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Electromagnetic fields in Khan-Penrose spacetime
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The behavior of test electromagnetic waves on the Khan-Penrose colliding gravitational-wave
spacetime is used to probe the nature of the quasiregular singularities present. It is argued that the
divergence of stress-energy scalars for most wave modes makes these singularities unstable, convert-
ing them into scalar curvature singularities. However, a special subset of modes does not lead to
divergence of stress-energy scalars at the singularities. In the presence of such modes the singulari-
ties should remain quasiregular in an exact back-reaction calculation, as confirmed in the colliding
gravitational- and electromagnetic-wave spacetime of Chandrasekhar and Xanthopoulos.

I. INTRODUCTION

The nature of spacetime singularities remains an in-
teresting problem in classical general relativity. ' Ellis
and Schmidt have classified singularities in maximal,
four-dimensional spacetimes into three basic types: sca-
lar curvature, nonscalar curvature, and quasiregular.
The obstacle which bars the embedding of singular space-
times into larger nonsingular spacetimes is obvious for
those with scalar curvature singularities, where physical
quantities such as energy density and tidal forces diverge
for all observers who encounter the singularity. The
physical significance of the other two types of singularity
is less obvious. In the case of a nonscalar curvature
singularity some, but not all, observers feel infinite tidal
forces as they approach the singularity. It is still more
curious that for a quasiregular singularity no observers
see physical quantities diverge, even though their world
lines end at the singularity in a finite proper time.

Quasiregular singularities are the mildest type of true
singularity, and they are also the least well understood.
By definition a singular point q is a C" (or C" ) quasireg
ular singularity (k ~ 0) if all components or derivatives of
the Riemann tensor R,b,d, , evaluated in an ortho-
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normal (ON) frame parallel propagated (PP) along an in-
complete geodesic ending at q are C (or C ). In other
words, the Riemann tensor components and derivatives
tend to finite limits (or are bounded) in every PPON
frame. On the other hand, a singular point q is a C (or
C" ) curvature singularity if some component or deriva-
tive is not bounded in this way. If all scalars in g,&, the
antisymmetric tensor g,b,d, and R,&,d. . . neverthe-
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less tend to a finite limit (or are bounded), the singularity
is nonscalar, but if any scalar is unbounded, the point q is
a scalar curvature singularity.

Quasiregular singularities have been found in "Taub-
NUT (Newman-Unti-Tamburino)-type" cosmologies,
cosmic-string models, and in colliding plane-wave
spacetimes. ' One suspects from their strange properties

that although they occur in exact solutions of Einstein's
equations they may be unstable, so that the addition of
generic rnatter or fields to quasiregular spacetimes may
convert these mild singularities into a stronger form. We
have previously studied the stability of singularities in
Taub-NUT-type cosmologies using test scalar and elec-
tromagnetic fields. ' We conjectured that if one intro-
duces a test field whose stress-energy tensor evaluated in
a PPON frame rnimics the behavior of the Riemann ten-
sor components which indicate a particular type of singu-
larity (quasiregular, nonscalar curvature, or scalar curva-
ture), then a complete nonlinear back-reaction calcula-
tion would show that this type of singularity actually
occurs. For example, if a scalar quantity such as T„,T"
constructed from a test field's stress-energy tensor
diverges as a quasiregular singularity is approached, the
conjecture is that a scalar curvature singularity will actu-
ally develop if the field is allowed to influence the
geometry. Evidence for this conjecture was presented
from a few known exact solutions; the evidence also
showed that most test-field wave modes do in fact mimic
scalar curvature singularities, but that very special wave
modes can mimic nonscalar or quasiregular singularities.
Therefore, if generic fields are added to Taub-NUT-type
cosmology, one expects that their quasiregular singulari-
ties will be converted into scalar curvature singularities.

