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Inflation as a dynamical efl'ect of higher dimensions
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The possibility of explaining the inflationary phase of the evolution of the Universe as a dynami-

cal effect of extra dimensions is discussed. Methods of qualitative dynamical systems have been ap-

plied to determine the regions of the phase space in which inAation takes place. The problem is ana-

lyzed within the class of multidimensional Friedmann-Robertson-Walker X 1 models with a hy-

drodynamical energy-momentum tensor, material fields satisfying the Freund-Rubin ansatz, and

quantum effects arising from massless scalar fields at the low-temperature approximation. The sta-

bility of inAation is also demonstrated.

I. INTRODUCTION

An inflationary phase at an early stage of the evolution
of our Universe has become a paradigm of modern
cosmology. The horizon problem can be solved if the

inflationary phase lasts long enough. At the same time

inflationary cosmology could explain the flatness, age,
homogeneity, and isotropy of our Universe. ' Inflation
could also describe the transition from higher-
dimensional cosmology to the ordinary four-dimensional
regime (for alternative ideas in this context, see Ref. 3).
In such a case inflation could be a purely (classical) gravi-
tational mechanism. Inflation is usually understood as an
exponential expansion of the scale factor R (t) of physical
space.

The condition

R&0

is necessary to solve the horizon, fatness, and isotropy
problems. Condition (1) would be a suScient condition
for the solution of these problems if it can be shown that
the correct energy-momentum tensor, for matter fields
present in the early Universe, guarantees that condition
(1) is valid for a suKciently long period of time. In addi-
tion to the standard class of models with an exponential
evolution, condition (1) is satisfied by the power-law or
"generalized" inflationary models in which R(t)-t",
A) I (Ref. 5). In the case of (1+3)-dimensional Fried-
mann models condition (1) implies the breakdown of the
strong energy condition p+ 3p & 0, where p and p are the
energy density and pressure, respectively. In this paper
we characterize the class of multidimensional
Friedmann-Robertson-Walker (FRW)XT models satis-
fying condition (1). We shall denote the scale of physical
space by R (t).

The method of dynamical systems was employed by
Skea and Stein-Schabes to investigate multidimen-
sional cosmological models [FRW(k=O) X T ) with the
energy-momentum tensor T"= (p, - m p

np ). In the work by Wiltshire multidimensional
world models (FRWXS ) with the Freund-Rubin ansatz
and the cosmological constant were studied by using the

II. MULTIDIMENSIONAL COSMOLOGICAL
MODELS AS DYNAMICAL SYSTEMS

We assume the metric of the FRWX T model in the
form

ds =dt R(t)d—Q3 —r (t)dx4 — . r(t)dxD+3—,

(2)

where R ( t) and r ( t) are the scale factors of the physical
and internal space, respectively, dQ3 is the line element
of the unit maximally symmetric space.

The following three cases will be discussed.
(A) Metric (2) satisfying Einstein's equations in D+4

dimensions with the hydrodynamical energy-momentum
tensor

T",, =diag//p, —p, . . . ,
—

pf/ . (3)

(B) Metric (2) satisfying the (D+4)-dimensional Ein-
stein equations in supergravity theory with field strength

F . . . =DO
P+q '

PD ~g tP4 Pq
' Po ~31 (4)

associated with an Abelian gauge field A„„.. .„.%e
P4Pq PD +~

shall assume that F„.. .„ is given by the Freund-
)"4 ~D+ 3

Rubin ansatz so that

F- dx Adx'5 -. P dx4 S Dw3
D

(5)

dynamical system method. Our choice of the variables x,
y, and ~ enables the discussion of the curvature e6'ects of
the physical space and reduces the dynamics to a two-
dimensional dynamical system (as in the case investigated
by Wiltshire ), but additionally it allows us to analyze the
case of an arbitrary dimension of internal space. The ob-
tained results show that the topological structure of the
phase space is independent of dimension D of the internal
space (with the exception of D=1). Skea and Stein-
Schabes have also reduced the system to two dimensions
and shown the structure of phase space is independent of
D.
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T".=diagllp —p —p p—p—'

where p = —p, p'=p,
po= const & 0.

