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Symmetry and internal time on the superspace of asymptotically Bat geometries
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A difficulty with the canonical approach to quantum gravity, leading to attempts at "third quanti-
zation, " is the absence of symmetry vectors on the superspace of three-metrics: vector fields that
generate transformations of superspace leaving the action invariant. We show that on the super-
space of asymptotically flat three-metrics, such symmetry vectors exist. They correspond to
diffeomorphisms of each three-geometry that behave asymptotically as elements of the symmetry
group at spatial infinity. The conserved momentum associated with a symmetry vector has a conju-
gate variable which can be regarded as an internal time coordinate of an isolated system. In partic-
ular, for asymptotic translations, a corresponding internal time is a center-of-mass coordinate. An
appendix considers the natural contravariant and covariant metrics on superspace. Because natural
contravariant metrics are not everywhere invertible, the associated covariant metrics are not every-
where defined.

I. INTRODUCTION II. SYMMETRY VECTORS ON SUPERSPACE

In the canonical approach to quantum gravity, the
configuration space is taken to be the "superspace" of
three-geometries om a fixed manifold M. The action looks
formally like that of a relativistic particle moving in this
infinite-dimensional superspace with a potential propor-
tional to the Ricci scalar. For a relativistic particle, a
consistent one-particle quantization is possible only if the
spacetime metric has a conformal Killing vector whose
action on the potential is also a conformal rescaling, but,
as Kuchar" has shown, there is no such symmetry vector
on the superspace of three-geometries on a compact spa-
tial manifold. On the superspace of asymptotically flat
geometries, however, spatial diffeomorphisms that are
nontrivial at spatial infinity are generated by symmetry
vectors that leave the dynamics of the theory invariant.

In the case of a relativistic particle with a timelike Kil-
ling vector P, one identifies time with the parameter A,

along each integral curve A, ~cz(p) of P through a point

p of an initial hypersurface. Here one would like to iden-
tify as an internal time the value of the parameter along
the analogous paths in superspace. For the symmetry of
superspace that corresponds to a spatial translation of
each three-geometry, the corresponding internal time is
an asymptotically defined center-of-mass coordinate: An
external observer can, in effect, use as a clock the position
of the observed system. For a superspace symmetry that
corresponds to spatial rotations, one expects the corre-
sponding time to be an angular variable, like the orienta-
tion of a clock's hand, but it is not clear whether natural
conditions for asymptotic flatness near spatial infinity al-
low a well-defined angular orientation of an isolated sys-
tem.

A. Symmetries at spatial infinity

Initial data for the gravitational field on a three-
manifold Ican be regarded as a pair (g,b, m' ), where g,b

is a positive-definite metric on M and m' a symmetric
tensor density, satisfying the momentum and Hamiltoni-
an constraints,

and

P.:=—2Vb~. b

G ab cd
g 1/2g —pabed

(2.l)

(2.2)

ab ab

j,b is also a tensor on the two-sphere, and where o,b

where
—1/2

Gabcd t g ( gac gbd gad gbc gab gcd )

Asymptotic flatness at spatial infinity has been recently
discussed in terms of initial data (g,b, n' ) by Ashtekar
and Magnon and by Beig and 0 Murchadha. To pick
out the Lie algebra of the Poincare group as the symme-
try algebra at spatial infinity, it suSces to require the ex-
istence of an asymptotically flat metric 5,b defined out-
side of a compact region of M, for which the pair
(g,b, m' ) satisfies the Regge-Teitelboim conditions

(t) g, b
—5 +arb'h, b+r Jab+Oab

where r is a natural radial coordinate for the fiat metric 6,
h b is a function on1y of the corresponding angular coor-
dinates (a smooth tensor on the unit two-sphere) that is
even under parity,
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satisfies

o~b =0 (r ), a.o.b =o (r ')

