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Consistent Fujikawa regularization of the spinning string
in superspace from Pauli-Villars regularization
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We use Pauli-Villars (PV) regularization of the spinning string in superspace to identify those

Fujikawa regulators which produce consistent anomalies. We use a general background gauge, and

obtain, after elimination of the nonpropagating fields and using a super-Einstein and Lorentz-

invariant mass term, a diagonal Fujikawa regulator with only super-Weyl anomalies. The PV ex-

tended action has extra "twisted" Becchi-Rouet-Stora-Tyutin (BRST) symmetries; dropping these,
the BRST transformations of the PV fields turn into off-shell superconformal transformations plus

field equations. Thus, the transformations of superconformal field theory are just on-shell BRST
transformations.

Anomalies can be calculated in Fujikawa's approach as
the trace of the Jacobian of the path-integral measure,
suitably regulated. ' A question which was recently set-
tled is which regulators give consistent anomalies? The
answer was obtained by first using Pauli-Villars (PV} reg-
ularization, computing the anomalies due to the nonin-
variances of the mass term, and reading off from this re-
sult the regulator and the quantum variables to be used in
Fujikawa's approach in order to reproduce these
anomalies. (Other quantum variables can be used, but in
this case one must add extra terms to the Jacobian. An
open, and fundamental, problem is to justify Fujikawa s
approach by regulating the measure itself instead of the
Jacobians, for example, on a lattice, and deducing the
Jacobians and regulators ab initio, instead of using other
regularization schemes for this purpose. ) Since the
Pauli-Villars method yields consistent anomalies, being a
Feynman-graph calculation, one obtains in this way con-
sistent regulators. As an application of these ideas, the
consistent regulator for the bosonic string was deter-
mined. As a mass term one took
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where T„are the coordinate PV ghosts and the sym-
metric S""are the coordinate PV antighosts. Since T"
transforms as a coordinate tensor under Becchi-Rouet-
Stora-Tyutin (BRST) transformations, and S""as a coor-
dinate tensor density, this mass term is coordinate BRST
invariant, but not Weyl BRST invariant. Eliminating all
the nonpropagating fields, and using the conformal
gauge, the PV antighosts transformed as coordinate ten-
sor densities, while the ordinary antighosts transformed
into the stress tensor of matter, PV matter, PV ghost-
antighost, and ordinary ghost-antighost. According to
the last contribution, also the ordinary antighosts trans-
form as tensor densities under BRST coordinate transfor-
mations. As consistent regulators for the bosonic string,

the operators D~+D, D~ D+, D D~+, D+Dt in the
ghost and antighost sectors were found, where
D+=p'~ c)~ ' are the kinetic operators of the ghosts
and D~ =p 'ti~' are the kinetic operators of the an-

tighosts in the conformal gauge g+ =p.
In this paper we shall extend these results to the spin-

ning string, and work in a general gauge, rather than in
the conformal gauge. We shall use superspace methods
since this leads to simpler formulas, which extend several
results of the bosonic string in a natural way. The quant-
ization of the spinning string in superspace has been dis-
cussed by several authors. In particular, Martinec ob-
tained the ghost action [our result in Eq. (8)] by con-
structing a metric on the space of deformations of the in-
verse vielbein, and identifying which part leads to propa-
gating ghosts. Brooks and Gates obtained the same re-
sult by generalizing the x-space result of Ref. 5. They,
and Lauer, studied its background symmetries. We will
rederive the result of Ref. 4, but using Faddeev-Popov
quantization and keeping track of the nonpropagating
fields. As a consequence, the BRST symmetry is obvious
at the starting point, but the final form of the BRST laws
for (8) is interesting: they are (a slight generalization of)
the superconformal transformation proposed in Ref. 6.
Although this dynamical derivation is amusing, our main
result is the form of the consistent Fujikawa regulator.

A well-known complication of the superspace ap-
proach is that local d=2, %=1 superspace is a con-
strained formalism: the 16 components of the inverse su-
pervielbein E~ are subject to constraints, leading to 6
prepotentials. ' Since there are also 6 local gauge sym-
metries (4 super reparametrizations, 1 Lorentz, and 1

Weyl) we fix the following 6 components of E„
++ F ++ g ++ F+++ +

F. + =F + E =F
where we have used ++,——as bosonic indices and
+, —as fermionic indices, and the upper (lower-indices
are curved (fiat). As a result of the constraints, all E„
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are then equal to F„.Decomposing A =(a,a) where

a =++,——is bosonic and a=+, —is fermionic, the
action for the spinning string a general gauge reads

S=f d Z[Ee E aMXEB aNX

( l)A(E M F M)F B A

( I ) A(5E M)F BB A]

where E =sdetEM" and the only nonzero components of
and Bz correspond to the index structures shown

in Eq. (2), namely, 8, , 8+ +, and 8 . Note that the
upper and lower indices of m and B are flat and back-
ground flat, respectively, a distinction which disappears
after putting E~ =F~

The symbol 5E„denotes the complete BRST varia-
tions of E~, with the BRST parameter A removed from
the left. The BRST transformation laws are

SE. = —C a E. —E. a C +-,'L~,.~E, +mE.

