-
cels a corresponding contribution from internal g; lines.
There are then no physical degrees of freedom corre-
sponding to any of the F„ fields. Amplitudes involving
only C„quanta are determined by the pure Yang-Mills
term —

—,'G„„G""in Eq. (1.6) coming from the nonleading
contribution to the permeability Ju(q ) in Eq. (1.3). One
can, of course, arrive at this result directly by setting
M =0 in the nonlocal term (1.9) of the dual Lagrangian.

However, the cancellation of the F„and the g contri-
butions to C„amplitudes when M =0 occurs only in the
expansion about the perturbative vacuum, in which

F„,= /=0. It does not occur term by term in the expan-
sion about the nonperturbative vacuum where F„„
=F0„„AO. In fact when F&WO, we will see that there ex-
ist classical Aux-tube solutions when M =0 and that these
solutions do not differ qualitatively from classical solu-
tions previously obtained for MAO. This indicates the
nonperturbative M=O solution is distinct from the per-
turbative M=O result discussed in the previous para-
graph. We are now studying the expansion about the
nonperturbative vacuum. We are also studying the
quantization of X(C) when MAO in order to find the
physical degrees of freedom. These are expected to be
different from those of the perturbative M=O theory, for
which the F„, and f fields constitute unphysical degrees
of freedom.

There is a second problem involving the fields E. Be-
cause the classical nonperturbative vacuum is character-
ized by a nonvanishing expectation value Fa„ofa tensor
field F„ there is a potential violation of both rotational
invariance and Lorentz-boost invariance. The spontane-
ous breakdown of rotational invariance is only apparent
since the change in the vacuum under spatial rotations
can be compensated for by a gauge transformation. The
spontaneous breakdown of Lorentz-boost invariance in
the classical approximation leads to a set of negative
metric Goldstone particles associated with certain com-
ponents of the fields E. Hence, understanding potential
violations of Lorentz invariance is directly connected to
understanding the degrees of freedom corresponding to
the fields E. The consistent quantization of X(C), Eq.
(1.11), is the central problem remaining to be solved in
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order to put dual QCD on a firm basis, and it is this prob-
lem on which we are now working.

In the present paper we study the classical SU(3) field

equations generated by X(C) and find a flux-tube solution
to SU(3) dual Yang-Mills theory. We then find the string
tension o. by calculating the energy per unit length of this
SU(3) flux tube.

II. THE FLUX-TUBE EQUATIONS FOR SU(3)

rived from W by Eq. (1.15) rather than M. In our study
of the SU(3) flux-tube equations we will set M=O. This
greatly simplifies the equations which now involve only B
and C. Based on our study of the SU(2) case, this
simplification will not change our results qualitatively.

We make the following ansatz for the color structure
of the components of B and C in cylindrical coordinates:

B =B,(p)b, B~=B2(p)bp, B3=B3(p)b, , (2.8)

C„—'Q-'a„Q, (2.1)

and the corresponding F„ field is a gauge transformation
of the (constant) vacuum field F0„„.Thus

(2.2}

We begin our discussion by determining the behavior
of the fields at large distances p from the center of an
SU(N) flux tube. (We choose the z axis to be the axis of
the flux tube and use cylindrical coordinates p, P, and z.}
At large p the dual potential is a pure gauge,

C~ =C(p) Y', C =C, =0,
where

b =Q '(J„cosg+J„sing)Q,

b&=Q '( —J„sing+J cosg)Q,

b, =Q 'J 0,
and where, for SU(3),

J = —
As, J, =A2, Y= 1

(2.9)

(2.10a)

(2.10b)

(2.10c)

(2.11)

We know that the nonperturbative vacuum is magnet-
ic, so we can choose the electric fields in Fo„„to vanish,
and only the magnetic fields Bo exist. Our ansatz for
these will be

