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The Gribov ambiguity in lattice gauge theory is discussed. The Landau gauge and the finite-
temperature temporal gauge (3,4 ,=0) are formulated as maximization conditions on the lattice.
This formulation is shown to eliminate Gribov copies from the temporal gauge. The possibility that
it also eliminates copies from the Landau gauge is discussed. An algorithm which will eliminate
Gribov copies from the lattice implementation of the Landau gauge, in case any remain, is intro-
duced and studied via Monte Carlo simulation. The algorithm involves a noncovariant intermediate
step and so eliminates the copies at the cost of the possible introduction of a violation of lattice
Poincaré symmetry. The covariance of this algorithm is studied numerically and no evidence is
found for symmetry violation, which indicates that either the maximization form of the lattice Lan-
dau gauge is free of copies, or that the modified algorithm selects one in an acceptably covariant

way.

I. INTRODUCTION

The Gribov ambiguity is a very general affliction of
gauge choices for QCD. This ambiguity arises whenever
multiple gauge configurations satisfy the same gauge con-
dition yet are related to each other by a nontrivial gauge
transformation. The presence of such Gribov copies
means that, in principle, a gauge is not well defined. In
the continuum, the most familiar gauges are afflicted by
this ambiguity. It was first discovered in the Coulomb'
gauge and was then seen to be present in the Landau®3
gauge as well. In fact, it has been proven that as long as
the gauge potentials go to zero sufficiently quickly at
infinity, there is no algorithm which depends continuous-
ly on the gauge potentials and which uniquely specifies a
gauge.” While, strictly speaking, the theorems about the
generality of the Gribov problem have not been proven
for lattice systems, there is little reason to think that the
situation would be any different there.

Although the result about the generality of the Gribov
ambiguity is quite a powerful one, it leaves many
loopholes. There are several examples of gauge condi-
tions that avoid Gribov copies, though the potentials do
not necessarily vanish at infinity.*”7 (One of them’ is
even covariant.) Another loophole is that the formula-
tion of a gauge condition may not satisfy the continuity
condition of the theorem. One of the results in this paper
is a formulation of the lattice axial gauge as a maximiza-
tion condition. It is free of Gribov copies, though the
gauge potentials are not continuous functions of the fields
everywhere in field configuration space.

Throughout this paper we will ignore the trivial copies
that are associated with global gauge transformations.
All of the gauges discussed here leave a residual freedom
to make the same gauge transformation at each space-
time point, both on the lattice and in the continuum.
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This nonuniqueness is without consequence, because it
simply introduces an overall finite factor of the group
volume, independent of field configuration, in both the
numerator and denominator of the ratio of path integrals
which define any connected matrix element.

The Gribov ambiguity can be a serious problem, but
only in calculations that necessarily depend on the choice
of gauge. The great majority of lattice gauge Monte Car-
lo simulations have been directed towards the calculation
of “physical” quantities, that is, quantities which are
manifestly gauge invariant, and these calculations are
usually carried out in a manner which is manifestly gauge
invariant, that is, which explicitly preserves gauge invari-
ance throughout the calculation. For all these calcula-
tions, the Gribov problem is irrelevant.

The Gribov problem is also irrelevant for perturbative
calculations. It is a necessarily nonperturbative effect.
For infinitesimal coupling, where the gauge condition be-
comes Abelian, there are no ambiguities, at least for stan-
dard gauges.

The Gribov problem is potentially serious for nonper-
turbative studies of QCD Green’s functions. Recently,
calculations of two, the quark® and gluon®'° propagators,
have been carried out. These Green’s functions provide
the most direct connection between the continuum and
lattice theories. They were evaluated in the Landau
gauge, which, as has been noted, has Gribov copies in the
continuum. The lattice implementation of this gauge
condition is sufficiently different than in the continuum so
that the question of whether there are copies on the lat-
tice is an open one.

The results of those simulations were rather striking.
The gluon propagator behaved like a massive particle
propagator, with a mass in physical units somewhat over
half a GeV. It is probably most useful to think of this
mass as describing a finite gluon field correlation length.
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The quark propagator also behaved like a massive parti-
cle propagator, with a mass consistent with the ‘“constitu-
ent quark mass” of the nonrelativistic quark model, even
though the quark mass parameter in the lattice Dirac
operator was small.