Vbn", (x)4=0, (2.1')

of the momentum constraint (2.1), implies that state vec-
tors 4 are invariant under diffeomorphisms that are trivi-
al at infinity and which are in the component of the iden-
tity. The class of diffeomorphisms that preserves condi-
tion (i) is broader, including, in addition, diffeomorphisms
that are trivial at infinity but not in the component of the
identity, and diffeomorphisms which at infinity are ele-
ments of the three-dimensional Euclidean group, generat-
ed by translations and rotations of the flat metric 5.
These latter symmetry transformations are generated by
vector fields having the asymptotic form

P=P+o(r ), (2.3)

where P is a Killing vector of the flat metric 5 and

Bb), =0(r ). For translations, p is a constant vector
field with respect to the connection 8 of 5, and for rota-
tions p has the form e'b, n "x', with n' a unit constant
vector field of 5 and x'=r5"B,r a radial vector field.

Corresponding momentum and spatial angular
momentum operators are defined on functionals %(g)
satisfying the constraint (2. 1') by

P(=2f dS, g n'b= f dVX(ggbm'" . (2.4)

Then we have

PP(g) = „4(pig),= d
(2.5)

where y& is the family of diffeomorphisms generated by g.
Let A, be the space of asymptotically flat metrics on M,

and let Do denote the component of the identity of the set
of diffeomorphisms, g, that are trivial at infinity: the geo-
desic distance from y(x) to x is o(r(x) ). (Equivalently,
in a Cartesian chart I x

'
I for the flat metric 5,

lim„[y'(x )
—x ']=0, for y 6Do )The momen. tum

constraint may then be regarded, in the Schrodinger pic-
ture, as a requirement that state vectors be functionals on
the superspace

(ii) m' =r p'"+6'

Here p' is a smooth tensor density on the two-sphere
that is odd under parity,

~ah p ab
P

and

0'b=o(r ), $,0' =o(r

The derivative operator 8, is the covariant derivative
with respect to the metric 5,b.

We shall suppose that the operators g,b and ~' in the
canonical approach to quantum gravity satisfy the analo-
gous conditions: that in the Schrodinger framework,
with a state vector regarded as a functional of three-
metrics, 0=%(g), 0 has support on three-metrics satisfy-
ing (i), while m' (x)4~ satisfies (ii). The operator form

gao

.g ' g ' [»,gbd+d, N(gbd 5b—d)]

(2.7)

Here % is the Hamiltonian density of Eq. (2.2), while
N(x) has the form

N(x)=1+o(r )

for time translations and

N(x)=n, x'+o(r )

(2.8)

(2.8')

for boosts, ~here, as above, n' and x' are, respectively,
constant and radial vector fields of 5,b. When the Hamil-
tonian constraint

&(x )qi =0

is satisfied, only the surface term survives.

B. Symmetry vectors on superspace

Let D be the set of diffeomorphisms of the form
exp(A, (), where g has the form (2.3) of an asymptotic sym-
metry, corresponding to a generator of the Euclidean
group at spatial infinity. The group E=DlDo is then
isomorphic either to the Euclidean group or to its cover-
ing group, depending on whether or not diffeomorphisms
corresponding to a 2~ rotation at infinity are deformable
to the identity on M (Ref. 6). Given a family of
diffeomorphisms y&ED, one has a family of symmetries

gz. = [y&]EE, and through each [g]ES a path of three-
geometries [gz] =gz[g] = [gag]. A transformation y ED
is what Kuchar" calls a "conditional symmetry" on the
space of three-metrics: it is generated by a dynamical
variable P& that is linear and homogeneous in the
momentum vr' and has weakly vanishing Poisson brack-
ets with Hamiltonian and momentum constraints. That
is, if we rewrite the constraints (2.1), (2.2) in the
equivalent smeared form P„=O=H& for all g' and N of
compact support, the Poisson brackets have the form

IPg, P„I=Ps „=0,
IP~, H~I =Hg N=0 .