5E.M= CNaNE—.M+E NaNCM+LE. bE M+2WE.

—iy f'V. WE M

The law 5E, follows from 5E as a result of the con-
straints. The objects 5E~ E~ =8~ can be straight-

forwardly evaluated. One finds

AH =V„AC +AC P M AC—Tc +ALM

+5„(AW5 )

+5„'[2AW5. '+iy. 'V.(A W)5,'], (5)

where VA =E„aM+pAM, with pA the Lorentz con-
nection, MV„=M„V~ with M, "=e, and M =

—,'~3~,
C =C E~, C is the supercoordinate ghost, L the
Lorentz ghost, and 8'the Weyl ghost, and the torsion is
defined by T„B =[VAEB ( —I)"—VBE„)EM . It
satisfies the constraints T &'= 2i y 13', Tb,

'
= T b'= T &~ =0; see Table I.

Integrating over m.z" and E„FM one finds an action
with covariant derivatives which contain only spin con-
nections since we use flat indices. Adding the corre-
sponding PV action, one obtains

TABLE I. We 1ist here the nonvanishing components of the
torsion where TAB =( —1)" TBA and tV+, V ) =RM.

T, ++ =2i
T = 21

lT ——+= ——R+

T++ + = —
—,
' V+R

S=f d Z[FV XV+ (V C'+—2iy„B'C~)B, +(2W VC )8+—(L+C pB VCBr3B—)83

+FV' YV Y (V T'+—2iy B'T~)S, +(2R VT )S+(—P+T pB VTBr3(3 )S3-
+FMY +FM) T++T +F 'M~S++ S +], (6)

where 2B =B+++B, 2B3 =B++—B, and sim1-

larly for S and S3, while R and P are the PV Weyl and

Lorentz ghosts, respectively. The mass parameters M,
M„and Mz are independent. The result in (6) general-
izes the PV action of Ref. 2 to superspace and to a gen-
eral gauge, and the superspace action of Ref. 7 to a gen-
eral gauge and to the PV case.

Before eliminating all nonpropagating fields, we discuss
the invariances of the action. On general grounds we
note that, after integrating over m „and E~ FM in the
theory without PV fields, and subsequently replacing X
by X+ Y, C "

by C "+T, 8' by 8'+R, L by L +P, and
B„by B„+S~, the part of the action which contains
an even number of PV fields is invariant under the follow-
ing decomposition of the original BRST transformation
laws:

5$(non-PV) =(terms even in PV fields),

5$(PV)=(odd in PV fields) .

The law for B~ +S„ follows from the supervielbein
equation of motion. The non-PV fields contain now in
their transformation rules in (7) terms quadratic in non-
PV fields and terms quadratic PV fields. While this is

what we expect for the antighost by extrapolating the re-
sults of Ref. 2, we do not expect terms quadratic in PV
fields in the laws for the matter and ghost fields. We
claim that these terms can be dropped since they form an
extra symmetry. The reason is that the massless action
has an obvious O(2) symmetry between PV and non-PV
fields, and the commutator between an ordinary BRST
transformation with PV ghosts and this O(2) rotation
produces the terms quadratic in PV fields in the matter
and ghost laws. [To give an exam~le, in the bosonic
string the sum of the X action —

—,
' V'g (aX) and massless

Y action and the massless PV action S"'(D„T, g„R )is-
separately invariant under the "twisted" BRST laws