II. THE LATTICE GRIBOV AMBIGUITY

It is useful to review the way these simulations are car-
ried out, in order to understand why the Gribov ambigui-
ty may be treacherous, and also to see why it may be
eliminated by a lattice implementation. Gauge-invariant
lattice Monte Carlo calculations are carried out by simu-
lating the Feynman path integral

(0)y=— [1DUl 5o, M
where
z=[[DU]e SV . (2)

The functional measure is explicitly gauge invariant and
the integration domain effectively includes a sum over all
gauges. This is not a good starting point for computing
gauge-variant quantities, such as quark or gluon propaga-
tors. To compute quantities that refer to a specific gauge,
one begins with the Faddeev-Popov form of the path in-
tegral:'!

(0)=— [IDUIADIB(F(WNe V0 W), )

where Z is the same expression without O (U), the gauge
condition is f(U)=0, and the Faddeev-Popov deter-
minant A is the functional Jacobian of f with respect to
gauge transformations, formally given by

1=AU) [ [Dg18(f(U?)) . @)

If the gauge specification is complete, so that for each U
only one g satisfies f(U#)=0, the Faddeev-Popov path
integral can be simplified to

(0)=— [[DUleSVo(us®), (5)

where g(U) is the gauge transformation that maps U into
the f=0 gauge, f(U8'Y")=0. This formula is the basis
for simulations of gauge-dependent quantities. It reduces
to the Wilson form if O is explicitly gauge invariant. Its
validity depends, however, on the uniqueness of the
gauge condition, that is, on the absence or elimination of
Gribov copies. If, on the contrary, there are copies, then
the formula becomes ill defined at best, because it does
not include a recipe telling which copy to pick. Even
worse, the recipe of summing over all copies does not
correspond to the formula at all, because the weighting of
the contribution from the different copies (the functional
Jacobian evaluated at that copy) is, in general, different
for each copy.

The lattice implementations of the Landau and
Coulomb gauges involve stronger conditions than in the
continuum, and so they have the possibility of being free
of Gribov copies. On the lattice those gauges are imple-
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mented by an extremum condition, rather than a

differential condition. The lattice gauge condition
js%10,12,13
Max ¥ ReTrU%(x) , (6)
g ou

where the sum on directions ¢ goes from 1 to 3 for the
Coulomb and from 1 to 4 for the Landau gauge. These
conditions imply the finite difference forms of the familiar
continuum conditions, but being global maximization
conditions they are stronger. Zwanziger has considered
the equivalent modification of the differential Landau-
gauge condition in the continuum.'*

The simplest way to see that the maximization condi-
tion really is stronger than the differential one is to note
that it excludes the copies which were originally found by
Gribov, namely, copies of the vacuum configuration. The
choice U,(x)=1 is the unique absolute maximum of the

m
condition Eq. (6).

III. THE TEMPORAL GAUGE
AT FINITE TEMPERATURE

An example of a gauge condition which becomes
unique by being implemented as an extremum is the
finite-temperature temporal gauge d,4,=0. One can ex-
plicitly show that the finite-difference form of this condi-
tion has Gribov copies, but its extremal form is unique.
The extremal form is identical to Eq. (6), but with yu re-
stricted to the single value pu=4 rather than being
summed:

Max ¥ U§(x,x,,x;,x4)

g x4

=Max 3 gx+HUxe'x). @)

X4

X123 fixed

The notation x +4 means that the lattice site x is dis-
placed by one lattice spacing along the 4 axis. The solu-
tion of this condition is straightforward to find. If U
satisfies the maximization condition, then stability with
respect to an infinitesimal gauge transformation at a sin-
gle site x gives the finite-difference condition

AygA4(x)=0, (8)

where the finite-difference operation is A d(x)=d(x
+[)—¢(x), and the lattice gauge potential is given by

1
A, (0= 20,00 = UL 00 Liacetes - ©

Note that because of the periodic boundary conditions of
the lattice (specifically along the Euclidean time direc-
tion), it is not consistent to require the usual zero-
temperature form of the temporal gauge, 4,=0. The
reason is that this condition would imply that the prod-
uct of all the timelike links at a given spatial site is 1,
whereas in fact that product can be any SU(3) matrix.
This is exactly the situation that occurs at finite tempera-
ture, in the continuum as well as on the lattice.

The constancy of A, along the four-direction is
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satisfied if U, is similarly constant, and so after the appli-
cation of the gauge transformation, the timelike links will
be

/N,
U§(xl,x2,x3,x4)= HU4(X1,X2,X3,X4) ! . (10)
x4

The gauge transformation which accomplishes this is

n
g(x,x5,x3,n)=[U§(x,x,,x3,0]" [ UI(xl,xz,x3,i) ,
i=0

an

where the x, coordinate runs from O to N,—1 and
g(x,x,,x3,0) is the unit matrix. This gauge transforma-
tion is not unique, because of the N,th root that appears
in Eq. (10). An SU(3) matrix has N? Nth roots which are
unitary and unimodular. These are all nontrivial gauge
copies, which can be chosen independently at each spatial
site on the lattice. They all satisfy the finite difference
gauge condition, but only one satisfies the maximization
condition.