(2.9)

(2.10)

The fact that the symmetry algebra at spatial infinity is
the Poincare algebra also implies the vanishing of the
Poisson brackets IP&,H~I for N=l+o(r ),
cj,N=o(r '); that is, time translation commutes with
spatial rotations and translations. Thus the transforma-
tions g are symmetries of superspace, and the vector
fields tangent to the paths y& are the corresponding sym-
metry vectors. It is precisely these symmetries that fail

(2.6)

of asymptotically flat three-geometries.
In addition to the spatial translations and rotations

whose generators are given by Eq. (2.4), we shall need to
consider time translations and boosts. In the 3+1 for-
malism, these are generated by operators of the form

H~= dVN x
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to exist for the superspace of metrics on a compact mani-
fold.

III. INTERNAL TIMES

A. An asymptotically defined center of mass

Jc.rn.
& p 0ap

together with the transformation law

J'It =J
tt (R Ptt Rt3P—)—

(3.2)

(3.3)

for angular momentum under a change of origin by a dis-
placement R

For an asymptotically flat spacetime, the quantities ap-
pearing on the right-hand side (RHS) of Eq. (3.1) are all
defined in terms of the values of the Poincare generators
(and the observer's four-velocity t ), and we may there-
fore adopt Eq. (3.1) as the definition of a center-of-mass
vector. Because X lies in S, we may regard it as a
three-vector X', let P, similarly denote the spatial
momentum, the projection of P on S. The Poisson
brackets of the Poincare generators then imply that X'
and P, are conjugate variables

I,
X' Pbj=~b»

and, of course, that

(3.4)

Historically, one measured time by observing the
orientation and position of Earth relative to its
environment —to the Sun and more distant stars. Inter-
nal times associated with the symmetry vectors on super-
space have a similar character: they measure the position
and orientation of an isolated system relative to the sur-
rounding Universe. The system's position can be
represented by a center-of-mass vector, which is well
defined when the values of the Poincare generators are
well defined. An assignment of angular variables is not
yet clear: we do not know whether one is entitled to ex-
pect a well-defined orientation of an asymptotically flat
system that could be expressed in terms of the asymptotic
metric.

Recall that in flat space one can write as follows the
center of mass of a system with conserved momentum
and angular momentum: Let P be the total momen-
tum, and J p the four-dimensional angular momentum
tensor —the values of the generators of rotations and
boosts about some origin 0; and let S be a spacelike hy-
persurface through 0 with unit future-pointing normal t .
Then the connecting vector in S from 0 to the center of
mass is given by

X =M '(5~ —u t~/u t)Jtt ur, (3.1)

where P P'= —M and tt'=P'/M. Equation (3.1) fol-
lows from the fact that the angular momentum tensor
about the center of mass satisfies the relation

Thus the variable P', regarded as a vector field on the
superspace of three-geometries, generates time transla-
tions of superspace, if one adopts the conjugate variable
X' as the internal time. On spacetimes with vanishing
mass, X' is not well defined; and on spacetimes with
P'=0, the definition is not useful —the clock has
stopped. As long as the spacetime has a nonzero mass,
however, there is no loss of generality in describing an
isolated system from the standpoint of an observer who
sees a nonzero three-momentum P' and who can there-
fore use the position of the system itself as a natural time.

In the case of asymptotic rotations, one would similar-
ly like to choose as internal times angular coordinates
that describe the orientation of an isolated system relative
to its surroundings. We believe that it is possible to
define such coordinates for a restricted class of asymptot-
ically fiat spacetimes that have to O(r ) the form of a
boosted Schwarzschild solution. But the class of all
asymptotically flat spacetimes for which the asymptotic
symmetry group can be uniquely restricted to the Poin-
care group may well be too large to allow one uniquely to
define a system's orientation.

B. Comments on an inner product

and a time-translation symmetry vector t to define a
positive-definite inner product, the Klein-Gordon prod-
uct, as the restriction of (, ) to the subspace of solutions
with a positive frequency relative to the symmetry vector
t . Equivalently, one can define the inner product on the
space of real solutions to the scalar wave equation by
writing

(3.7)

where J is the complex structure given by

Jg=i(P+ —
P ), (3.8)

with P and P the positive- and negative-frequency
parts of P, respectively.