In this paper we extend our conjecture to include the
quasiregular singularities in the Khan-Penrose colliding
impulsive plane gravitational-wave spacetime, ' by exam-
ining the behavior of test electromagnetic fields. We
show that the behavior of fields and their stress-energy
tensors are similar to their behavior in Taub-NUT-type
spacetimes. We show also that the exact solution of the
Einstein-Maxwell equations found by Chandrasekhar and
Xanthopoulos, " which describes the collision between
two plane impulsive gravitational waves, each supporting
an electromagnetic shock wave, is in effect an exact
back-reaction solution corresponding to a restricted class
of the electromagnetic fields we consider here. Finally,
we show that the effect of these restricted fields on the
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quasiregular singularities of the Khan-Penrose spacetime
is consistent with our conjecture. Tensor components in
coordinate frames and in PPON frames are represented
throughout by greek and latin indices, respectively.

II. TEST ELECTROMAGNETIC FIELDS
AND STRESS TENSORS

In Khan-Penrose spacetime, 5-function gravitational
~aves propagate into an initially Rat region. In the two-
dimensional slice shown in Fig. I, the planes u =0 and
v =0 are 5-function waves. Regions I, II, and III are flat
with double-null metrics':

V=I

I: ds = —2du dv+dx +dy2,

II ds2= —2du dv+(1+u) dx +(1—u) dy

III: ds = —2du dv+(1+v) dx +(1—v) dy

(la)

(lb)

(lc)

FIG. 1. Colliding impulsive gravitational waves. The sur-

faces u =0 and v =0 are 5-function plane gravitational waves.
The wavy line is a scalar curvature singularity and the dashed
lines are quasiregular singularities.

Region IV, which is in the absolute future of the col-
lision, is curved with the metric Ao(u, v)=, , /, +fo(u),

( 1 u 2)1/2

Iv d$2
—2t'dudv +t2 r+v

r1v(uv +r1v)
w+u
w u

b(v)u
A (u, v)=

2 3/2(1—u )

r v

r+V dpw+u (ld)

fo(u)(1+u )
du

( 1 2)1/2 f
( 1 u 2)3/2

+f, (u),

where r =(1—u )'/, 1v=(1—v )'/, and
t =(1—u —v )'/. A three-dimensional picture due to
Penrose is given in Matzner and Tipler. '

Khan and Penrose' showed through an analysis of the
Green's function for the solution that a curvature singu-
larity forms to the future of the collision at u +v =1.
No curvature singularity, however, forms at the points
u =0, v =1, or v =0, u =1 or on the surfaces u =1 and
v =1. These are quasiregular singularities. '

To study the stability of these quasiregular singulari-
ties, we will consider the behavior of an electromagnetic
test field. Consider region II (one of the two regions
bounded by a quasiregular singularity). The field equa-
tions for sourceless electromagnetic waves in terms of the
vector potential are

A (u, v)= . . ./, +f2(u),c(v)
(1+u) /(1 —u)'

A (u, v)=
3/2 1/2+f3(u),
d (v)

(1—u) / (1+u)'/

where

b(v)= f a( )dvv

and
2

gg 3u f, 1+u
u2 (1 u2)2

The other functions are unconstrained.
The electromagnetic field tensor F„„=A .„—A„. . If

we assume for simplicity that fv =0, then

A~'".,=0 . (2) 0 F
FT 0

It is straightforward to solve Eq. (1) in region II in the
Lorentz gauge, A".„=0. The vector potential is where

(1+u)'"
c'(v)

)1/2
d, ( )

(1—u)'
(1+u)'

+2(1+u)f2+(1+u) f2' /2, —2(1 —u)f3+(1 —u) f3'
(1—u) (1+u )' (1+u) (1—u )'

(4)

The stress-energy tensor is

T„,=(1/4m)(F„F, ,'g„„F ttF ~);——
that is
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Too 0 0 0

where

0 Ti, 0 0

0 0 T22 T23

0 0 T32 33

Tmi = (1+u)
1

4m
+2(1+u)f2+(1+u) f2'

(1—u) / (1+u)'
'2

+(1—u) z
—d(v) —2(1—u)f, +(1—u) fi'2

(1+u) (1—u )'

1 [c'(v)]' + [d'(v)]'
4m (1—u)(1+u) (1—u)(1+u)

1 (1+u}' '
T22 =

4n (1—u)i/2
—c'(v) i i/2 +2(1+u)fi+(1+u) f2'