The only one of the copies implicit in Eq. (10) which
maximizes the sum of traces in Eq. (9) depends on the ei-
genvalues e’® (we take their phases to lie in the interval
—m <6, <) of the matrix whose N,th root is taken in
Eq. (10) as follows: If the sum of the phases, 3 6, is
zero, the eigenvalues of U$, e'®, are each given by
#,=6,/N,. If the sum of the phases is £27, which is the
other possible case, then two of the eigenvalues are still
given by ¢, =6, /N,, but one, corresponding to the phase
0; which is largest in magnitude, is given by
¢,=(6, F2m)/N,. This specifies the gauge uniquely. In
accord with the general result that no continuous unique
gauge can be specified on a compact space, the extremum
condition has discontinuities as a function of the link
variables. They occur when the sum of the phases, 3 6,,
is £27 and the two largest phases (in magnitude) cross.
These discontinuities are finite jumps in the gauge trans-
formation. They are associated with a set of measure
zero in the path integral, and do not appear to have any
harmful consequences.

IV. THE LANDAU GAUGE

The question of whether the maximization form of the
Landau or Coulomb gauges is unique is more difficult
than for the temporal gauge, and we do not have an ana-
lytic answer to it. The intrinsic difficulty of the problem
can perhaps be understood if we note that it is analogous
to the problem of finding whether a spin glass has a de-
generate (classical) ground state. The relation to a spin
glass is expressed through the gauge condition Eq. (6).
The expression whose maximum is demanded can be
thought of as (the negative of) a Hamiltonian in which
the dynamical variables are the SU(3) matrices g(x ), one
for each space-time point on the lattice, the analogues of
spins. The analogues of the irregular couplings of the
spins are the SU(3) matrices U #(x ), one for each link of
the lattice, which take different values on each link, and
which furthermore take different values in each

JEFFREY E. MANDULA AND MICHAEL C. OGILVIE 41

configuration in a complete simulation. This analogy in-
dicates that the question of whether there are Gribov
copies in the lattice implementations of the Landau and
Coulomb gauges is at least as difficult as the question of
whether or not the classical minimum of a quenched spin
glass is unique.

Although difficult to resolve analytically, the Gribov
problem on the lattice can be examined in a systematic
way. The means of doing so uses a gauge which is unam-
biguously free of Gribov copies on the lattice, the maxi-
mal tree axial gauge, as an intermediate step.'* Recall
that the maximal tree gauge is that in which all temporal
links are 1 except at one reference time, conventionally
taken to be the interval between slices n, =0 and n,=1.
At time 1 all z links are 1 except at a reference n,; at the
reference time and z coordinate, all y links are 1 except at
a reference value of n,; and on the reference values of the
time, z, and y coordinates, all x links but one are 1. This
is a unique gauge—it is straightforward to show that if
two configurations differ by a gauge transformation, and
each is transformed to this gauge, the resulting
configurations will be the same to within a global gauge
transformation.

A modification of the straightforward Landau gauge
algorithm which is free of the Gribov copies is then the
following: First transform the gauge configuration to the
maximal tree axial gauge; then apply some definite algo-
rithm to transform it to the Landau (or Coulomb)
gauge.!® The algorithm we have used in this analysis is
simply to sweep through the lattice and at each site effect
the gauge transformation that maximizes the real part of
the sum of the traces of the link variables emanating from
that site.” This relaxes toward the global maximum of
Eq. (6). The convergence criterion used in the present
work is to continue the process until the lattice average
of Tr(A,A,) is less than 10~ °. This certainly eliminates
copies, because the maximal tree axial gauge is unique to
within global gauge transformations. The problem is that
this intermediate gauge makes reference to a specific pre-
ferred direction and preferred time slice, so the possibility
exists that one has only traded one kind of problem for
another. Perhaps one has eliminated Gribov copies at
the cost of defining a noncovariant “Landau” gauge.