5X= —AT"B„Y, 5Y= —AT"B„X,

and

5s"'= —A&g (a"xa'Y+a"Ya'x g" a xa Y) . —

These laws are the commutator of the SO(2) rotation
6X= Y, 6Y= —X with

5X= —AT"B„X, 6Y=O,
5s~'= A&g (a~xa'x ,'g ~—"a xa.x)——



41 CONSISTENT FUJIKA%A REGULARIZATION OF THE. . . 2527

which are the ordinary BRST laws, but for X and the PV
antighost. ] Dropping these separate symmetries —the ac-
tion in (6) is invariant under the usual laws for the ghosts,
the antighosts transform into the sum of the 4 stress ten-
sors, while the PVfields (ghost and antighosts alike) trans

form as tensors under BRST transformations
After eliminating all nonpropagating fields B and 8', S

and R, B3 and I., S3 and P, C and the gamma trace of
8, , T~ and the gamma trace of S, , we obtain the fol-

lowing action, using e+ e+ =1:

S=f d Z(2FV XV+X+2FV YV+ Y+FMY B+—+ V C++ B —+V+C —S++ V T++

—S +V+T +FM, T++T +F 'M2S++ S +) . (8)

We used u'w, =u++w+++u w and U =(U+, u )

for a=1,2. The non-PV part in the conformal gauge
agrees with Refs. 4 and 7. This action has a number of
symmetries. First of all, it is invariant under super-
Einstein and Lorentz transformations, if we also trans-
form the background Geld F„.This is obvious since all
indices are flat and Lorentz transformation are diagonal
on all fields. Under the %eyl rescalings F ~XF
T*+—~X T**, S++ ~XS++ +, and similarly for
C* and B++, the massless part of the action is invari-
ant since /+~X/+ +2V+X, see Howe. The invariance
under these background symmetries follows from the fact
that we have chosen a background-invariant gauge-fixing
term, because we can always achieve invariance by letting
the ghost and antighost transform as tensors.

Next we consider BRST transformations. Under these
F„ is inert. The massless part of the action in (8) is in-
variant under the following rules:

5X= —AC "V„X, 5F= —AC "V„F,
5C'= A( —C "V„C'—i y ts'C C~),

5T'=A( —C "V„T' T"V„C' 2—iy &'C T—t), (9)

5S ~=A[ —Fc ~V (F ~S &) 3 V C&S ~]

5B, =A[ 2F(V XV,X+—V YV, Y)

FC"V (F 'B—)
——'V CB'

FT"V„(F 'S,—) —'V TS ]. —

5T'=A —C"V T' TV' C'+——V C y ~ V T'
b b 8 P b a

Ty t VC+ —VCy )VT
8 ~ b Q 8 cx p c (10)

which is the sum of h = —1 superconformal transforma-
tions and field equations. Note that all these results hold
in a general background. The 5T' law has the same
BRST Jacobian as the 5C' law, in agreement with Ref. 2.
To obtain 6B, we proceeded as follows. The variation
of B„under BRST transformation is equal to m~ A.
We eliminate m. „ from the ~z and E„ field equations.
For the variation of the supervielbein in the B, C ghost
action we find

In this result, C [and T ) are to be replaced by their
field equations (i —I4)V&c y&~ [and (i I4)—v&T yb~ ]
and B, [S, ] denotes the gamma traceless parts B++
and B + [S++ and S +].

In a flat background the X law becomes

l5x=g++a„x——v g"V,X
2

plus a part with g, with g++ = —AC++, which is the
usual law for a tensor field with superconformal spin
h =0 (Ref. 6), but in Minkowski spacetime. The y terms
in 5C' and 5T' are due to the torsion needed to replace
az in 5C = —AC a&C by covariant derivatives. The
first two terms in 5T' themselves look like an ordinary
super reparametrization for a curved-indexed supervec-
tor, but decomposing A into (a, a), one finds

5SA= J'd'z( 1)" 'H„—'[~, "A+Ac (a,B,"+y,M, 'B, ")+A(a c )B,"

+V, (AC')B, " AC T„'B,"+—AI.B,'M, ']
+H [AWB8 Ba'iy, a(vpA—W) —{VeAW)iy, aBp'] H, (2AWBs') . —

One recognizes already in the H„ term the structure of
a general supercoordinate transformation on a tensor
density 8~ with Lorentz index 3, but with the lower
index made flat, which induces the torsion term. Since
the only components of 8~ are 8, , 8++, and 8, it

follows that the last three terms are absent. Moreover,
the index A of H~ is always fermionic. Hence, there
are only H ~ variations. Because of the constraints not
all H~ are independent, but H ', H++, H form an
independent set. Furthermore, by variation of the con-
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straints one finds that

8 =+ '(—V,H +'-+V a, *+) -.
2

(12)

From this result one finds 58„. Substituting the field

equations

8~+=8 =B, y' 13=0, C = ——VpC yb~

W= —,'V C, L = —C Ps+V C~~ip

we find that the —C pz term in L makes the transport
term to AC V&8&" covariant. In this way we obtain the
k-dependent terms for 58, in (9). The X-dependent
terms are obtained in a similar way. Using (7) we then
obtain the complete 5k, and 5S,' laws in (9). We have
checked by direct computation that the action in (8) is
indeed invariant under (9). The result shows that k
transforms into the sums of all stress tensors, and in par-
ticular, that 8 and S have conformal spin —,'.