(1—u) / (1+u)'

+d'(v), —2(1+u)fi+(1+u)(1 —u)fi'
(1—u ) (1+u)'/

—1 (1 —u)'/ c(v)
T23 = T32= d'(v), +2(1+u)fi+(1+u) f2'

4~ (1+u)' (1—u) / (1+u)'/

i/2
'

v i/2 i/2

(1+u)'/ —d(v)
( 1 u )

i /2
( 1 + u )3/2( 1 u )

l /2

T3i=, c'(v) q, +2(1—u)fi+(1+u}(1—u)f2~
1 (1—u)' c(v)

4~ (1+u)' (1+u) / (1—u)'/

—d(v)—d'(v) —2(1—u)f&+(1 —u) f&'
(1+u )' '(1 —u )' '

Thus, all components of the stress-energy tensor except T33 generally diverge as u approaches 1; that is, T„general-
ly diverges at the quasiregular singularity. In particular,

O((1 —u) / )

TPv
O((1 —u) ')

0 O((1 —u) ) O((1—u ) ')
O((1 —u) ) O(1)

As a check on the calculation, it can be shown that T„".„=0and T„"=0as is required for an electromagnetic field.

The scalar T„T" is not, however, zero. A straightforward calculation gives

[c'(v)] +[d'(v)]
PV 4 2

c +d 4(cfz+dfi }+
(1—u) (1+u) (1+u) (1—u)

2cf, ' 2df i' 4(f2'+f i')
+ +

(1+u) (1—u ) (1+u ) (1—u ) (1+u)(1—u)

4f2f z

1 —Q

f3f3 f 21+u f il u

1+u 1 —u 1+u

Notice that T„„T""is finite as u ~1 if (1) c and d are
constants and/or (2) the quantity in large parentheses is
finite. Actually, condition (2) requires c =d =0 and f2
and f3 chosen in a very special way.

Assuming that c and d are constant (so T„„T""is

finite), we can calculate the stress-energy tensor in a
PPON frame. Then

Tab ea eb "T&v

where
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e,"=

2

(1+u )a'
(1+u)

0

3

(1—u)a'

(1 —u)

a'

1 (a') + (a')-
2a ' (1+u) (1—u)

a'(1+u )

a (1—u)

only upon u and not v, corresponding to waves moving in
the v direction toward the boundary with the interaction
region IV. These are also waves for which T„„T" and

T,b are finite as u ~1, as shown by Eqs. (5), (6), and (8);
they therefore mimic the behavior of a quasiregular
singularity. Consistency with our conjecture then re-
quires that the Chandrasekhar-Xanthopoulos spacetime
retain the quasiregular singularities exhibited by the
Khan-Penrose spacetime at u =1 in region II and at
v =1 in region III. And, in fact, this is the case.

Chandrasekhar and Xanthopoulos introduce elec-
tromagnetic potentials A and B, and find the metric to be

ds = —4X [(dx )
—(dx ) ]+X (1+u ) (dx')

e3"=

a'

1 (a')' (u')'
2+ —1

2a' (1+u) (1—u)

a (1 —u)
a'(I —u)

are the PPON frame vectors, where a', a, a are con-
stants. Since c =const and d =const only TN, is nonzero,
and

1 0 0 1

0 0 0 0
~b O00000

1 0 0 1

III. AN EXACT BACK-REACTION
SOE.UTEON

It is interesting that in the special case
a =b =c =d =fo =f, =0 of the general fields of Eq. (3),
an exact back-reaction calculation has already been car-
ried out by Chandrasekhar and Xanthopoulos. " Their
spacetime features the collision between two plane impul-
sive gravitational waves, each supporting an electromag-
netic shock wave. In our region II, their fields depend

where Too is evaluated in the coordinate frame. A paral-
lel propagated frame which approaches the u =1 singu-
larity cannot have a ' =0, so T,b ~ ~ as u ~ 1 unless

c =d =0 and f, is chosen to make Too finite.
Both T„,T" and T,b diverge as u ~ 1 for generic elec-

tromagnetic test fields. The Khan-Penrose spacetime
plus generic fields therefore "mimics" the behavior of a
spacetime which reacts to the presence of the fields by
converting the quasiregular singularity into a scalar cur-
vature singularity. Although no back-reaction calcula-
tion has been carried out in the generic case, we expect
that these fields will convert the quasiregular singularities
at u =1 in region II and at u =1 in region III into scalar
curvature singularities. There is no proof that this con-
version takes place. However, in the few cases where a
back-reaction calculation on a quasisingular spacetime
has been made, the mimicking of scalar curvature, non-
scalar curvature, and quasiregular singularities by the be-
havior of test fields is a completely reliable guide.