B0=b(e„J„+eJ +e,J, ), E0=0, (2.3)

where b is a constant determined by Fo, and the three J's
are color matrices in an N-dimensional irreducible repre-
sentation of the generators of SU(2). They satisfy the re-
lation

Then from Eqs. (2.1)—(2.3), (2.6},(2.8), and (2.9) we obtain

lim B;(p)=b, i =1,2, 3,
p —+ oo

(2.12a)

lim C(p)=— (2.12b)

Bi(p) =B2(p) =B(p), (2.13a)

p~ 00 pg

For the case of SU(3) the ansatz (2.8) and (2.9) with
B&(p)=B2(p)=B(p) closes. We then set

N —1J2+J2+J2-
x y z 4

(2.4)
and use Eqs. (2.8) and (2.10) to obtain

B(x)=Q '[B(p)(J„e„+Je )+B,(p)J, ]Q . (2.13b)

The form (2.3) automatically ensures rotational invari-
ance of the asymptotic solution, in that a spatial rotation
can always be compensated for by a gauge transforma-
tion. Using Eqs. (2.3) and (2.4) we obtain

b = F0/N(N 1—) . —

For the gauge transformation 0, our ansatz will be

Q=e '" n=01 . . . N —1

(2.5)

(2.6)

where we choose the traceless N X.N SU(N) matrix Y so
that

(2.7}

in order to guarantee single valuedness. The corre-
sponding solution is a Zz vortex carrying n units of
quantized Zz flux.

We have seen in our numerical study of the SU(2)
flux-tube equations that the fields Co and E which are
zero asymptotically remain small at all distances and do
not contribute substantially to the string tension. The
coupling of Co and E to B and C arises from the
(M/2)F„„G""term in the Lagrangian (1.6). The relative
insensitivity of the string tension o. to Co and E reflects
the fact that the relevant scale determining o. is —Fo de-

p'=( —AF0)' p, (2.14a)

I 1

F2 1/2
0

1/2

(2.14b)

B'= 1 N(N —1)

( F2 1/2
0

(2.14c)

The factor [N(N 1)]/6 is introd—uced into Eq. (2.14c)
so that

If B,(p)AB2(p) one must add additional terms to (2.8)
and (2.9) to close the equations. For SU(N) even with
B, =B2 the ansatz (2.8) and (2.9) does not close. In the
following we will for the most part restrict ourselves to
SU(3) for which Eqs. (2.9) and (2.13) allow us to obtain an
exact solution. However, we will carry out our treatment
so that it is easily generalizable to SU(N).

Elementary dimensional arguments show that there are
two natural scales in X: an energy scale ( F0)' to-
which the square root of the string tension is proportion-
al, and a length scale 1/( AF0)'/, which —characterizes
the radius of the electric-color flux tubes. This fact is
made manifest by introducing dimensional variables
based on these scales as follows:
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lim 8,'(p') =& I /6,
p ~co

(2.15) pression for W(F ):

independent of N. [See Eqs. (2.5) and (2.12a).]
Using Eqs. (2.8), (2.10), (2.14c), (1.12), and the explicit

form of W4(p) given in (I), we obtain the following ex-

W(F) = —)(.(Fo )~W',

where

(2.16a)

(4N —1)(8', +82 +83 ) +(8N 17—)(B', +82 +83 )W'= ——4(B' +8' +8' )——
9 1 2 3 N —1

(2.16b)

(2.17}

Inserting the SU(3) ansatz (2.9), and (2.13) into the La-
grangian L and defining

gg =~a. '

we obtain

2= —
A, (F ) 'C'V' C'+—8'V' 8'

3

(2.18}

Using the particular ansatz (2.13a) and setting N=3, we
can write W' as

W'= —
—,'I4(28' +8' )

—
—,'[21(28' +832)2+33(28'4+834)]I .