Using the representation where

(y'+) =1, (y )

one finds the transformation rules for the fields in (9) on a
light-cone basis; see Table II. (Use V+V+ =iV++ ).

Before determining the regulators, we show that the
background transformations lead to an expression for the
variation of the mass term in (8) which agrees with BRST
anomaly. That is, making a classical Weyl rescaling in (8)
with infinitesimal parameter o (X=e ), and replacing o.

by A W where 8'is the Weyl ghost, the action varies into

5X =( 2A—W)FMY +( —6AW)FMi T++T

+ (4AW)F 'M2S i i S

We claim that the same result for 5X is obtained if we

vary the action in (8) under the BRST transformation in

(9), denoting —,'V C' by W. Actually we find two extra
++

terms, coming from the last term in 5T

5X=( 2AW—)FMY +( 6AW—)FM, T++T

+(4AW)F 'M2Sii S

+ AFM i(—T V T V C+++2

9++,—— 2& + T++V T++V C ), (14)

hence

(y ) = —2, (y ) =2,
but since V+C++, is the 8 field equation, we can add an

M, -dependent term to 58 which removes the last two

TABLE II. BRST transformation rules on a light-cone basis.

5X= A(iC +V' X——V C++V X—iC V X+—V C V X
2 2

5Y=A iC++V~ Y——V~C++V~Y —iC V Y+ —V C V Y
2 2

iC++V+C+-+-+ —'V+C++-V +C+-' —i.C-- V' C+++—'V+ C+ + V+ C++
4

5T—+—+=A iC++V T—+—+ ——V' C++V ~T+——+ +iT++V C +—+——iC V T——+ + —V C V T-+—+
+ + + & +

2 2

—T--V' C+++—'V+ T++ V+ C++
2

5S~~+ =A iFC++V (F 'S~g+) ——FV~C++V~(F 'S~g )+—', iV~C —+—Sg~+ —iFC V (F 'S~@+)

+ —FV C V (F 'S~~ )
2

5B~~ + = A —2iF (V~XV~X+V ~ YV ~ Y)+iFC+ V ~(F 'B~~ +
) ——FV ~C++ V ~(F 'B~~ )

+—iV~C—+—B~~ —iFC V (F 'B~~+ )+—FV C V (F 'Bg~ )

+iFT+ V (F 'S~ +
) ——FV ~ T+ V ~(F 'S~~ + )+—'i V ~ T——+S~~ —iFT V (F 'Sg~ +

)

+ —FV T V (F 'S~~+ )
2
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TABLE III. We list here the dependent variations H& =BE„E~ as functions of the independent
ones H~', H+ +, H

H~ ~ =+—'{V+H **+V H+++ )
2

H~++ = + iV~H~ *
Hgg ++=2Hg ++ iVgHg ++

Hyy*=k~RHy +){VgH+++VgH )
—~VyHy —~VpVgHy *

H~+ ——*-,ZH+ —
—,V+H+ —

—,V+V ~H~++ i z +

terms. Since the mass terms are independent of 8, this
does not lead to further M variations; this explains why
there are no terms in (14) with the S field equations.
[This extra variation of 9 does not contribute to
anomalies since the regulator (see below) is diagonal in
BC and ST space. ]

In fact, the extra M, -dependent term in 5B++ is just
the contribution to the stress tensor from the mass term
of the PV ghost fields. To show this, we note that
T* =T EM—*+(we d—o not use T F~** in the mass
term since we prefer to avoid BRST coordinate
anomalies). The variation of E is groportional to
H, ' H, an—d H, ' 2H eq—uals iy, V~&'. Hence,
from 5E one does not get a contribution to 5B~+
From 5T++ = T"H„++ the part T H ++ precisely
yields the extra term in 5B++ while the part T'H, ++

does not contribute since H ++ multiplies T T
which obviously vanishes, while H++ ++ equals