In the canonical approach to quantum gravity, one can
regard the Wheeler-DeWitt equation, smeared with a
lapse function X as a Klein-Gordon equation with the po-
tential for a particle moving on an infinite-dimensional,
curved space (the space of three-metrics), with a metric
Gz given in its contravariant form by

Gtv(n, ~)=f d x NG, b,qm' n'

The smeared Wheeler-DeWitt equation has the form

When one quantizes a scalar field on Minkowski space
or on a stationary spacetime, one uses both the conserved
symplectic product

(P, g)= f(P—'.V g PV'—P')V' t( g)'"d'x —(3.6)

X':=
I
X',H I =P'/H,

P':= IP', HI =0,
where H =P t .

(3.5a) [G~(n, n ) +V~]ql =0,
where

V~= —fdV NR;

(3.10)

(3.11)
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if VN is nowhere vanishing, Eq. (3.10) together with the
diffeomorphism in variance of 4', implies that the
Wheeler-DeWitt equation is satisfied everywhere (i.e.,
smeared with arbitrary lapse), assuming closure of the
quantum constraints. If one could make sense of the
Wheeler-DeWitt equation with a factor ordering for
which G~(w, n) was the covariant Laplacian of the metric

G~, then the syrnplectic product

(4,%)=—.f dg f dx 4*1 5
t X M 5g d(X)

XG,b,d t' (x)
5gad X )

X(yg)[y(x)] =X(g)(x), (3.14)

the smeared Wheeler-DeWitt equation (3.10) will be
diffeomorphism invariant. [This makes the LHS of Eq.
(2.10) vanish strongly. Then P& will be a symmetry (not a
conditional symmetry) of the Wheeler-DeWitt equation. ]

Finally, we observe that there are unique symmetry
vectors on superspace corresponding to asymptotic
translations and rotations. On W, the diffeomorphism
corresponding to an asymptotic symmetry is ambiguous

(3.12)

would be conserved. Here X is a hypersurface of codi-
mension one, t'" is its normal, dg the measure on X, and
4 and + square-integrable solutions to the Wheeler-
DeWitt equation, with respect to the measure dg.

To turn the symplectic product on the space of metrics
JN, into a positive-definite inner product on superspace
4=At/Do, is now straightforward. One must first make
the metric G~ on pinto a m, etric on 1; and then one
must use a symmetry vector on S to restrict the symplec-
tic product to a space of positive-frequency solutions (i.e.,
to define a complex structure). In the form (3.9), the
metric is not well defined on superspace, because it is not
diffeomorphism invariant, at least not unless the lapse N
is constant. One can avoid the difficulty simply by choos-
ing a gauge for the three-metrics —a cross section of the
bundle A over I (unless the topology is Euclidean, one
can only choose a local gauge). Alternatively, the metric
GN can be written in a diff'eomorphism-invariant form as
follows. Let y be a diffeomorphism and denote by
gT,'.'. . d the result of dragging a tensor field by g. If y*'b
is the differential map (the Jacobian of y),

yT; d [y(x)]
++a . . . +eb (+n

—1)r. . . (+e —1)s Tm n(p)

(3.13)

A contravariant metric is a bilinear map from covectors
to R; a covector at a point [g] of S can be written as the
gradient of a function 4[g] on S. One may regard 4&[g]
as a function 4(g) on A, for which 4(yg)=4(g), all
gEDo, and a covector (5/5[g])4[g] on 4 may then be
regarded as a covector p' =[5/5g, b(x)]4(g) on JM, for
which p' (yg) =yp' (g). Then, if the lapse X is constant,
or if it is a function on A, satisfying

by precisely the freedom —composition by a
diffeomorphism in Do —that is removed in passing to S.
Thus to each generator P of the asymptotic Euclidean
group corresponds to a unique vector field r[g] on S.
Again we may identify ~ with a vector field

r,b(g)=X&g, b on A by choosing a field p(g)(x) for
which yP(g)=P(yg). We may decompose the space of
solutions to the Wheeler-DeWitt equation into positive-
and negative-frequency parts with respect to v. and there-
by obtain a positive-definite inner product (3.12), if one
can choose a surface X of codimension one that is orthog-
onal to r. As we shall see, this is in fact possible, because
one can use the freedom in choosing the vector field ~,b

on A. to make ~,b hypersurface orthogonal. One can ex-
plicitly define a hypersurface-orthogonal vector field ~,b

as the gradient of a scalar on JN, . Let

= f dx g
' -'(g' +5' )X 5

where pR is a vector field that has asymptotically the
form of a translation: for example,