CTd =o'd(g )

=2m I p'dp' W' — 8—', — 83—1,5W' 1,5W'
0 2 58' 2

p'g' 9-

(2.22b)

The term (+—,
'

) in Eq. (2.22b) comes from subtracting the
vacuum energy density Eq. (1.16) from &.

III. SOLUTIONS OF THE SU(3}FLUX-TUBE
EQUATIONS AND COMPARISON

WITH THE LANDAU-GINZBURG EQUATIONS

g ~2B ~2

pg

'2 The dimensionless string tension crd depends upon the
single parameter g'. From Eqs. (1.19) and (2.18) we ob-
tain

+ —,'B~V' B3—W' (2.19}
32g (Fo)

33NG
(3.1)

where

V =— p and V =V—2 1 d d 1

p dp dp p'

The coupling constant g can be estimated from the 1/R
contribution to the phenomenologically determined po-
tential between heavy quarks. ' This Coulomb-like con-
tribution is

The equations of motion generated by (2.19) are 4 & 4 m
V, (R )= ——

3 R 3 g2R
(3.2)

4 V &2Ci 2 ~2B ~2
g lgl

=0, (2 20a) The «««f 15 then gives

g -6.3; (3.3)

V&2B s ~2
g

pg

2
1 5W'
2 58' (2.20b)

the estimate (3.3) corresponds to the effective coupling at
distance scales R -(1 GeV} '. Combining Eqs. (2.22a)
and (3.1) yields

(2.20c)
33NG2

32g CT

od(g') . (3.4)

Finally the string tension o (the energy per unit length) is
given in terms of the Hamiltonian density &=—X as

Now in order to compare our results with those of super-
conductivity it is convenient to define a parameter ~
given by

a=2m I pdp( —X) .
0

(2.21) s&x
3g 3g

(3.5)

Using Eqs. (2.19), (2.20), and (2.21) we obtain

o =( Fo)od, —

where

(2.22a)

The connection with superconductivity is made by setting
83 equal to its asymptotic value &I/6 in Eq. (2.20b).
Equations (2.20a) and (2.20b) then become the Landau-
Ginzburg equations of the Abelian Higgs' model with
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5 11K—
4 2g2

' 1/2 ~G
Od(a) . (3.6)

Landau-Ginzburg parameter ~ given by Eq. (3.5). Since
we will see that the exact solution of Eqs. (2.20) yields a
83 (p') which does not change substantially from its
asymptotic value, the value of hard obtained for our SU(3)
flux tubes is close to the Landau-Ginzburg value. Thus
qualitatively Eqs. (2.20) describe a dual superconductor
with Landau-Ginzburg parameter K. For this reason we
will use this parameter to describe our results.

When expressed in terms of z, Eq. (3.4) becomes [for
SU(3)]

0.5

0.4

0.3

I-
z 0.2
D

O

O. I

O

With the estimates, (3.3) and (1.18) for g and 62 and the
value -O. I

o =(420 MeV)

for the string tension, Eq. (3.6) reduces to

crd(a)=1. 4a .

(3.7)

(3.8)

-0.2
0

I

2
I I I

4 6 8
p (SCALED UNITS)

IO

~=&5/9=0. 745,
0.„=1.033 .

Equations (3.9a), (3.3), and (3.5) then give

X=1.26,

(3.9a)

(3.9b)

(3.10)

We have solved the SU(3) flux-tube equations (2.20) for
n =1, for a range of values of g', i.e., K, and calculated
the dimensionless string tension crd(a) from Eq. (2.22b).
(This corresponds to an n =1 Z3 vortex. ) The resulting
function od(~) as well as the straight line Eq. (3.8) are
plotted in Fig. 1. They intersect at the point

FIG. 2. The scaled vector potential C' and magnetic field B'
plotted as functions of the scaled distance p'.

RFT=

the uncertainties of a factor of 2 in G2 as well as uncer-
tainties in other quantities entering into Eq. (3.6) incan
that Eqs. (3.10) and (3.11)are only semiquantitative.