2H+ + —i V+H+++ which is independent of H+ —+—+', see
Table III. [In fact, the reader might wonder at this point
whether the 5C' law in Eq. (9) is equal to 5(C FM') or
5(C E~'). The answer is 5C'=5(C F~') =(5C )FM'.
It differs from 5(C EM') by the variation of the field

equation, 5Esr'=5(EM' FM'), whi—ch should itself be a
field equation. Explicit evaluation of C EM++ under
BRST transformation, using the field equations for I., W,
C and the torsion constraints T„3++=5+„5sT++++
leads to

c"5EM++=A ic--v'c++ ——'v c--v c+'

(15)

Indeed, only the B++ field equations appear which is as
it should be since the B law changes after elimination of

m„ if we fix part of E~ by treating C E~"as indepen-
dent variables. ]

According to the general ideas of Ref. 2, the results in
(8) imply that in the Fujikawa method it is most con-
venient to choose X=F' X, C **=F' C**, and

B++ =F ' B~~ as independent variables in the
path integral, and as Jacobians for the BRST anomaly
one should use a diagonal matrix with entries —2AW,
—6A W, —6A W 4A W 4A W where W= —,

' V C . Taking
into account that these Jacobians are to be used in a su-
pertrace, these results agree with Ref. 7, but they hold in
a general gauge.

We have seen that background symmetry and BRST
symmetry lead to the same Jacobians to be used in
Fujikawa's approach. We now check that these Jacobi-
ans, which PV regularization provides, are the same as
the Jacobian's for X, C *, and B++ in the theory
without PV fields. For X one finds easily that this Jacobi-
an equals 1+tr[( —

—,
' A )( V+ C+ +V C )]. For the

ghosts and antighosts one finds

J(C++)=1+str[(—
—,
' —2)AV+C+ —

—,'AV C ]

and

J(B++ )=1+tr[(—
—,'+3)AV+C+ —

—,'A C ] .

Hence one reobtains the results in (13), since J(C ++)
and J(C' ) [and J(S++ ) and J(S +] each are
multiplied by the same factor due to regularization (see
below).

We are now ready to determine the consistent regula-
tors to be used in the Fujikawa approach. In terms of the
variables P=(F, T++,T,S++, S +), the PV ac-
tion takes the form —,'P ( TO+ TA, }P,where in the matter
sector TA, =2M and TO=4F' V+V F ', while in
the four-dimensional ghost-antighost sector one has

0 M1
—M1 0

0 M y TO
2

M2 0

1/2V +—1/2

~1/2V y
—1/2

+

F1/2V F 1/2

F1/2V F—1/2
+

(16}
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Following Ref. 2, the regulator R is given by 0 /M in

the X sector and 0 /M in the B,C sector. We find a
consistent regulator which is diagonal in the five sectors,
and given by

R(X)=4M F' V V' V„V' F

R(C ++
) =(M, M~ ) F' V+V V+V F

R(C )=(M M ) F' V V+V V+F

R(B++ )=(M Mi~) F' V+V V+V F

R(B +)=(M M2) F' V V+V V+F

dard superconformal transformations. Background in-
variance and BRST symmetry are unrelated; the former
is only present when one uses a background-covariant
gauge choice. The former is needed for gauge indepen-
dence, while the latter is used to derive Ward identities.
Yet, we have seen that background transformations (un-
der which F„varies) and BRST transformations (under
which F„ is inert) lead to the same variation of the
mass term in the action, i.e., to the same anomalies.

In x space, the mass term for the Fujikawa variables P
becomes, in flat space,

Note that V+ for different fields contain different connec-
tions. Again this result agrees with Ref. 7, but it holds in
a general gauge.

We thus see that the Pauli-Villars regularization of the
spinning string in superspace leads to a Jacobian and
regulator which agree with the result previously obtained
in Ref. 7. However, the results here justify the regulator
chosen there. The actual value of the anomalies in the
various sectors agrees, but our results hold in a general
gauge. Moreover we have seen how superconformal
transformations are generated dynamically: namely by in-

serting all field equations (propagating and nonpropagat-
ing) into the BRST laws, for the PV fields one finds stan-

+Miyw3y+M2eq, gp b "~b

where c" and y (b"' and p„) are the coordinate and su-

persymmetry ghosts (antighosts). The latter are, respec-
tively, traceless and gamma traceless. For the x-space ac-
tion without PV fields, see Ref. 5.

We considered ordinary (1,1) superspace in this paper.
Our methods can also be applied to other superspaces,
such as (1,0) superspace, in which case we would also ob-
tain Lorentz anomalies.

We thank G. Delius, M. Grisaru, and M. Rocek for
useful discussions.
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