PR =z'0(r —R),
with z' a constant unit vector with respect to the metric
5,b and 0 the step function. Then, writing

6
'R'(x) = @R

5gab X

we have

rR(x)=G' ' (x)X,- g,„+O(R ') .

A vector may be regarded as a linear map from a space
(4I of scalars to itself; here we may take [4) to be a
space of scalars on Afsatisfyi, ng asyinptotic condition (ii).
The desired hypersurface-orthogonal vector field ~' on
JNmay no, w be defined by

r' (x)= lim rR' = 6
R ~ 5gab(X)

where

.z .ab4„= lirn 4R = dQ j——j'br, zb
R —oc

where j'" is the coefficient of the r part of the metric
g, b [as given by asymptotic condition (i) that defines JR].
As required, ~"" is a translational symmetry vector on JB,.
For metrics with the asymptotic form of a Schwarzschild
metric of mass M translated by a distance a, we have
4„=(327r/3)Ma. Note that, at least when the super-
space metric is invertible, one can show that the transla-
tional symmetry vector on is also hypersurface orthog-
onal.

In the case of a free particle, the symmetry vector on
which the decomposition into positive- and negative-
frequency solutions is based is tirnelike. While the ex-
istence of a positive-definite inner product is unrelated to
this fact, one does need a timelike vector to make the free
particle's kinetic energy positive. It is not clear that one
needs a positive-definite kinetic part of the corresponding
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super Hamiltonian in quantum gravity; at least in a
theory of pure quantum gravity, there is no mechanism
for a transition to negative eigenstates of the super Ham-
iltonian. But it is natural to ask whether the symmetry
vectors on the space A, of metrics or on the superspace 4'

are analogously timelike with respect to a "supermetric"
6& on JR or its projection to S'. The question has several
subtleties, which we mention briefly and discuss in more
detail in the Appendix. First, there is a different super-
metric G~ for each choice of lapse N[g](x), and the
norm of the symmetry vector depends on ¹ Second, al-
though two vector fields on the three-space M that agree
asymptotically are equivalent in their action on super-
space, they in general have different norms with respect
to a given supermetric Gz. It turns out that for each
metric g,b, one can always extend an asymptotic transla-
tion to a vector field P(x) on the interior of the three-
space M in such a way that the corresponding vector field
on At, h,b(g) =X&g,b, has a negative norm:

fdxN 'G''h h (0
where

G abed — 1/2( a(c d)b ab cd) (3.15)

A different choice of g, however, can change the sign of
the norm. Finally, if one tries to overcome the ambiguity
in the choice of g by computing the norm of the vector
field r on superspace 1, rather than on the space of
metrics A, one finds that a covariant metric on super-
space does not always exist; and when it does exist, one
must solve an elliptic equation in order to obtain the
norm of a vector on superspace. In particular, the co-
variant metric does not exist when the space is asymptoti-
cally Schwarzschild, with 1V given by the Schwarzschild
lapse. For more general spacetimes, one could numeri-
cally compute the norm of v on superspace, but we have
not yet done so.

The physical meaning of our division into positive and
negative frequencies is apparent. By choosing as time an
asymptotic center-of-mass coordinate X, we require the
asymptotic observer to be in a frame for which the sys-
tem moves in the positive X direction. That is, with v

chosen to be the generator of spatial translations along,
say, the x axis of an asymptotic observer, the positive-
frequency solutions are built from eigenfunctions of P,
with P„)0.