We can next calculate the radius RFT of the Aux tube:

' Ip'dp'p'~(p')
(3.12)—

A,FO Ip'd p'&(p')

while Eqs. (3.9b) and (2.22a) give

( Fo)' =413—MeV . (3.1 1)

Using our solution to Eqs. (2.20) for v=0. 745, we find

Equations (3.10) and (3.11) are then the values of the fun-
damental parameters of dual QCD which reflect the effect
of short-distance physics on long distances. Of course,

Bp

0.5

0.4

1.5

M+ OS-

1.0 Ci
LJJ

~ 0.2
C3
M

0.5
O. I—

00 I I I

0 0 .25 0.5 1.0 1.5
K'

2.0
I

2.5 I 1 I

4 6 8
p (SCALED UNITS)

IO

FIG. 1. The function od(a. ) as a function of ~, compared to
the straight line o.d(a) = 1.4a.

FIG. 3. The scaled magnetic field B', plotted as a function of
P.
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RFT=0.95 fm . (3.13)

V ~(R) V (R)~

Thus the QCD flux tube has a radius of about 1 fm. This
is reflected in the radial dependences of the explicit solu-
tions of Eqs. (2.20). Next we note that the self-consistent
value ~=0.745 of our solution is very close to I/&2,
which in the Landau-Ginzburg equations is the critical
value separating type-II superconductors, a.) I /&2,
from type-I superconductors, a & I/&2. We thus expect
that C' will begin to decrease at values of p' for which B'
has reached about one-half of its asymptotic value. W' e
see this feature explicitly in Fig. 2 in which C' and B' are
plotted as functions of p'. In Fig. 3 we see that B3 is ap-
proximately constant taking on values between 0.4 and
0.5 which indicates that the color-electric vortex of QCD
qualitatively has the structure of a magnetic vortex of su-
perconductivity.

The fact that our solution for an infinitely long QCD
flux tube is similar to the Nielsen-Olesen magnetic vortex
of the Abelian Higgs model' suggests that the static po-
tential V~'J(R) between a heavy-quark —antiquark pair
separated by a finite distance R may be correspondingly
similar to the potential V (R) between a monopole-
antimonopole pair separated by a finite distance in a su-
perconductor having ~=0.745. Since the latter situation
is described by an Abelian field theory, the classical cal-
culation of V (R) is unambiguous and has been carried
out by Ball and Caticha. ' At large R the potential is, of
course, linear and is determined by the string tension. At
short distances it has the Coulomb behavior, Eq. (3.2),
with a strength determined by the monopole charge.
(There is, of course, no color factor ~4 since the monopole
charge is given exactly by the flux emanating from the
monopole. ) Furthermore, the exact V (R) as calculat-
ed by Ball and Caticha is very well approximated at all
distances by a sum of a Coulomb potential and a linear
potential. With the correspondence

we would then expect that the heavy-quark —antiquark
potential could also be approximated by the sum of
Coloumb and linear terms. This then provides a theoreti-
cal basis for the phenomenological qq potential of Ref.
15.

IV. SUMMARY AND CONCLUSIONS

We have solved a simplified version of the equations
for the n =1 Z3 flux tube in SU(3) dual QCD. A com-
parison of the string tension obtained from this solution
with the experimentally determined string tension fixes
the parameters of dual QCD. All remaining features of
this SU(3) flux tube are then uniquely determined. In
particular, the mean-squared radius is about 1 fm and the
effective "Landau-Ginzburg parameter" characterizing
the flux tube is close to the critical value separating type-
I and type-II superconductors.

It remains to understand the physics of the
simplification M=O used to obtain this solution. This
simplification decoupled the color-electric fields E from
the flux-tube equations. Thus this question, like those
discussed in Sec. II, is related to the degrees of freedom
corresponding to the fields E. An ultimate understanding
of these issues is thus essential to all aspects of dual
QCD.
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