These equations read

2 D
p =po~ ~micro& ~micro

= r

R r' p(D + 1)+3p +Dp'
R r D+2

r

R R R r'

+—3—+D-
R R r

2k P+(1—D)p +
—Dp'

D+2

The last condition automatically satisfies the MaxweH-

type equation derived from the corresponding action.
The remaining Einstein equations are reduced to equa-
tions with the source term

Case (8)

dx 2(4D —1) z D (7D —4)
d~ D+2 D+2

D(D —1) 2 2(4D —1) „D+1 D+2

dy 4(4D —1) 18 2+ D (2D —5) z

d~ D+2 D+2 D+2
18k

+D+2
in the region

pR =3x +3Dxy + D(D —1)
2 y +3k)0.

Case (C)

dx = —5x 2 —4Dxy- y
—Sk,

d1

+ — 3—+D—
r' r 8 r 3p —&P

r r R r D+2 (7c) y'= = x +10xy+(D —2)y + k,dy 12 z 12

dz D D

(10)

where k =0,+1 is the curvature of the physical space, p
and p' are the pressures in the physical and internal
spaces, correspondingly. Einstein's equations for case (A)
also assume the form (7) with p =p'=yp (0(y ~ 1) and

I+y I+y 3
P Po/ Vmicro Vmacro~ PO c S |~macro

(C) Metric (2) satisfies the Einstein equations with

quantum corrections arising from massless scalar fields at
the low-temperature approximation, In this case the
problem of the metric back reaction is thermodynamical-
ly equivalent to the efect of the energy-momentum ten-
sor (6) with p = —p, p'=(4/D)p. By eliminating the en-

ergy density p from constraint condition (7a), we can
reduce the dynamics of the above models to a two-
dimensional system defined on the plane x,y; where
x =HE, y =hR, and H, h are the Hubble functions of the
macro- and microspaces, respectively. These systems are
de6ned on the region of the plane x,y allowed by the con-
straint condition. In cases (A) —(C) we assume the follow-

ing form [in case (A) the equation of state p =p/(D +3)
of the radiative matter is assumed].

Case (A)

n

XI

~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ a ~ I

s

\ 0 1 *

~ ~ ~ 1 \ ~ * ~

!
~ ~ ~ ~ ~ ~ ~ ~ I ~

I I * ~

x axle
~ 'I ~

~ t

dxx
d7

2D+3, D' D(D —1),
D+3 D+3 2(D+3)

2D+3
kD+3 '

dy 3 z D —6 D(D+7) 2 3k
d~ D+3 D+3 2(D+3) D+3

in the region

3x +3Dxy + D(D —1)
2 y +3k =pR «0 .

X CLX I &

FIG. 1. The phase portraits for spacetime
FR%'{k = —1)X T model. (a) FR%'(k = —1)X T' mode1. (b}

FR%(k = —1 ) X T model.
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in the region

D(D —1) 2pR =3x +3Dxy +
2

y +3k ~0,

where ~ is the new time parameter along the trajectory of
the dynamical system, defined as

dr=dr�

/R.
Phase portraits corresponding to the above cases are

presented in Figs. 1 —5. Condition (1), in variables x,y,
reduces to

)0.dx
d~

The boundaries of (11},i.e., dx/dr=0 (dotted line) to-
gether with the sign of dx/dr, are also presented in
phase portraits. The dotted area denotes the region for-
bidden by the appropriate constraints.

III. A MECHANISM FOR INFLATION

By using the phase portraits, in a similar manner to
those in Figs. 1 —5 we can draw some conclusions con-

cerning generalized inflation, satisfying condition (11), in
a certain time interval ~. We shall discuss cases (A) —(C)
separately.

Case (A) FRW(k = —1)XT models with the radia-
tive matter, Figs. 1(a) and 1(b).

(1) These models satisfy condition (11), for
—~ & ~( + ~ when the internal space expands to a con-
stant size, or (2) they have the property of double (for
D & 1) or single inflation, or (3) they do not implement
this idea.