From an asymptotically flat superspace, the internal
times inherit their formal virtues: They correspond to
dynamical symmetries and obey the clocklike dynamics
of Eqs. (3.5a) and (3.5b). If one were to represent an iso-
lated system more realistically as a subgeometry of a
larger spacetime, one's internal times would only approx-
imate these features. Even in the asymptotically Aat con-
text, however, the practical virtures of the internal times
depend on the extent to which they approximate classical
clocks. Since X and P„are conjugate variables, if the
state vector 0 is to have a nontrivial evolution with
respect to the time X in a representation in which X is di-
agonal, it cannot be an eigenfunction of P . Thus for a
system of atomic scale, the time X is blurred. If, howev-
er, the system is massive, the state vector 4 can be

peaked sharply about some value of P; that is, b,P/(P)
can be smail, and, at the same time have a nontrivial X
dependence, with 4(X+6,X} substantially different from
ql(X) when AX ) (b,P) '. Only in this circumstance will

the system have the character of a clock; and only for
such a massive system is it a sensible idealization to re-
strict the Hilbert space to eigenvalues P )0.

C. Internal and external time

While we have been concerned with identifying inter-
nal times to label asymptotically flat spacetimes in quan-
tum gravity, it is, of course, possible to define an external
time t by writing

ic),+(g, t) =H~V(g, t), (3.15')
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where the lapse N approaches 1 at spatial infinity. [Equa-
tion (3.15) appears in Dirac's first paper on quantum
gravity, and a variant of this approach is implicit in the
path-integral framework discussed by Teitelboim. '

] Be-
cause its "conjugate momentum" (1/i 9, appears linearly
in Eq. (3.15), the external time t is formally inequivalent
to the internal times that we consider, and whose conju-
gate morn enta appear quadratically in the Wheeler-
DeWitt equation. The external time is formally similar
to the past volume that has been advocated for cosrnolog-
ical time by Sorkin" and by Unruh and Wald. ' The
internal times, on the other hand, are related to clocks
constructed from the three-metric of a compact
universe. ' That is, if one regards an asymptotically flat
space as an idealization of an isolated system embedded
in a larger surrounding universe, then the internal times
are approximately present in the quantum theory of the
larger spacetime. Each internal time of the asymptotical-
ly flat space is a limit of operators corresponding to the
position or orientation of the (approximately defined) iso-
lated system.

For an asymptotically flat space in an eigenstate of
mometum, since the variable X cannot serve as a clock,
one can use the external time t. Similarly for an asymp-
totically flat space in an eigenstate of mass M, the exter-
nal time cannot serve as a clock, but one can use an inter-
nal time. This case is analogous to a closed universe,
which one can regard as being in an eigenstate of zero
mass. ' For a massive, asymptotically flat space, with M,
P„, and X peaked about classical values, the external time
is redundant. At each time to, the functional %([g],to)
already contains the time evolution of 4)'. That is, the
value of %([g],t) for metrics with X=XO can be ex-

pressed in terms of 4([g],to) for metrics with

X=X—(P„/M)(t —to):

0 ([g,X =X,],t) = P([g,X =X,—(P„/M)(t t, )],t, ) . —

To summarize, in a physical situation in which (P') (or
( J')) are nonzero, one already has an internal time, and
introducing an additional, external time seems unnatural.
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APPENDIX; THE CONTRAVARIANT
AND COVARIANT METRICS

OF SUPERSPACE

Let m:At ~S be the projection mapping a metric g,b on
a three-manifold M to the equivalence class [g] of
metrics, where two metrics are equivalent if related by an
asymptotically trivial diffeomorphism in the component
of the identity. We shall adopt the abstract index nota-
tion, using indices A, B, . . . for tensors on the (infinite-
dimensional) manifold JV, an, d indices a, P, . . . for ten-
sors on O'. One makes 4 into a manifold as well by taking
At to be the space of generic metrics in the sense of
metrics without Killing vectors we shall assume that
this has been done and that the tensor bundles are Hil-
bert bundles (e.g. , by requiring that metrics on the three-
manifold M belong to a weighted Sobolev space' ). A
contravariant vector h "(g) at g, b EAf may be defined as
the tangent to a path A, ~g,b(A, ,x) of metrics on M. That
is, h "(g) is a symmetric tensor field on the three-mamfold
M:

d
h =h b(x) gob(k, x). (A 1)

X=O

A covariant vector p„at g,bEAt may similarly be
identified with a tensor density p' (x). If 4 is a function
on JR (i.e., a functional of three-metrics), its gradient
(functional derivative) is a tensor density on JK, having at
a point g,b the value

5'P ab
p~ =Viols= =p"(x) .