We have tested, via a moderate statistics simulation,
the covariance of the unique Landau gauge defined via
prefixing to the maximal tree axial gauge. Specifically we
have evaluated two quantities, one of which would be
sensitive to the preferred direction, and would reflect a
violation of lattice rotation symmetry, while the other
would be sensitive to the preferred time slice, and would
reflect a violation of lattice translation symmetry. The
first is the zero four-momentum gluon propagator:

! 3> (4,(x)4,(0)) . (12)

sites x,y

A=

If this Landau gauge is covariant, the result should be
proportional to §,,. On the other hand, if the four-
direction is singled out, we would expect the last row and
column to differ (or at least the 44 element). The result of
the simulation is shown in Table I. As can be seen, there
is no sign of noncovariance. As expected in any statisti-
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TABLE I. The gluon propagator A, at zero four-momentum
(i.e., averaged over all space-time sites) on a 4* lattice with
B=5.6, normalized so that the averaged diagonal value is 1. Er-
rors are statistical, based on 2500 measurements.

v
U 1

2 3 4

1 1.010 0.022 0.010 0.006
(0.035) (0.016) (0.017) (0.016)

2 0.022 0.921 0.013 —0.006
(0.016) (0.036) (0.017) (0.015)

3 0.010 0.013 1.016 —0.002
(0.017) (0.017) (0.045) (0.016)

4 0.006 —0.006 —0.002 1.053
(0.016) (0.015) (0.016) (0.043)

cal simulation, some quantities are more than one stan-
dard deviation from the norm, but these are not those as-
sociated with the 2-direction, which is singled out in the
definition of the axial gauge.

The second quantity we have simulated is the zero
three-momentum gluon propagator, summed over three-
polarizations:

Alt, At)=—

T 3 (Ai(x,0)4,(y,t +A1)) .
site X,y,i

This is the dynamical part of the gluon propagator. Co-
variance (translational invariance) would imply this is in-
dependent of ¢t and only depends on At. If the time inter-
val between 0 and 1 is singled out, we would expect prop-
agation involving those slices to be different. The results
of the simulation are presented in Table II and in Fig. 1.
Again, there is no sign of a violation of covariance. To
within the precision of the calculation, there is no depen-
dence in the propagator on the base time slice, from
which propagation is measured, despite the fact that the
interval between the n, =0 and n, =1 slices is singled out
in the definition of the maximal tree axial gauge.

(13)

TABLE II. The gluon propagator on the same lattice as in
Table I, evaluated at zero three-momentum and averaged over
spatial polarizations [i.e., 3, , A,(x,?)], normalized so that the
average zero-separation value is 1. Errors are statistical, based
on 2400 measurements.

Separation At

Base
slice
t 0 1 2 3 4
1 1.002 0.738 0.586 0.738 1.002
(0.012) (0.014) (0.018) (0.014) (0.012)
2 1.001 0.734 0.583 0.734 1.001
(0.011) (0.014) (0.019) (0.014) (0.011)
3 1.000 0.734 0.586 0.734 1.000
(0.012) (0.014) (0.018) (0.014) (0.012)
4 0.997 0.734 0.583 0.734 0.997
(0.011) (0.014) (0.019) (0.014) (0.011)
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FIG. 1. A graphical display of the gluon propagator of Table
II. The zero-momentum gluon propagator A(t,At) is plotted vs
the time separation At for each value of the base time slice
t=0,1,2,3.

To the precision of the simulation, the maximal tree
prefixed Landau gauge is covariant.

If the Landau gauge, defined by maximizing the sum of
the real parts of the traces of the links, were free of Gri-
bov copies, then its maximal tree prefixed version would
be covariant, because it would be the same as the
unprefixed version. Of course, the converse need not be
true. Nonetheless, testing the covariance of the maximal
tree prefixed Landau gauge amounts to looking for in-
direct evidence that the lattice Landau gauge (defined by
maximization but without prefixing) has Gribov copies.
The covariance (to within statistics) of the gluon propa-
gator in this gauge represents a failure to find evidence of
copies.

V. SUMMARY

In this paper we have discussed a number of aspects of
the Gribov problem in the Landau gauge. We have
shown that the lattice axial gauge, which is like a one-
dimensional Landau gauge, is rendered Gribov-copy-free
by formulating it as a maximization condition. We have
also noted that when the Landau gauge is formulated as a
maximization condition, the vacuum field configuration,
at least, has no Gribov copies. Finally, we looked for in-
direct evidence of Gribov copies in the lattice Landau
gauge by looking for a failure of covariance when the
Landau gauge was reached by prefixing to the maximal
tree gauge, and failed to find such evidence. All this sug-
gests that the lattice Landau gauge may be Gribov-copy-
free, but certainly does not prove it. However, even if the
lattice Landau gauge has copies, prefixing to the maximal
tree axial gauge seems to be a covariant way of eliminat-
ing them and resolving the Gribov ambiguity.
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