The critical point P, (a stable node) represents the
solution with static internal space and with the Milne
phase of the evolution of physical space —R -t. This
point lies on the boundary of the constraint condition
corresponding to vacuum models. One can notice that
the models with contracting microspace (y(0) do not
implement the idea of inflation as an effect of extra di-
mensions. The topological structure of phase space for
D&1 is independent of the number of dimensions of
internal space as well as of the equation of state. Thus

x axis
x axis

x ax I s

FIG. 2. The phase portraits for spacetime FRW{k =0)X T
model. (a) FRW(k =0)X T' model. (b) FRW{k =0) X T
model.

x axis

FIG. 3. The phase portraits for spacetime
FRW(k =+1)X T model. (a) FRW(k =+1)X T' model. (b)
FRW(k =+1)X T'. Sign of dx/d~ (+) denotes regions of the
phase space in which inflation takes place.
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FIG. 4. Behavior of trajectories of the dynamical system for
spacetime: FRW(k =0,+1)X T' model in N=1, d=11 theory
of supergravity. (a) FRW{k = —1)X T' model. (b)
FRW(k =0)X T model. (c) FRW(k = + 1)X T' model.

x axis

FIG. 5. The phase portraits for spacetime:
FRW{k =0,+1)X T model with low-temperature quantum
effects. {a) FRW{k = —1)X T model. (b) FRW(k =0)X T
model. (c) FRW (k =+1)XT model. Sign of dx/dw (+)
denotes regions of phase space in which inAation takes place.
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the case D=6 with the radiative matter is a representa-
tive one.

FRW(k =0)X T models, Figs. 2(a) and 2(b), do not
satisfy condition (11) for D= 1, but for D ) 1 they satisfy
it (for —co & r & ro) in the class of models with expanding
internal space. As in the previous case this effect is stable
in the sense that there exist close trajectories with the
same property. The critical point P represents a solution

I Minkowski ) X I static internal space], and is degenerate.
Therefore, the whole system is structurally unstable and
even a small change of the right-hand sides of the respec-
tive equations changes the topological structure of phase
space.

FRW(k =+1)XT models [Figs. 3(a) and 3(b)] for
D=1, do not implement the idea of inAation as an effect
of extra dimensions. For D) 1, they satisfy this condi-
tion in the interval —~ &'T('Tp.

Case (B) The phase portraits, Figs. 4(a) —4(c), represent
the evolution of models originating from the supergravity
theory with the Freund-Rubin ansatz. The topological
structure of phase space is independent of the dimension
D of internal space. Figures 4(a) —4(c) illustrate the dy-
namics of the respective models.

FRW(k = —1)X T models in supergravity theory
have the property of "infinite inAation;" i.e., there exists
an infinite number of intervals [ro, rI] in which condition
(11) is satisfied. This follows from the fact that the criti-
cal points P, (stable focus) and P, (unstable focus),
representing the asymptotic states of models lie on the
boundary of (11). The critical points P, and P2 corre-
spond to the situation when the curvature term 1/R is
proportional to the material term 1/r

FRW(k =0, + 1) X T models undergo inflation in the
interval —Oe & r & ro (or ro & r & + oo ).

Case (C) The dynamics of FRW X T models with
low-temperature quantum effects is presented in Figs.
5(a) —5(c). These models satisfy condition (11), for

~ ( 7 & vp The topological structure of phase space is
independent of the dimension D of interval space for a
given k. The critical points P, and Pz [Fig. 5(a)] are both
unstable saddles and only a zero-measure set of trajec-
tories can lead to a static internal space.

IV. CONCLUSION

In this paper we have characterized the class of
FRWXT models for which the idea of generalized
inAation as a dynamical effect of extra dimensions is real-
ized. Some of these models [e.g. , FRW(k = —1)XT
with radiation] additionally implement the idea of
dynamical dimensional reduction. We have noticed that
the models with expanding microspace FRWX T with
radiation are the most interesting from the point of view
of generalized inAation. An interesting effect is that the
FRW(k = —1)XT model, in supergravity theory with
the Freund-Rubin ansatz, can pass through an
inAationary phase infinitely many times. The above
effects are stable in the sense that there exist close trajec-
tories with the property.

Since first submitting this paper, a paper by Mingemi
and Wiltshire has recently appeared which is worth not-
icing in the context of properties of multidimensional
world models.
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