5g,b(x)
(A2)

0'=~ HG"'~A B (A4)

on S. If g is a function on 4, the covector V g on 4 has
the norm

0 ~V fV Q=G" V„'IIVii%'

5% 5%
dx XG,b,d

gab gcd
(A5)

where %'=g n. is a gauge-invariant function of three-
metrics.

While the superspace 4 thereby inherits from A, a con-
travariant metric, the metric can be degenerate, because
the metric on A, has an indefinite signature. In order to
find the norm of a vector field ~ on 4, one needs a co-
variant metric 0 &, the inverse of 6; and 6 &

exists if
and only if 6 ~ is nondegenerate. We shall see that there

Let ir& TAf~TS. be the differential map (Jacobian map
n, ), and denote by 6" the contravariant metric on At
associated with some lapse function N[g](x). Then, at a
point g,b EA, , the covector p „has the norm

G" p&pB= XX X Gabcd & p & p x A3

The map m. projects (drags) the contravariant metric G"
on JK to a contravariant metric

are at least some points of S where 6 ~ is nondegenerate,
but it is not yet clear whether it is nondegenerate at gen-
eric points. There is a straightforward criterion for non-
degeneracy, which can be expressed geometrically as the
existence of a horizontal projection on At and algebraical-
ly as the existence of solutions to an elliptic equation:

Definition A. vector v" on A, is Vertical iff it has the
form v =V~, gb„where g, vanishes at infinity; that is, a
vertical vector is the tangent to a path of gauge-related
metrics. A vector h is horizontal iff G&Bh "v =0 for all
vertical vectors U; equivalently, h" is horizontal iff
h~:=G&Bh =V„4, for some gauge-invariant functionB

Then h "=h,&(x) is horizontal:

jdxN 'G''h V („=0, Vg

-V (N-'6'"'h )=0b cGI'

(A6)

where 6' ' is given by Eq. (3.15).
proposition l. If 0 ~ is nondengenerate, one can define

a horizontal projection on At in terms of the covariant
metric 6 &.

Proof. Suppose G ~ is nondegenerate and let u" be a
vector at a point g,„&JR. Define a projection operator
HB to the horizontal subspace of the tangent space at g
by writing

H~4=64~n, Cp, ere . . (A7)

and this relation follows from the defining equation (A7)
for HB.

Using the corollary above, it is not difficult to see
that, for constant lapse, 6 &

is well defined at points [g]
for which the eigenvalues of the Ricci tensor, Rb, on a
compact manifold M are nonpositive. (The eigenvalues
of Rb depend only on the equivalence class [g] of g,b.)
We need to show that no vertical vector V~, gb~(x) at
g,b EA, is horizontal, that the equation

Then u:=H& u is horizontal because, for vertical vec-
tors, U, U m. „=O~U~u =0. The vectors u" and u ~

differ by a vertical vector because m. ~ u "=~~u ". Final-
ly, HB is a projection operator:

HCH~=(6" mDCsyirrc)(G irsC, parti)

=6" m GsrC 'C,ttirtt

=G" mDCstinq =Htt"

Corollary. When 6 ti exists, its pullback to JR is the
horizontal projection of 6„ti, ir

„C~&gati

=H „~:
=H„GcDHti. That is, the norm of a vector on g is the
norm of its horizontal lift to JR.