the timelike geodesic
X (u)(1+u) x=a,

equations are u=a',

X (u)(1 —u) y=a',

v— (g 2)2 (u 3)2

2a' X~(1+u ) X (1—u)

in region II, where a', a, a are constants and u =du /ds,
etc. A PPON frame with frame vectors obeying the
orthonormality condition e,"eb„=g,b =diag( —1, 1, 1, 1)
and parallel propagation condition e,".,eo =0 is then
found to be the same as those of Eq. (7), except that every
factor of (1+u ) in Eq. (7) should be replaced by
X(u)(1+u), and every factor of (1 —u) should be re-
placed by X '(u)(1 —u).

In the coordinate frame, the only nonzero components
of the Riemann tensor are

R"„„„=X(u)(1+u) R"„„
=

—,'[X (1—u) ] „„
[[X (1+u) ] „]

4X (1+u)
(loa)

+ (1 —u) (dx )
1

X

in our region II, if the gravitational waves are parallel po-
larized, as they are in the Khan-Penrose spacetime. Here
X=a+b(l —u), where a and b are constants. In the
limit of weak electromagnetic fields (i.e., as A, B~O)
they find a ~1 and b ~0, so the metric reduces to that
of Khan-Penrose if also x =(I/2&2)(u +U), x =(1/
2&2)(u —U). Transformations from their tetrad frame to
the Khan-Penrose metric show that in terms of the po-
tentials of Eq. (3), all of these potentials are zero except
for f~ and f3, which are related to their A and B by
A „=[(1+u)f2(u)] „and B „=[(1—u)/(1 —u)][(1
—u) f3(u)] „. The condition that f, be chosen to keep
Too finite in Eq. (5) is equivalent to the requirement that
B „remain finite as u ~1.

We must now verify that the singularities at u =1 in

region II and at v = 1 in region III in the exact
Chandrasekhar-Xanthopoulos solution are in fact
quasiregular. For the metric

ds = —2du dv+X (u)(1+u)'dx'+X (u)(1 —u ) dy
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R' „=X (u)(1 —u) R~„„~

=-,'[X (1—u) ] „„
I[X '(1 —u)'] „I-'

4X (1—u)
(10b)

and others obtained from the symmetries of R„,,& . All
components are finite as u ~1. However, to discern the
singularity type, it is necessary to evaluate R,b,d in
PPON frames. Nonzero components of
R,b«=e, „eI,'e, ed R" z are

Rp&p&
=

Rp&&3 =R
]g&3

= (a ) R1 2 x

1 2
Rp2p2 Rp223 R 2323

= —(a ) R „„y

(1 la}

(11b)

and others obtained by symmetries of the tensor. All
components converge and are continuous as u~1; in
fact,

Rp~p, ~ 2b(a')—la and Rp2p2~6b(a') la

for all PPON frames approaching u =1, where a and b
are the constants in X ( u ) and a ' = u for the geodesic.

The u = 1 singularity in region II (and similarly the U = 1

singularity in region III}are therefore quasiregular as ex-
pected.

The agreement between the behavior of electromagnet-
ic test fields on the Khan-Penrose colliding-wave space-
time with the singularity structure of the exact spacetime
of Chandrasekhar and Xanthopoulos supports the gen-
eral usefulness of the mimicking conjecture we had origi-
nally introduced for Taub-NUT-type cosmologies. In
every case studied so far, the addition of test-field modes
of given symmetry to a background quasisingular space-
time accurately predicts the nature of the singularities
produced when an exact back-reaction calculation is car-
ried out.
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