Proof. It suffices to check that

h "H„tth =h "m„C tsnqh (AS)

for all horizontal h", because n.„C &mdiv =H„~v =0
for U" vertical. Since horizontal vectors have the form
h "=m" V P, where n"=6" ~tt a.nd P is a function on
S, Eq. (A8) is equivalent to
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( 6abcdV g ) 0 (A9)

has no solutions which vanish at infinity. After cornmut-
ing covariant derivatives, Eq. (A9) can be written in the
form

the gauge-related tensor fields y,b+X&g,b. If ker L =0,
there is a unique horizontal lift, a unique solution P to
the equation,

Vb[G' ' (y,d+Xgg, d )]=0,
L'bg":=Vb(V~+ V—'g )+2R'bg =0 . (A10) or, equivalently,

When the eigenvalues of R 'b are nonpositive, the opera-
tor L b is negative:

fg, L'bg g' dx =2f ( —V,g„V('g l

L'g'= V—(y" g—'y ) (A13)

Then, writing y, b =y,b+X&g,b to denote the horizontal
lift of [y,b],

+R'bg, g")g' dx (0, (All) &.tty y = f dx 6"~y.by, d . (A14)

In particular, when ker L =0, one can find as follows
the norm 6 tty y~ of a vector y' on S. A vector at
[g]ES is the tangent, (d/dA. )[g,b(A, )]~i o to a path

[g,b(A, )] in S. Write y,b=(dldA, )g,b(A). If pi is a fami-

ly of diffeomorphisms in Do generated by a vector field

P, then

6f Gf

dg [g b(~)]=
~ [Jig.b(~)]=(y.b++gg b) (A12)

A lift to g, b EJlt of a tangent vector y 64 is then any of

for g'%0. Hence ker L =0 [i.e., Eq. (A9) has no nonzero
solution], and the corollary implies that 6 ~ is invertible.

Proposition 2. G ~ is degenerate at [g]~ some vector
v at g is both vertical and horizontal.

Proof Supp.ose G ~ is degenerate at [g]. Then
6 ~V+~(s) =0 for some function P defined in a neighbor-
hood of [g]. Let v"=6" Vtt(gott). Then v" is horizon-
tal by construction. On the other hand, U will be verti-
cal if v "V„4=0for all 4 of the form

%=intr,

with g a
function on S. But

v "V„'P=v„G" Vtt+=V Pn. „G" ttttVt3$

=V $6 ~Vie=O� .

To prove the converse, suppose that some vector U
" is

vertical and horizontal. Since v " is horizontal,
v„=V„(gott)=tr„V (t, some function (t on S. Then,
for any P on 4, VaPG ~Vt3$=V Ptr„G" ttttV&g
=v "V„(/on. )=0, where the last equality holds because
v" is vertical. Thus 6 ~V+=0 and 6 ~ is degenerate.

If the space has a finite Aat region, any vector field of
the form P=V'f, with Vf vanishing at infinity, is in ker
L, and 6 ~ is therefore not invertible. Moreover, when
the lapse and the Ricci tensor of g,b satisfy the relation

Rb =N VVbN, R =0, (A15)

on any finite region U C M, then 0 ~ is again not inverti-
ble. In this case, any vector field of the form P =N V'P,
with support on U is in ker L, because L'bg has the
form

In particular, Eq. (A15) holds for the vacuum
Schwarzschild geometry, and thus 6 ~ is not invertible
for a three-geometry and choice of lapse that agree, for r
greater than some radius R, with vacuum Schwarzschild.
There is a wide class of geometries for which G ~ is in-
vertible, but it is not yet clear to us whether it is inverti-
ble at almost all points of S.

Note that at those points [g]Eh' where the covariant
metric, @tv, exists (where Ctv is invertible), the vector
field ~ associated with an asymptotic translation has
norm independent of N.

The propositions and discussion above are valid for the
space of metrics on closed three-manifolds if one simply
omits the reference to the behavior of quantities at spatial
infinity. We have checked for M =S and N =1, that
C ~ is invertible at the constant curvature metric on M.

V(X 'Gb"V g
-)

'V I&'[V (& 'P) —V (X 'P)]]=0.
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